Finite fields (Chap. 11)
Some of our new rings $\mathbb{F}_{p}[x] /(f(x))$ actually turn out to be new (finite) fields \mathbb{F}_{q}, with $g=p^{\operatorname{deg}(t)}$.
EXAMPLES Let's write the multiplication tables for

$$
\begin{aligned}
& R_{1}=\mathbb{F}_{2}[x] /(\underbrace{x^{2}+x+1}_{\text {Cirredncible }}) \text { versus } R_{2}=\mathbb{F}_{2}[x] /(\underbrace{x^{2}+x}_{\text {reducible }}) \\
& \text { in } \mathbb{F}_{2}[x] \\
& \text { (Why?) } \\
& \text { in } F_{2}[x] \\
& \text { (why?) }
\end{aligned}
$$

renaming $\alpha:=\bar{x}$, so

$$
\begin{aligned}
R_{1} & =\operatorname{span}_{\mathbb{F}_{2}}\{1, \alpha\} \\
& =\{0,1, \alpha, \alpha+1\}
\end{aligned}
$$

with $\alpha^{2}+\alpha+1=0$
i.e. $\alpha^{2}=\alpha+1$

x	0	1	α
+1			
0	0	0	0
1	0	1	α
α	$\alpha+1$		
α	0	α	$\alpha+1$
$\alpha+1$	0	$\alpha+1$	1

renaming $\beta:=\bar{x}$, so

$$
\begin{gathered}
R_{2}=\operatorname{span}_{\mathbb{F}_{2}}\{1, \beta\} \\
\{0,1, \beta, \beta+1\} \\
\text { with } \beta^{2}+\beta=0 \\
\text { i.e. } \beta^{2}=\beta
\end{gathered}
$$

x	0	1	β	$\beta+1$
0	0	0	0	0
1	0	1	β	$\beta+1$
β	0	β	β	0
$\beta+1$	0	$\beta+1$	0	$\beta+1$

Irreducibility for $f(x)$ is the key:
PROPOSTION: If $f(x)$ is irreducible in $\mathbb{F}(x)$ for \mathbb{F} a field, then $\mathbb{E}[x] /(f(x))$ is also a field. In particular, if $\mathbb{F}=\mathbb{F}_{p}$ has p elements then $\mathbb{F}[x] /(f(x))$ is a new field with p elements, where $d:=\operatorname{deg}(f(x))$.

EXAMPLES
(1) $x^{2}+1$ in $\mathbb{R}[x]$ is irreducible,

So $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field, namely $=\operatorname{span}_{\mathbb{R}^{\{1, \bar{x}\}} \text { our disguised version }}$
of the field $\mathbb{C}=\operatorname{span}_{\mathbb{R}}\{1, i\}$ with $i^{2}+1=0$
(2) $x^{2}+x+1$ in $\mathbb{F}_{2}[x]$ is irreducible, of degree 2,

$$
\text { 2) } x^{2}+x+1 \text { in } \mathbb{F}_{4}:=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)=\{0,1, \alpha, \alpha+1\}
$$

$$
\text { is a field with } p^{d}=2^{2}=4 \text { elements }
$$

WARNING! :

$$
\begin{aligned}
& : \mathbb{F}_{4} \neq \mathbb{Z} / 4 \\
& =\{0,1, \alpha, \alpha+1\}
\end{aligned}
$$

(3) $x^{4}+x+1$ in $\mathbb{F}_{2}[x]$ is also irreducible (seen on HW) and has degree 4, so $\mathbb{F}_{16}:=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$ is a field with $2^{4}=16$ elements

$$
\begin{array}{r}
=\operatorname{span}_{\mathbb{F}_{2}}\left\{1, \gamma, \gamma^{2}, \gamma^{3}\right\} \quad \begin{array}{r}
\text { where } \gamma:=\bar{x} \\
\text { has } \gamma^{4}+\gamma+1=0 \\
\text { i.e. } \gamma^{4}=\gamma+1
\end{array} \\
=\left\{0,1, \gamma, \gamma+1, \gamma^{2}+1, \gamma^{2}+\gamma, \gamma^{2}+\gamma+1,\right.
\end{array}
$$

proof of PROPOSITION:
To see $\mathbb{F}[x] /(f(x))$ is a field for $f(x)$ irreducible, consider any $\overline{g(x)} \neq \overline{0}$ in $\mathbb{F}[x] /(f(x))$, and find $\bar{g}(x)^{-1}$ as follows. Represent $\overline{g(x)}$ by some polynomial $g(x)$ with $\operatorname{deg}(g)<d=\operatorname{deg}(f)$, and then $\operatorname{GCD}(g(x), f(x))=1$ since $g(x) \neq 0$ and f is irreducible.
Hence $1=a(x) f(x)+b(x) g(x)$ in $\mathbb{F}[x]$
and $\bar{T}=\sqrt{b(x)} \overline{g(x)}$ in $\mathbb{F}[x] /(f(x))$,
that is $\overline{b(x)}=\overline{g(x)}^{-1}$.

