Cyclic codes (\$14.2)
Some of the more commonly used codes have this form, including Reed-Solomon codes $(\neq$ Reed-Muller codes ? $)$

Definition:
An \mathbb{F}_{g}-linearcode $C \subseteq\left(\mathbb{F}_{q}\right)^{n}$ is cyclic if it is Row Space (G) for a circulant matrix G, that is, one of the form

$$
G=\left[\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & c_{2} & \cdots
\end{array} c_{n-2}\left(\begin{array}{cccc}
& c_{1} & c_{n-3} \\
c_{n-2} & c_{n-1} & c_{0} & c_{1} \\
\vdots & \vdots & \ddots & \ddots \\
c_{2} & c_{3} & \ddots & \vdots \\
c_{1} & c_{2} & c_{3} & \cdots
\end{array} c_{n-1} c_{0}\right][]\right.
$$

Note: G is $n \times n$, not $k \times n$ with $k=\operatorname{dim} C$ not in standard form, not of rank n.
In fact, well need to figure out how to compute $k=\underset{F_{i}}{\operatorname{dim}(e)}=\operatorname{rank} G$.

The key will be this object:
DEF'N: The generator polynomial for G and C is $g(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1} \in \mathbb{F}_{q}[x]$

EXAMPLE The cyclic code $C \subset\left(\mathbb{F}_{3}\right)^{6}$ having generator polynomial

$$
\begin{aligned}
& \qquad \begin{array}{c}
g(x)=1+2 x+2 x^{2}+2 x^{3}+x^{4} \in \mathbb{F}_{3}[x] \\
= \\
=1+2 x+2 x^{2}+2 x^{3}+1 \cdot x^{4}+0 \cdot x^{5}
\end{array}
\end{aligned}
$$

is the vowspace of

$$
G=\left[\begin{array}{llllll}
1 & 2 & 2 & 2 & 1 & 0 \\
0 & 1 & 2 & 2 & 2 & 1 \\
1 & 0 & 1 & 2 & 2 & 2 \\
2 & 1 & 0 & 1 & 2 & 2 \\
2 & 2 & 1 & 0 & 1 & 2 \\
2 & 2 & 2 & 1 & 0 & 1
\end{array}\right]
$$

It turns out that G has rank
$4=k=\operatorname{dim}_{F_{3}}(C)$, so C is an $[n, k, d] \quad F_{3}$-linearcode, 64 but chis is not clear how to compute (yet).

The key is for us to think about the vows of G as wefficient sequences for polynomials in a new ling $F_{q}[x] /\left(x^{n}-1\right):=$ polynomials reduced modulo $x^{n}-1$
which has a rector space basis $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$:

$$
1+2 x+2 x^{2}+2 x^{3}+x^{4}
$$

$$
\begin{array}{llllllll}
1+2 x+2 x^{2}+2 x^{3}+x^{4} \\
1 & x & x^{2} & x^{3} & x^{4} & x^{5} & \left.\mathbb{F}_{3}(x)\right]\left(x^{6}-1\right)
\end{array}
$$

$\left.\left.\begin{array}{l}\text { row } 1 \text { of } G \leftrightarrow g(x) \\ \text { row } 2 \text { of } G \leftrightarrow x g(x) \\ \text { row } 3 \text { of } G \leftrightarrow x^{2} g(x)\end{array} \right\rvert\, \begin{array}{llllll}1 & 2 & 2 & 2 & 1 & 0 \\ 0 & 1 & 2 & 2 & 2 & 1 \\ 1 & 0 & 1 & 2 & 2 & 2\end{array}\right]$

$$
\begin{aligned}
& x^{6}-1 \begin{array}{l}
x+2 \\
x^{7}+2 x^{6}+2 x^{5}+2 x^{4}+x^{3}
\end{array}=x^{3}(x) \\
& \frac{x^{7}-x}{2 x^{6}+2 x^{5}+2 x^{4}+x^{3}+x} \\
& \frac{2 x^{6}-2}{2 x^{5}+2 x^{4}+x^{3}+x+2}
\end{aligned}
$$

What is this new ring, and how do we conk withit?

