Bounds for wides (Chap. 13)
Let's understand more about the tradeoffs in trying to make (n, m, d) q-ary codes and $\quad[n, k, d) \mathbb{F}_{q}$-linear codes have $\left\{\begin{array}{l}d \text { large (for ewor-correction) } \\ \text { both } \\ m \text { or } k \text { large }\end{array}\right.$ both $\{m$ or k large relatureto n (for highq-ary rate $\frac{\log _{\frac{j}{i}}(m)}{n}$ or $\frac{k}{n}$)

We will give
3 general upper bounds on m in (n, m, d) relative to d and n
(Hamming, sindeton, Plotkin bounds)

- 1 lower bound for k in $[n, k, d]$ relative to d and n (Gilbert-Varshamor bound)

Hamming's sphere-packing bound (\$13.1)
THEOREM In any ($n, m, 2 e+1$) q-any code,

$$
m \leq \frac{q^{n}}{1+(q-1)\binom{n}{1}+(q-1)^{2}\binom{n}{2}+\ldots+(q-1)^{p}\binom{n}{e}}
$$

proof: In order for $C \subset \sum^{n}$ to correct e errors, the $m=|C|$ different
Hamming balls of radius e around codewords $v \in C$

$$
B_{e}(v):=\left\{w \in \sum^{n}: d(v, \omega) \leq e\right\}
$$

must all be disjoint inside \sum^{n}.

just a carbonnot what
Hamming galls redly look like!

Note that each of these $B_{e}(v)$ has the same number of words from Σ^{n} ：since $q=|\Sigma|$ ，

$$
\begin{aligned}
& \text { vikelf chords disteme? chords } \\
& \# B_{e}(v)=1+\binom{n}{1}(q-1)^{2}+\binom{n}{2}(q-1)^{2}+\ldots+\binom{n}{e}(q-1)^{e}
\end{aligned}
$$

Disjoint ness inside Σ^{n} implies

$$
\begin{aligned}
\# \sum^{n} & \geqslant \sum_{v \in e} \# B_{e}(v)=\mid C\left(\cdot \# B_{e}(v)\right. \\
q^{n} & \geqslant m \cdot\left(1+\binom{n}{1}(q-1)+\binom{n}{2}\left(q_{-1}\right)^{2}+\ldots+\binom{n}{e}\left(q_{0}-\right)^{2}\right)
\end{aligned}
$$

Now divide by the sum in parentheses．⿴囗才
EXAMPLE If I wont a $(10, m, 7)$ bray ode， how many words does Hamming bound limit me to？
so $m \leq 5$ ．Not very many wdewords！

When Cachieves equality in the Hamming bound, the balls $B_{e}(v)$ for $v \in C$ disjointly weever \sum^{n}, and C is called a perfect (e-)code.
This is quite rare, but some exist.
EXAMPLE Hamming's $[n, k, 3] \mathbb{F}_{q}$-linear codes are perfect 1 -codes $\begin{array}{ll}q^{n}-1 & 11 \\ q-1 & \frac{q^{r}-1}{q^{2}-1}-r\end{array}$
since $m=q^{k}=q^{n-r} \ll$ equality!
while Hamming's bound said

$$
m \leq \frac{q^{n}}{1+\binom{n}{1}\left(q^{n}\right)}=\frac{q^{n}}{1+n(q-1)}=\frac{q^{n}}{1+\left(q^{r}-1\right)}=\frac{q^{n}}{q^{r}}=q^{n-r}
$$

EXAMPLE M. Golly wrote down 4 very special linear codes in 1948, called the Golly codes:
used in $\longrightarrow G_{24}$ is $[24,12,8]$ and ∇_{2}-linear Voyager
$1979-81$$G_{23}$ is $[23,12,7] \quad \mathbb{F}_{2}$-linear a perfect
Jupiter $G 12$ is $[11,6,5] \quad \mathbb{F}_{3}$-linear ape flybys G_{11} is $[11,6,5] \quad F_{3}$-linear perfect (See John Baez cool blog post on syllabus!)