When $\mathbb{F}=\mathbb{F}_{p}$, then we know we have a bijection

$$
\begin{aligned}
&\left(\mathbb{F}_{p}\right)^{d} \longrightarrow \mathbb{F}_{p}[x] /(f(x)) \\
& {\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{d-1}
\end{array}\right] \longmapsto c_{0}+c_{1} \bar{x}+c_{1} \bar{x}^{2}+\ldots+c_{d-1} \bar{x}^{d-1} } \\
& \text { so } \# \mathbb{F}_{p}[x] /(f(x))=\#\left(\mathbb{F}_{p}\right)^{d}=p^{d}
\end{aligned}
$$

EXANPLE Inside $\mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$
with $\gamma:=\bar{x}$, who is $\left(\gamma^{2}\right)^{-1}$? $\gamma^{2}=\bar{x}^{2}$, so compute via (extended) Euclid

$$
\begin{aligned}
& \operatorname{GCD}\left(x^{2}, x^{4}+x+1\right)=\operatorname{GCD}\left(x+1, x^{2}\right)=1 \\
& \begin{array}{l}
\frac{x^{2}}{x^{2} \sqrt{x^{4} 4 x+1}} \\
\frac{x^{4}}{x+1}
\end{array} \\
& x + 1 \longdiv { \frac { x + 1 } { x ^ { 2 } } } \frac { x ^ { 2 } } { x } \\
& \int_{1=x^{2}-(x+1)(x+1)}^{1} \\
& 1=x^{2}-(x+1)\left(x^{4}+x+1-x^{2} \cdot x^{2}\right) \\
& \begin{aligned}
1 & =x^{2}-(x+1) \cdot\left(x^{4}\right) x^{2}-(x+1)\left(x^{4}+x+1\right) \\
1 & =\left(1-(x+1) \cdot x^{2}\right. \\
& =\underbrace{\left(x^{3}+x^{2}+1\right)}_{b(x)} \cdot x^{2}-\underbrace{(x+1)\left(x^{4}+x+1\right)}_{a(x)}
\end{aligned} \\
& \begin{array}{l}
=\left(1-(x+1) \cdot x^{2}\right) x^{2}-(x+1)\left(x^{4}+x+1\right) \\
=\underbrace{\left(x^{3}+x^{2}+1\right)}_{b(x)} \cdot x^{2}-\underbrace{(x+1)\left(x^{4} 4 x+1\right)}_{a(x)}
\end{array} \\
& \frac{x^{2}+x}{x} \\
& \frac{x+1}{1} \\
& \Rightarrow\left(\gamma^{2}\right)^{-1}=\gamma^{3}+\gamma^{2}+1
\end{aligned}
$$

Check: $\gamma^{2}\left(\gamma^{3}+\gamma^{2}+1\right)=\gamma^{5}+\gamma^{4}+\gamma^{2}$

$$
\begin{aligned}
& \text { 1) }=\gamma+\gamma+\gamma \\
& =\gamma \cdot(\gamma+1)+\gamma+1+\gamma^{2}=\gamma^{2}+\gamma+\gamma+1+\gamma^{2}=1
\end{aligned}
$$

REMARK At though not obvious, any two finite fields \mathbb{F}_{q} and \mathbb{F}_{q}^{\prime} haring the same size q will be isomorphic, meaning there is a bijection

$$
\mathbb{F}_{q} \xrightarrow{f} \mathbb{F}_{q}^{\prime}
$$

with $f(\alpha+\beta)=f(\alpha)+f(\beta)$

$$
f(\alpha \beta)=f(\alpha) \cdot f(\beta) .
$$

EXAMPLE The two finite fields of size $q=2^{3}=8$

$$
\begin{array}{l|l}
\mathbb{F}_{8}=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right) & \mathbb{F}_{8}^{\prime}=\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right) \\
\text { with } \alpha=\bar{x} & \text { with } \beta==\bar{x}
\end{array}
$$

have an isomorphism, e.g., sending $\alpha \mapsto \beta^{3}$.
Check β^{3} is a root of $x^{3}+x+1$ in \mathbb{F}^{\prime} :

$$
\begin{aligned}
\left(\beta^{3}\right)^{3}+\beta^{3}+1 & =\left(x^{2}+1\right)^{3}+\left(x^{2}+1\right)+1 \\
& =x^{6}+x^{4}+x^{2}+1+x^{2}+1+x \\
& =\left(x^{3}\right)^{2}+x-x^{3}+1 \\
& =\left(x^{2}+1\right)^{2}+x\left(x^{2}+1\right)+1 \\
& =x^{4}+1+x^{3}+x+1 \\
& =x^{4}+x^{3}+x=x\left(x^{3}+x^{2}+1\right)=x \cdot 0=0
\end{aligned}
$$