PROPOSITION For any $f(x) \in \mathbb{F}[x]$ with
F any field, there is a quotient ring

$$
\mathbb{F}[x] /(f(x))=: " \mathbb{F}(x] \operatorname{modulo} f(x) \text { " }
$$

where t, x are done in $\mathbb{F}[x]$, then followed by taking remainder upon division by $f(x)$.
So $\overline{p_{1}(x)}=\overline{p_{2}(x)}$ in the ing $\mathbb{F}[x] /(f(x))$
$\Leftrightarrow p_{1}(x), p_{2}(x)$ have same remainder on division by $f(x)$

$$
\Leftrightarrow f(x) \mid p_{1}(x)-p_{2}(x)
$$

Furthermore, $\mathbb{F}[x](f(x))$ is notjostaning, but also an \mathbb{F}-vecto rspace of dimension $d:=\operatorname{deg}(f(x))$, with basis $\left\{\bar{i}, \bar{x}, \bar{x}^{2}, \ldots, \bar{x}^{d-1}\right\}$.

Examples
(1) $\mathbb{F}_{q}[x] /\left(x^{n}-1\right)$, for example,
$\mathbb{F}_{3}[x] /\left(x^{6}-1\right)$ has \mathbb{F}_{3}-basis $\left\{i, \bar{x}, \bar{x}^{2}, \bar{x}^{3}, x^{4}, \overline{x^{5}}\right\}$ and our cyclic code C was a subspace inside it spanned by $\left\{g(x), x g(x), x^{2} g(x), x^{3} g(x), x^{4} g(x), x^{x} g(x)\right\}$
(2) $\mathbb{R}[x] /(\underbrace{x^{2}+1}_{f(x)})$ has \mathbb{R}-basis $\{i, \bar{x}\}$ and is really a disguised form of

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}
$$

$\left(\begin{array}{r}\text { an } \\ \mathbb{R} \text {-vector space with } \\ \\ \\ \mathbb{R} \text {-basis }\{1, i\}\end{array}\right)$

since in $\mathbb{R}[x] /\left(x^{2}+1\right)$, one has

$$
\begin{aligned}
(a+b \bar{x})(c+d \bar{x})= & a c+(b c+a d) \bar{x}+b d \bar{x}^{2} \\
\underset{a+b i}{\uparrow} \hat{c}^{2}+d i & =a c+(b c+a d) \bar{x}-b d \\
= & a c-b d+(b c+a d) \bar{x} \\
& \\
& a c-b d+(b c+a d) i
\end{aligned}
$$

proof of PROPOSITION:
Operations t, x from $\mathbb{F}[x]$ still make Sense in $\mathbb{F}[x] /(f(x))$, and don't depend on choosing representatives $a(x), b(x)$ for $\bar{a}(x), \bar{b}(x)$
when computing $\bar{a}(x)+\bar{b}(x)=\overline{a(x)+b(x)}$
$\overline{a(x)} \cdot \overline{b(x)}=\overline{a(x) b(x)}$.
This is proven exactly as we did it for ,$+ x$ in \mathbb{Z} giving,$+ x$ in $\mathbb{Z}(m \mathbb{Z}$.
Checking this makes $\mathbb{F}(x) /(f(x))$ into an \mathbb{F}-vector space is also easy.
Why do $\left\{\overline{1}, \bar{x}, \bar{x}^{2},-, \bar{x}^{d-1}\right\}$ span $F[x] /(f(x))$? Because every $a(x) \in \mathbb{F}[x]$ can be written

$$
\begin{aligned}
& \text { Because every } a(x) \in \mathbb{H}[x] \text { can be whin } \\
& a(x)=f(x) \cdot q(x)+\underbrace{r(x)}_{r_{0}+r_{1} x+\ldots+r_{d-1} x^{d-1}} \text { with } 0 \leq \operatorname{deg}(r)<d \\
& \left.\Rightarrow \overline{a(x)}=r_{0}+r_{2} \bar{x}+\ldots+r_{d-1} \bar{x}^{d-1} \in \operatorname{span}_{\mathbb{F}}\{1, \bar{x}, \ldots)^{d-1}\right\}
\end{aligned}
$$

Why are $\left\{T, \bar{x}, \bar{x}^{2},, \bar{x}^{d-1}\right\}$ lin. indep. in $\left.F(x)\right](f(x))$?

$$
\left.c_{0} \cdot \bar{x}+c_{1} \cdot \bar{x}+c_{2} \cdot \bar{x}^{2}+\ldots+c_{d-1} \bar{x}^{d-1}=\overline{0} \text { in } \mathbb{F}(x] / f(f)\right)
$$