It was actually proven in 1973 by Tietäväinen that there are no other Hylinear perfect codes, up to permuting the coordinates in $\left(\mathbb{F}_{q}\right)^{n}$
[Except for some degenerate exceptions:

$$
C=\{0\} \subset\left(\mathbb{F}_{f}\right)^{n} \text { is always }[n, 0, n]
$$

and perfect but useless!

$$
C=\left\{\begin{array}{l}
\underline{0}, 1\} \\
\text { Linens }
\end{array}\left(\mathbb{F}_{2}\right)^{n} \text { is always }[n, 1, n]\right.
$$ binary

repetitoncode and a perfect e-code repetition code and a perfect e-code if $n=2 e+1$ is odd $]$

So for linear perfect codes other than bincy repetition, the ewror-correction $e \leq 3$, not very large.

There do exist other non-linear perfect codes.

The Singleton bound ($\$ 13.3$)
THEOREM:
In any $(n, m, d) q$-any code, $m \leq q^{n-(d-1)}$. So in any $[n, k, d] \mathbb{F}_{q}$-linear code, $k \leq n-(d-1)$.
proof: Let $C=\left\{v=\left(v_{1}, \ldots, v_{n}\right): v \in C\right\} c \Sigma^{n}$ be such an (n, m, d) q-any cods and consider $\hat{C}=\{\hat{v}=\underbrace{\left(v_{1},-, v_{n-(d-1)}\right)}_{\text {truncations of thew }}: v \in C\} \subset \Sigma^{n-\left(d_{-1}\right)}$. truncations of the words in C to their $1^{\text {st }} n$ - $(d-1)$ positions
We claim that the shorter words $\hat{v}, \hat{v}^{\prime}$ are all distinct in \hat{C} : if $\hat{v}=\hat{V}^{\prime}$ then their corresponding words v, v^{\prime} in C would have $d\left(v, v^{\prime}\right) \leq d-1<d=d(C)$, a contradiction.
Hence $|e|=|\hat{e}| \leqslant\left|\sum^{n-(d-1)}\right|=q^{n-(d-1)}$

EXAMPLE Suppose as before, I want $a(10, m, 7)$ binary code. How severely does Singleton's bound limit $m=|e|$?

$$
m \leqslant 2^{10-(7-1)}=2^{4}=16,
$$

so not as stringent as Hamming's bound $m \leq 5$. (But mother cases, Singleton's bound can be more stringent than (Hamming's)

DEF N : If C is an (n, m, d) code achieving equality $m=q^{n-(d-1)}$ in Singleton's bound, it is called a maximum distance separable code. (or MDS code)
EXAMPLES

$$
C=\left\{\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
q_{1}^{-1} \\
1 \\
1-1
\end{array}\right]\right\}_{n-(d-1)} \quad\left(\text { or }[n, 1, n] \mathbb{F}_{g}-\text { linear }\right)
$$

since $m=q^{n-(d-1)}$

$$
q^{\prime \prime} \underbrace{m=q_{1}^{n-(n-1)}}_{r} q^{q^{\prime}}
$$

(2) MDS codes with $d=n-1$ have $m=q^{n-(n-1-1)}=q^{2}$ and relate to $q \times q$ Latin squares for $n=3$ \rightarrow pairs of mutually orthogonal Graew-cablusquares gro Latin squares for $n=4$ triples of — for $n=5$

The $n=3$ case...
Def' N : A gro Latin square has each of the of lifers of \sum appearing exactly once in each cow and in each column.
$q=4$ A 4×4 Latin square columns

rows | | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 |
| 1 | 3 | 0 | 1 | 2 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 1 | 2 | 3 | 0 |

Sestina
by Elizabeth Bishop
September rain falls on the house. In the failing light, the old grandmother sits in the kitchen with the child beside the Little Marvel Stove, reading the jokes from the almanac, laughing and talking to hide her tears.

She thinks that her equinoctial tears and the rain that beats on the roof of the house were both foretold by the almanac, but only known to a grandmother. The iron kettle sings on the stove. She cuts some bread and says to the child,

It's time for tea now; but the child is watching the teakettle's small hard tears dance like mad on the hot black stove, the way the rain must dance on the house. Tidying up, the old grandmother hangs up the clever almanac
on its string. Birdlike, the almanac hovers half open above the child, hovers above the old grandmother and her teacup full of dark brown tears. She shivers and says she thinks the house feels chilly, and puts more wood in the stove.

It was to be, says the Marvel Stove. I know what I know, says the almanac. With crayons the child draws a rigid house and a winding pathway. Then the child puts in a man with buttons like tears and shows it proudly to the grandmother.

But secretly, while the grandmother busies herself about the stove, the little moons fall down like tears from between the pages of the almanac into the flower bed the child has carefully placed in the front of the house.