Primitive roots \& primitive polynomials (Chap. 15)
Recall that we showed long ago that if a ring R had units $R^{x}:=\{u \in R$: ushas a muit.muerse in R \} flite of size N, then every $u \in R^{x}$ had $u^{N}=1$.
corollary
In a frise field \mathbb{F}_{q} with qu elements, every $\alpha \neq 0$ has $\alpha^{g-1}=1$
proof: \mathbb{F}_{q} is a finite ring and $\# \mathbb{F}_{q}^{x}=\#\left(\mathbb{F}_{q}^{-100}\right)=q-1$. W

DEF' N : Call the smallest power $N=1,2,3, \ldots$ for which $\alpha^{N}=1$ the order of α in \mathbb{F}_{q}.
Call a a primitive element in \mathbb{F}_{q} it it has the largest passible order, namely $g-1$.
REMARK: Weill need primitive cots in \mathbb{F}_{6} later to build Reed-Solomon codes with parameters $\left[n^{\prime \prime} q^{-1}, t, t_{n^{\prime \prime}}, q-t\right]$ for $t \leq q-1$.

EXAMPLES
(1) $\mathbb{F}_{7}=\mathbb{Z} / 7 \mathbb{Z}$ has power table

$\substack{\text { Paper }}$	1	2	3	4	5	6	
1	1	1	1	1	1	1	
2	2	4	1	2	4	1	
3	3	2	6	4	5	1	
4	4	2	1	4	2	1	
5	5	4	6	2	3	1	
6	6	1	6	1	6	1	

order of α

(2) $\ln \mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right), \quad \alpha:=\bar{x}$ is primitive Since $\alpha^{2}=\alpha+1 \neq 1$,

Gut $\alpha^{3}=1$, so α has order $3=q-1$
Also $\alpha+1$ is primitive, since $(\alpha+1)^{2}=\alpha \neq 1$.
(3) $\ln \mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$,
$\gamma=\bar{x}$ is primitive, that is, of order $15=q-1$
but $\gamma^{3}=\bar{x}^{-3}$ is not primitive,
since $\left(\gamma^{3}\right)^{5}=\gamma^{15}=1$
so γ^{3} has order ≤ 5, not $q^{-1}=16-1=15$.

Q: Do there exist primitive roots in every finite field $\mathbb{F g}_{g}$?
Q: How to find them?
To answer these, start with some simple properties of order:

PROPOSITION:
(i) $\mathbb{F} \alpha \in \mathbb{F}^{x}$ has order d, then $\alpha^{N}=1 \Leftrightarrow d|N|$
(ii) Any power α^{k} of α has order dividing $d\binom{$ order }{ of $\alpha}$
(iii) $\mathbb{f} \alpha \in \mathbb{F}^{x}$ has order $d=e f$, then α^{f} has order.
(iv) If $\alpha_{1}, \alpha_{2} \in \mathbb{F}^{x}$ have orders d_{1}, d_{2}
with $\operatorname{GCD}\left(d_{1}, d_{2}\right)=1$ then $\alpha_{1} \alpha_{2}$ has order $d_{1} d_{2}$.
proof:
(i): Certainly if $d) N$, say $N=d e$,

$$
\text { then } \alpha=\alpha^{\text {de }}=\left(\alpha^{d}\right)^{e}=1=1
$$

On the dherhand, if $d \nmid N$ then $N=$ de +r with $1 \leq r \leq d-1$ so $\alpha^{N}=\alpha^{\text {dear }}=\left(\alpha^{d}\right)^{e} \cdot \alpha^{r}=1^{e} \cdot \alpha^{r}=\alpha^{r} \neq 1$ since $1 \leqslant r \leqslant d-1$.
(ii): If $\alpha^{d}=1$, then $\left(\alpha^{k}\right)^{d}=\alpha^{k d}=\left(\alpha^{\alpha}\right)^{k}=1^{k}=1$.
(iii): One has $\left(\alpha^{f}\right)^{e}=\alpha^{e f}=\alpha^{d}=1$, and for $e^{\prime}<e$ one has $\left(\alpha^{f}\right)^{e^{\prime}}=\alpha^{e^{\prime} f} \neq 1$ since $e^{\prime} f<e^{f}=d$.
(iv): $\left(\alpha_{1} \alpha_{2}\right)^{N}=1 \Leftrightarrow \alpha_{1}^{N} \cdot \alpha_{2}^{N}=1$