$\overline{c(x)}$ "here $c(x):=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{-1} x^{d-1}$

$$
\begin{aligned}
& \Leftrightarrow \overline{c(x)}=\overline{0} \text { in } \mathbb{F} x \mathcal{I} / f(x) \\
& \Leftrightarrow \underbrace{f(x)}_{\text {deg } d} \mid \underbrace{c(x)}_{\text {deg } \leq d-1} \Longleftrightarrow c(x)=0
\end{aligned} \Longleftrightarrow c_{0}=c_{1}=\ldots=c_{d-1}=0 .
$$

How will thinking of our cyclic code C inside $\mathbb{F}_{f}[x] /\left(x^{n}-1\right)$ help us?

DEFINITION:
Given n and our generator polynomial

$$
g(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1} \text { in } \mathbb{F}_{\substack{ }}[x]
$$

for our cyclic code $e \subseteq\left(\mathbb{F}_{8}\right)^{n}$

$$
\text { let } \begin{aligned}
\tilde{g}(x) & =\operatorname{GCD}\left(g(x), x^{n}-1\right) \\
h(x) & :=\frac{x^{n}-1}{\tilde{g}(x)}=h_{0}+h_{1} x+\ldots+h_{n-1} x^{n-1}
\end{aligned}
$$

ExAmple: Above we had

$$
g(x)=1+2 x+2 x^{2}+2 x^{3}+x^{4} \text { in } \mathbb{F}_{3}[x] \text { with } n=6
$$

$$
\text { so } \quad \tilde{g}(x)=\operatorname{GCD}\left(g(x), x^{n}-1\right)
$$

$$
\begin{aligned}
& \left.\quad \begin{array}{rl}
& =1+2 x+x^{2} \\
\begin{array}{ll}
\text { Guclides } \\
\text { algorithm } \\
\text { steps } \\
\text { suppressed! }
\end{array} & \\
& \text { and } h(x)
\end{array}\right)=\frac{x^{n}-1}{\tilde{g}(x)}=\frac{x^{6}-1}{1+2 x+x^{2}}=x^{4}+x^{3}+2 x+2
\end{aligned}
$$

THEDREM Given $g(x)$ a generator in $\mathbb{F}_{f}[x]$ for a cyclic code C of length n, with

$$
\left.\begin{array}{l}
\tilde{g}(x)=\operatorname{GCD}\left(g(x), x^{n}-1\right) \\
h(x)=\frac{x^{n}-1}{\tilde{g}(x)}
\end{array}\right\} \text { as above, then: }
$$

(i) $\tilde{g}(x)$ generates the same cyclic code C as $g(x)$.
(ii) $e^{\frac{1}{2}}=\operatorname{Rou}$ Space (H) where
note coefficients ot h

$$
\begin{aligned}
& \text { in decreasing, } \\
& H=\left[\begin{array}{cccc}
h_{n-1} & h_{n-2} & \cdots & h_{2} h_{1} h_{0} \\
h_{0} & h_{n-1} & \cdots & h_{2} h_{1} \\
\vdots & \vdots & & \\
h_{n-2} & h_{n-3} & h_{n-1}
\end{array}\right] \begin{array}{c}
\text { another in decreasing! order! } \\
n \times n \\
\text { circulant } \\
\text { matrix } \\
\text { (so } C^{1} \text { is also eydic) }
\end{array}
\end{aligned}
$$

(iii) $k=\operatorname{dm}_{\mathbb{F}_{q}}(C)=\operatorname{deg}(h(x))=n-\operatorname{deg}(\tilde{g}(x))$

EXAMPLE Above we have with $n=6$, over \mathbb{F}_{3}

$$
\begin{aligned}
& G=\left[\begin{array}{llllll}
1 & 2 & 2 & 2 & 1 & 0 \\
0 & 1 & 2 & 2 & 2 & 1 \\
1 & 0 & 1 & 2 & 2 & 2 \\
2 & 1 & 0 & 1 & 2 & 2 \\
2 & 2 & 1 & 0 & 1 & 2 \\
2 & 2 & 2 & 1 & 0 & 1
\end{array}\right] \\
& \Leftrightarrow g(x)=1+2 x+2 x^{2}+2 x^{3}+1 \cdot x^{4}+0 \cdot x^{5} \\
& \text { generates } C \\
& k=\operatorname{rank} G=\operatorname{dim} C=4 \\
& =n-\operatorname{deg}(\widetilde{g}(x))
\end{aligned}
$$