Time to plant tears, says the almanac. The grandmother sings to the marvelous stove and the child draws another inscrutable house.

C Sudokus are 9×9 Latin squares with even more stmeture

The line-ending words in the six manstames of a sestina repeation a 6×6 Latin square pattern:

ABCDEF
FAEBDC
CFDABE
ECBFAD
DEACFB BDFECA

The Plofkin bound (Roman $\$ 4.5$, not in Gaureff)
This one is only relevant when d is pretty large as a fraction of n ($=$ block length), but is believed to be a very tight bound on m.
THEOREM: If C is an (n, m, d) q-ary woe and $d>\left(1-\frac{1}{8}\right) \cdot n$, then $m \leq \frac{d}{d-\left(1-\frac{1}{8}\right)_{n}}$.

EXAMPLE Let's compare what it says about $(10, m, 7)$ binary codes to our previous
$m \leq 5$ from Hamming's bound
($m \leq 16$ from Singleton's bound.)
Check Plotkin applies, since the hypothesis is satisfied:

$$
7=d>\left(1-\frac{1}{2}\right) \cdot n=\left(1-\frac{1}{2}\right) 10=5
$$

Plotkin says $m \leq \frac{d}{d-\left(1-\frac{1}{q}\right)^{n}}=\frac{7}{7-\left(1-\frac{1}{2}\right)_{10}}=\frac{7}{7-5}=\frac{7}{2}$
so $m \leq 3$, much better than Hamming!
proof of Plottern's bound: Let's compare some lower and upper bounds on this sum:

$$
S:=\sum_{v \in e} \sum_{\substack{v^{\prime} \in C \\ v^{\prime} \neq v}} d(\underbrace{}_{\substack{ \\\geq v}}
$$

$v^{\prime} \neq v \geq d$ by definition of $d=d(e)$
so

$$
\begin{aligned}
& S \geqslant \sum_{v \in C} \sum_{\substack{v \in e \\
v \neq v}} d=d \#\left\{(v, v) \in \underset{\substack{\prime \\
v \neq v}}{ } e^{\prime}\right\}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& S=\sum_{v \in C} \sum_{\substack{v_{1}^{\prime} \in e \\
v^{\prime} \neq v}} \sum_{i=1}^{n}\left\{\begin{array}{lll}
1 & \text { if } & v_{i}^{\prime} \neq v_{i} \\
0 & i f & v_{i}^{\prime} \\
\hline
\end{array}\right\} \\
& \text { interchange } \\
& \text { of sums } \\
& =\sum_{i=1}^{n} \sum_{v \in e} \sum_{\substack{v^{\prime} \neq e \\
v^{\prime} \neq v}}\left\{\begin{array}{lll}
1 & \text { if } v_{i}^{\prime} \neq v_{i} \\
0 & \text { if } & v_{i}^{\prime}=v_{i}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& S=\sum_{i=1}^{n} \sum_{j=0}^{q-1} \sum_{\substack{v \in e: \\
v_{i}=j}} \#\left\{v^{\prime} \in e: v_{i}^{\prime} \neq j\right\}
\end{aligned}
$$

If we let $k_{i j}:=\#\left\{v \in C: v_{i}=j\right\} \begin{array}{r}\text { for all positions } \\ \text { and letter, }, \ldots, n\end{array}$ and letters $j=0,1,-,-8-1$
then we can rewrite the innermost sum:

$$
\begin{aligned}
& S=\sum_{i=1}^{n} \sum_{j=0}^{q-1}{\underset{1}{i j}}^{k_{\text {chicks }}} \underbrace{}_{\left.\hat{\sim}-k_{i j}\right)} \\
& \begin{array}{l}
\text { choices } \\
\text { for } v \in C
\end{array} \\
& \text { choices for } v^{\prime} \in C \\
& \begin{array}{l}
\text { for } v \in C \\
\text { with } v_{i}=j
\end{array} \\
& =\sum_{i=1}^{n}\left[m \sum_{j=0}^{q-1} k_{i j}-\sum_{j=0}^{q-1} k_{i j}^{2}\right] \\
& \text { since } \\
& x_{0}=k_{i, 0} \\
& \begin{array}{c}
x_{1}=k_{i n} \\
\vdots \\
x_{i}
\end{array} \\
& x_{b j}=k ; \xi^{-1} \\
& =\sum_{i=1}^{n}\left[m \cdot m-\sum_{j=0}^{q-1} k_{i j}^{2}\right] \\
& \text { Satisfy } \\
& x_{0}+x_{1}+\ldots+x_{i=1}=m \\
& \leq \sum_{i=1}^{n}\left[m^{2}-\sum_{j=0}^{q-1}\left(\frac{m}{q}\right)^{2}\right] \stackrel{\begin{array}{c}
\text { since theminimum } \\
\|x\|^{2}= \\
i=1 \\
\text { on } \\
\text { on the } \\
\text { set } t
\end{array}}{\substack{2 \\
x_{i}^{2}}} \\
& x_{0}+x_{1}+\ldots+x_{j-1}=m
\end{aligned}
$$