$$
\Leftrightarrow \underbrace{\alpha_{1}^{N}}=\underbrace{\alpha_{2}^{-N}}
$$

has order hasorder diniding 2 dividing d_{2}
hence it has order dividing $1=\operatorname{CDD}\left(d_{1}, d_{2}\right)$
\Rightarrow it is 1 .

$$
\Leftrightarrow \alpha_{1}^{N}=1=\alpha_{2}^{-N}
$$

$\Longleftrightarrow N$ is a multiple of d_{1} and of d_{2}

$$
\Leftrightarrow d_{1} d_{2} \mid N
$$

THeoreM Every finite field \mathbb{F}_{g} has a primitive root.
proof: Let $l:=\operatorname{LCM}\left\{\right.$ orders of all $\left.\alpha \in \mathbb{F}_{q}^{\times}\right\}$

$$
\text { (e.g. for } \mathbb{F}_{7}=\begin{aligned}
& \{\neq 1,2,3,4,5,6\} \\
& \text { orders } \\
& 136362
\end{aligned}
$$

orders $1 \begin{array}{lllll}3 & 6 & 3 & 6 & 2\end{array}$
so $l=\operatorname{LCM}(1,3,6,3,6,2)=6)$

We claim that $l=q-1\left(=\# \mathbb{F}_{q}^{x}\right)$:
First note $l \mid q-1$ since every $\alpha \in \mathbb{\pi}_{q}^{x}$ has $\alpha^{q-1}=1$ and so its order divides g-1, and thus so does their LCM.
Second note $l \geqslant q-1$ because every $\alpha \in \mathbb{T}_{\varepsilon}^{x}$ has $\alpha^{l}=1$ making it a root of $f(x)=x^{l}-1$, which cannot have more than l district woos. This proves the claim that $l=q-1$.
Now we show \exists some $\alpha \in \mathbb{F}_{q}^{x}$ of order $l(=q-1)$, which would then be a primitive element.
Factor $l=p_{1}^{l_{1}} p_{2}^{e_{2}} \cdots p_{r}^{l_{r}}$ into prime powers $p_{i}^{e_{i}}$ (for distinct primes).
Since $l=\operatorname{LCM}$ \{orders of $\left.\alpha \in \mathbb{T}_{q}^{*}\right\}$, for each $i=1,3 \rho_{e_{i}}$, there must be some $\alpha_{i} \in \mathbb{T}_{q}^{x}$ with order divisible by $p_{i} i_{i}$.

Then some power $\alpha_{i}{ }_{i}$ has order exactly $p_{i}^{e_{i}}$.
And then $\alpha:=\alpha_{1}^{\alpha_{1}} \alpha_{2} d_{2} \ldots \alpha_{r}^{d_{r}}$ will have order exactly $p_{1}^{\left.e_{1} p_{2}-\cdots p_{r}^{e_{r}}=l\right)}$
using $G \subseteq\left(p_{i}^{l_{i}}, p_{j}^{e_{j}}\right)=1$ repeatedly.

So primitive roots exist in \mathbb{F}_{q}, but how to aetrally find one?
H's slightly tricky -
many elements of \mathbb{F}_{q}^{x} are primitive (in fact, exactly $\varphi(q-1)$ of them; see § 15.8). So a strategy is to look for them via random search, once we have a quick test for primitivity:

PROPOSITION: $\alpha \in \mathbb{F}_{q}^{x}$ is primitive

$$
(\xi 16.3) \Longleftrightarrow \alpha^{\frac{q-1}{p} \neq 1} \quad \forall \text { primes } p \mid q-1
$$

(i.e. if $q_{-1}=p_{1}^{p_{1} \ldots . . p_{r}^{e r}}$ then check $\alpha^{\frac{q-1}{p_{i}} \neq 1}$ for $i=1,2, \ldots, r$)
proof: $\alpha \in \mathbb{F}_{q}^{x}$ has $\alpha^{q-1}=1$, so its order $d \mid q-1$, and α is primitive $\Leftrightarrow d$ is not a proper divisor of $q-1$

$$
\begin{aligned}
& \Leftrightarrow d \neq \frac{q-1}{p} \quad \forall \text { pines } p \mid q-1 \\
& \Leftrightarrow \alpha^{\frac{q-1}{p}} \neq 1 \quad \forall \text { primes } p / q-1 .
\end{aligned}
$$