$$
\begin{aligned}
& \text { also generates } C \\
& H=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 2 & 2 \\
2 & 0 & 1 & 1 & 0 & 2 \\
2 & 2 & 0 & 1 & 2 & 0 \\
0 & 2 & 2 & 0 & 1 & 1 \\
1 & 0 & 2 & 2 & 0 & 1 \\
1 & 1 & 0 & 2 & 2 & 0
\end{array}\right] \\
& \underset{\text { reverse }}{\leftrightarrow} h(x)=\frac{x^{6}-1}{\tilde{g}(x)} \\
& \binom{\text { (reverse }}{\text { chefs }} \\
& =x^{4}+x^{3}+2 x+2 \\
& =0 \cdot x^{5}+1 \cdot x^{4}+1 \cdot x^{3}+0 \cdot x^{2}+2 x+2 \\
& \text { generates } C^{\perp} \\
& n-k=\operatorname{rank} H=\operatorname{dim} C^{\perp}=2 \\
& =\operatorname{deg}(\tilde{g}(x))
\end{aligned}
$$

THEDREM Given $g(x)$ a generator in $\mathbb{F}_{f}(x)$ for
a cyclic code C of lengths n, with
(i) $\tilde{g}(x)$ generates the same cyclic cade $\operatorname{lar} g(x)$.
(ii)

$$
\text { (iii) } k=\operatorname{dm}_{\mathbb{F}_{\mathfrak{F}}}(C)=\operatorname{deg}(h(x))=n-\operatorname{deg}\left(c^{1}(x)\right) \text { is also ydic) }
$$

proof of THEOREM:
(i): We claim that inside the ring $\mathbb{F}_{q}[x] /\left(x^{n}-1\right)$,

$$
\left\{\begin{array}{c}
\text { multiples } \overline{f(x)} \overline{g(x)}
\end{array}\right\}=\left\{\begin{array}{c}
\text { multiples } \overline{f(x)} \overline{g(x)} \\
\text { of } \tilde{g}(x)
\end{array}\right\}
$$

This is because $\bar{g}(x)$ and $\overline{\tilde{g}}(x)$ are multiples of each other in $\mathbb{F}_{g}[x] /\left(x^{n}-1\right)$:

- $g(x)$ is already a multiple of $\tilde{g}(x)=\operatorname{GCD}\left(g(x), x^{n}-1\right)$ in $\mathbb{F}_{g}[x]$, so also in $\mathbb{F}_{g}[x] /\left(x^{n}-1\right)$

$$
\begin{array}{r}
\exists a(x), G(x) \in \mathbb{F}_{g}[x] \text { with } \tilde{g}(x)=a(x) g(x)+b(x)\left(x^{n}-1\right) \\
\text { since } \tilde{g}(x)=G C D\left(g(x), x^{n}-1\right)
\end{array}
$$

$$
\text { since } \tilde{g}(x)=\operatorname{GCD}\left(g(x), x^{4}-1\right)
$$

$$
\text { so } \overline{\tilde{g}(x)}=\overline{a(x)} \bar{g}(x)
$$

in $F_{f}[x] /\left(x^{n}-1\right)$

$$
\begin{aligned}
& C^{\perp}=\text { Rouspace }(H) \text {, here }
\end{aligned}
$$

But we identified $C=\operatorname{Rowspace}(G)$

$$
\text { as } \begin{aligned}
C & =\operatorname{span}_{\mathbb{F}_{q}}\left\{\bar{x}^{i} \overline{g(x)}\right\}_{i=0,1,2, \ldots, n-1} \text { in } \mathbb{F}_{q}[x] /\left(x^{n}-1\right) \\
& =\left\{a_{0} \bar{g}(x)+a_{2} \bar{x} \overline{g(x)}+\ldots+a_{n-1} \bar{x}^{n-1} \overline{g(x)}: a_{0}, a_{1, \ldots, a_{n-1}} \in \mathbb{F}_{q}\right\} \\
& \overline{\left(a_{0}+a_{l} x+\ldots+a_{n-1} x^{n-1}\right)} \bar{g}(x)=\overline{f(x)} \overline{g(x)} \\
& =\{\text { multiples } \overline{f(x)} \overline{g(x)}\}
\end{aligned}
$$

Hence $g(x), \tilde{g}(x)$ generate the same cyclic wo de C.
(ii): We can assume $g(x)=\tilde{g}(x)$ by (i).