occurs when

$$
x_{0}=x_{1}=\ldots=x_{g_{1}}=\frac{m}{q}
$$

(egg. via calculus)
$q=2$

Thus $S \leq n\left(m^{2}-\frac{m^{2}}{q}\right)$

Comparing the two bounds on S,

$$
\operatorname{dm(m-1)\leq S\leq n(m^{2}-\frac {m^{2}}{q}),~)~}
$$

so $d(m-1) \leq n m\left(1-\frac{1}{q}\right)$

$$
\begin{aligned}
& d m-d \quad \leq n m\left(1-\frac{1}{q}\right) \\
& d m-n m\left(1-\frac{1}{q}\right) \leq d \\
& m(\underbrace{d-\left(1-\frac{1}{q}\right) n}_{>0 \text { by hypothesis }}) \leq d \\
& \Rightarrow \quad m \leq \frac{d}{d-\left(1-\frac{1}{q}\right)^{n}}
\end{aligned}
$$

Gilbert-Varshamov Bound ($\$ 13.2$)
This only works for linear codes, but it's a lower bound on k in $[n, k, d]$ (or $m=q^{k}$), so it works in the opposite direction to the other bounds, providing existence of codes.

THEOREM: There exists an $[n, k, d] \mathbb{F}_{g}$-linear code C whenever

$$
\begin{aligned}
& \text { e } C \text { whenever } \\
& q^{n-k}>1+(q-1)\binom{n-1}{1}+(q-1)^{2}\binom{n-1}{2}+\ldots+(q-1)^{d-2}\binom{n-1}{d-2} \text {, }
\end{aligned}
$$

or equivalently by taking $\log _{b}(-)$, whenever

$$
k<n-\log _{q}\left(1+(q-1)\binom{n-1}{1}+(q-1)^{2}\binom{n-1}{2}+\ldots+(q-1)^{d-2}\binom{n-1}{d-2}\right) \text {. }
$$

proof: Let's try to build such a C by choosing n column vectors in $\left(\mathbb{F}_{q}\right)^{n-k}$ for the generator matrix H of its dual code C^{\perp}, having no $d-1$ of its columns dependent $(\Rightarrow d(e) \geqslant d)$.

Thus u_{n} must avoid at most this many vectors in $\left(\mathbb{F}_{q}\right)^{n-k}$:

As long as $\left|\left(\mathbb{F}_{q}\right)^{n-k}\right|=q^{n-k}$ is bigger than the above sum, we can pick u_{n}.

And at any of the earlier stages picking u_{1}, then u_{2}, etc, eve needs similar inequalities, but they are all less stringent.

EXAMP LE: How small do we need to make le to build a $[10, k, 7] \mathbb{F}_{2}$-linear code? Gibert-Varshamov tells us how once we make sure

$$
k<10-\log _{2}\left(1+\binom{9}{1}(2-1)^{2}+\binom{9}{2}(2-1)^{2}+\ldots+\binom{9}{5}(2-1)^{5}\right) \approx 1.42
$$

So it only works to build C if $k \leqslant 1$, e.g. the $[10,1,10] \quad \mathbb{F}_{2}$-repefforn code

$$
C=\{0,1\} c\left(\mathbb{H}_{2}\right)^{10}
$$

This may seem a bit disappointing, but we shouldn't have been surprised:
Plotkin told us $m \leq 3$ for any $(10, m, 7)$ 2-any woe,
$\Rightarrow 2^{k}<3$ for any $[10, k, 7] \mathbb{K}_{2}$-linearcode
$\Rightarrow k<\log _{2}(3) \approx 1.58$

$$
\Rightarrow k<\log _{2}(3) \approx 1.58
$$

ie. $k \leq 1$