EXAMPLES
(1) To check which elements in \mathbb{F}_{8}^{x} are primitive, factor $q^{-1}=8-1=7$ into primes (only one!) and then $\alpha \in \mathbb{F}_{8}^{x}$ is primitive

$$
\Leftrightarrow \alpha^{\frac{q-1}{p}}=\alpha^{\frac{8-1}{7}}=\alpha \neq 1
$$

i.e. the other 6 elements in $\bar{F}_{8}^{x}-\{1\}$ are all primitive.
(2) $\ln \mathbb{F}_{16}^{x}$, factor $q-1=16-1=15=3 \cdot 5^{1}$ and then $\alpha \in \mathbb{F}_{16}^{x}$ is primitive

$$
\Leftrightarrow 1 \neq \alpha^{\frac{16-1}{3}}=\alpha^{5} \text { and } 1 \neq \alpha^{\frac{16-1}{5}}=\alpha^{3}
$$

So when we brit $\mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$, this is how we could check $\gamma:=\bar{x}$ was primitive:

$$
\begin{aligned}
& \gamma^{3} \neq 1 \quad \text { (since } \mathbb{F}_{16} \text { has } \mathbb{F}_{2} \text { basis }\left\{1, \gamma, \gamma^{2}, \gamma^{3}\right\} \text {) } \\
& \gamma^{s}=\gamma \cdot \gamma^{4}=\gamma(\gamma+1)=\gamma^{2}+\gamma \neq 1
\end{aligned}
$$

REMARK: Once we know γ is primitive, the other primitive roots are easier to spot, because they're of the form γ^{i} for $i \in 1,2, \ldots, q-1$ with $\operatorname{GCD}(i, q-1)=1$:

$$
F_{16}^{x}=\left\{1, \gamma, \gamma^{2}, \gamma^{3}, \gamma^{4}, \gamma^{5}, \gamma^{6}, \gamma^{7}, \gamma^{\gamma}, \gamma^{9}, \gamma^{10}, \gamma^{11}, \gamma^{12}, \gamma^{13}, \gamma^{14}\right\}
$$

order:

REMARK: Primitive roots also help us find CRC generator polyomials $g(x)$ in $\mathbb{F}_{p}[x]$ that catch 2-digit errors that are far apart.

Recall $g(x)$ as a CRC catches such errs up to N digits apart where N is smallest ouch that $g(x) \mid x^{N}-1$ in $F_{p}[x]$.

PROPOSITION: Let $(x) \in \mathbb{F}_{p}(x)$ be irreducible, so that $\mathbb{F}_{q}=\mathbb{F}_{p}[x] /(g(x))$ is a field of Size $q=p^{d}$ where $d=\operatorname{deg}(g(x))$.
Then the smallest N for which $g(x) \mid x^{N}-1$ is the order of $\alpha:=\bar{x}$ in this field \mathbb{F}_{q}.

In particular, N divides $q-1=p^{d}-1$, with equality $N=p^{d}-1 \Leftrightarrow \alpha$ is a primitive root.
In this case, one calls $g(x)$ a
primitive (wreducible)polynomial in $\mathbb{F}_{p}[x]$.
proof: $g(x) \mid x^{N}-1$ in $\mathbb{F}_{p}[x]$

$$
\begin{aligned}
& \left.\Leftrightarrow \bar{x}^{N-1}=\overline{0} \text { in } \mathbb{F}_{p}(x]\right) /(g(x))\left(=: \mathbb{F}_{q}\right) \\
& \Leftrightarrow \overline{1}=\bar{x}^{N}\left(=\alpha^{N}\right)
\end{aligned}
$$

Hence the smallest such N is the order of α

UPSHOT: Primitive polynomials $g(x)$ in $\mathbb{F}_{p}(x)$ make rent good choices for CRC's catching 2 -digit enors.

Examples
(1) In $\mathbb{F}_{16}=\mathbb{F}_{2}[x] /(\underbrace{x^{4}+x+1}_{g(x)})$, we checked $\alpha=\bar{x}$ was a primitive root, so $g(x)=x^{4}+x+1$ in $\mathbb{F}_{2}[x]$ is a primitive polynomial, and used as a CRC will catch 2-bit errors up to $N=16-1=15$ bits aport.
(2) Garrett mentions $g(x)=x^{15}+x+1 \in \mathbb{F}_{2}[x]$ as being a primitive polynomial, so as a CRC it will catch 2 -bit evors up to $N=2^{15}-1=32767$ bits apart!