Let $b=\left[b_{n-1} b_{n-2} \cdots b_{1} b_{0}\right] \in\left(\mathbb{F}_{q}\right)^{n}$ and well try to check that $b \in e^{\perp} \Longleftrightarrow b \in$ Rowspace (H). We have $b \in C^{1} \Leftrightarrow b \cdot r=0 \quad \forall$ rows r of G

Circulant matrices have their rows the reverses of their columns

$$
\begin{aligned}
& \Leftrightarrow\left[b_{0} b_{1} \cdots b_{n-1}\right] \cdot v=0 \quad \forall \text { columns } v \\
& \Leftrightarrow\left[b_{0} b_{1} \cdots b_{n-1}\right] \cdot G=0 \\
& \Leftrightarrow b_{0}(\text { row } 1 \text { of } G)+\ldots+b_{n-1}(\text { row } n-1 \text { of } G)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \overline{b_{0} g(x)+b_{1} x g(x)+\ldots+b_{n-1} x^{n-1} g(x)}=\overline{0} \quad \text { in } \mathbb{F}_{q}(x) /\left(x^{n}-1\right) \\
& \Leftrightarrow x^{n}-1 \mid\left(b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1}\right) \tilde{g}(x) \text { in } \mathbb{F}_{g}[x] \\
& \left.\Leftrightarrow h(x)=\frac{x^{n}-1}{\tilde{g}(x)} \right\rvert\, \underbrace{b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1}}_{\text {call this } b(x)} \text { in } F_{g}[x] \& \frac{b^{\prime}(x)}{g} \\
& \Leftrightarrow \quad b(x)=a_{0} h(x)+a_{1} x h(x)+\ldots+a_{n-1} x^{n-1} h(x) \\
& \text { for some } \\
& a_{i} \in \mathbb{F}_{b} \\
& \Leftrightarrow \overline{b(x)}=\overline{a_{0} h(x)+a_{1} x h(x)+\ldots+a_{n-1} x^{n-1} h(x)} \\
& \operatorname{in} \mathbb{F}_{j}[x] /\left(x^{n}-1\right) \\
& \Leftrightarrow\left[b_{0} b_{1} \cdots b_{n-1}\right] \in \text { RowSpace }\left[\begin{array}{cccc}
h_{0} & h_{1} & \cdots & h_{n-1} \\
h_{n n} & h_{0} & h_{1} & \cdots \\
\vdots & h_{n-2} \\
\vdots & \ddots & \ddots & \\
h_{1} & & & h_{0}
\end{array}\right] \\
& \Leftrightarrow b=\left[b_{n-1} \cdots \cdots b_{1} b_{0}\right] \in \text { Row Space }\left[\begin{array}{cccc}
h_{n-1} & \cdots & h_{1} & h_{0} \\
h_{n-1} & \cdots h_{1} & h_{0} & h_{n-1} \\
\vdots & \cdots & \vdots \\
h_{0} & \cdots & \cdots & \vdots \\
\vdots
\end{array}\right]
\end{aligned}
$$

that is, $b \in \operatorname{Row} S p a c e(H)$.
(iii): $\operatorname{rank} G \leq \operatorname{deg}(h(x))$ because the coefficients of h give a dependence among the last deg $(h)+1$ columns of G, and hence since G is orculant, this lets one express any column of G in terms of the last $\operatorname{deg}(h)$ columns.
Swapping roles for G, H and using part (i) and

$$
\left.\begin{array}{ll}
\operatorname{deg}(\tilde{g})+\operatorname{deg}(h)=n \quad & \text { (since } \left.h=\frac{x^{n}-1}{\tilde{g}(x)}\right) \\
\operatorname{rank}(H)+\operatorname{rank}(G)=n \quad & \text { (since } G, H \\
\text { generate } C, C^{\perp}
\end{array}\right)
$$

one deduces that one must have equalibes evenguhere, and m particular here

$$
\operatorname{deg}(h) \stackrel{\sqrt{ }}{=} \operatorname{rank}(G)
$$

