Reed- Solomon Codes ($\$ 17.1,17.2,17.3$)
These are not hard to wite down as cyclic codes, once we have primitive roots in \mathbb{F}_{q}.
THEOREM (Reed-Solemon codes 1260) Let β in \mathbb{F}_{q} be a primitive root, and pick $t \leq q-1$. Then the cyclic code $C \subset\left(\mathbb{F}_{q}\right)^{n}$ with blocklength $n=q-1$ having generator polynomial

$$
\left.g(x)=(x-\beta)\left(x-\beta^{2}\right) \cdots\left(x-\beta^{t-2}\right)\left(x-\beta^{t-1}\right) \in \mathbb{F}_{8} \mid x\right]
$$

is an $[n, k, d] \quad \mathbb{F}_{\|}$-linear code.

$$
g-1 \quad q " t
$$

Furthermore, $\tilde{g}(x)=\operatorname{GCD}\left(g(x), y^{j-1}-1\right)=g(x)$

$$
\begin{aligned}
& h(x)=\frac{x^{t-1}-1}{g(x)}=\left(x-\beta^{\beta^{t}}\right)\left(x-\beta^{t-1}\right)-\left(x-\beta^{\beta^{-2}}\right)\left(x-\beta^{g-1}\right) \\
& \operatorname{rate}(C)=\frac{q-t}{\delta^{-1}}=1-\frac{t-1}{q^{-1}}
\end{aligned}
$$

and C is MDS, ie. tight for Singleton's bound:

$$
q \cdot t^{k=n-(\alpha-1)}
$$

EXAMPLE Suppose we want C to correct up to 4 errors. We need $t=d(C)=2.4+1=9$, so want to pick of in \mathbb{F}_{q} with $t=9 \leq q-1$. Eg. $g=11$ works, and is smallest (but could ty others such as $q=13$ or $16=2^{4}$ or $27=3^{3}$, etc.)
Look for a primitive β in $\mathbb{F}_{11}(=\mathbb{Z} / 11)$:
e.g. let's test $\beta=2$

Since $q-1=10=2^{\prime} \cdot 5^{\prime}$, need to check $\beta^{\frac{10}{5}}=2^{19 / 5}=2^{2}=4 \neq 1$ and $\beta^{\frac{10}{2}}=2^{\frac{10}{2}}=2^{5}=32 \neq 1$
So we can pick $t=9, t-1=8$

$$
\begin{aligned}
& g(x)=(x-2)\left(x-2^{2}\right)\left(x-2^{3}\right) \cdots\left(x-2^{8}\right) \\
& =9+5 x+8 x^{2}+3 x^{3}+4 x^{4}+6 x^{5}+10 x^{6}+7 x^{7}+x^{8} \\
& h(x)=\left(x-2^{9}\right)\left(x-2^{10}\right) \\
& C=\text { Rowspace }(G) \text { for } G=\left[\begin{array}{ccccccccc}
1 & x & x^{2} & x^{3} & & & & & x^{9} \\
9 & 5 & 8 & 3 & 4 & 6 & 10 & 7 & 1 \\
0 & 9 & 5 & 8 & 3 & 4 & 6 & 10 & 7 \\
& \ddots & & & & &
\end{array}\right] \\
& C^{\perp}=\text { Rowspace (H) for } H=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
4 & 6 & & & & & & & \ddots
\end{array}\right]
\end{aligned}
$$

EXAMPLE According to Wikipedia, QR codes use Reed-Solomon codes with $q=2^{8}=256$ working in $\mathbb{F}_{256}=\mathbb{F}_{2}[x] /(\underbrace{x^{8}+x^{4}+x^{3}+x^{2}+1}_{f(x)})$ where $\alpha=\bar{x}$ is a primitive root, that is, $f(x)$ is a primitive irreducible polynomial in $\pi_{2}[x]$. So they would all have bloctlength $n=q-1=255$.
However, they vary the choice of t so as to get different levels of error correction.

For example, it mentions as examples two that are $[255,249,7]$ conceding up to 3 enors
$\left[\begin{array}{cc}9-1 \\ 255 & 233 \\ 23\end{array}\right]$ correcting up to 11 errors

THEOREM (Reed-Solemen codes 1960)
Let β in \mathbb{F}_{q} be a primitive root, and pick $t \leq q-1$.
Then the cyclic ode $C \subset\left(\mathbb{F}_{q}\right)^{n}$ with
blocklength $n=q-1$ having generator polynomial

$$
g(x)=(x-\beta)\left(x-\beta^{2}\right) \cdots\left(x-\beta^{t-2}\right)\left(x-\beta^{t-1}\right) \in \mathbb{F}_{\delta}[x]
$$

is an $[n, k, d] \quad \mathbb{F}_{\sigma}$-linear code.

$$
g_{-1}^{\prime \prime} g_{\sim}^{\prime \prime} t \quad t
$$

Furthermore, $\tilde{g}(x)=\operatorname{ccd}\left(g(x), x^{-1-1}-1\right)=g(x)$

$$
\begin{aligned}
& h(x)=\frac{x^{+1}-1}{g(x)}=\left(x-\beta^{t}\right)\left(x-\beta^{t-1}\right)-\left(x-\beta^{n-2}\right)\left(x-\beta^{n-1}\right) \\
& \text { rate }(C)=\frac{q-t}{\gamma^{-1}}=1-\frac{t-1}{q^{-1}}
\end{aligned}
$$

and C is MDS, ie. tight for Singleton's bound

$$
\begin{aligned}
& \text { Singleton's bound } \\
& \text { git } \quad \text { " } \quad \text { "-1-(t-1) }
\end{aligned}
$$

proof of Reed-Solomon Theorem:
Most of the assertions come from our discussion of cyclic codes, once we realize that

$$
\begin{aligned}
& \text { of cyclic codes, once we real } \\
& g(x)=(x-\beta)\left(x-\beta^{2}\right) \cdots\left(x-\beta^{t-2}\right)\left(x-\beta^{t-1}\right)
\end{aligned}
$$

divides $x^{q-1}-1=\underbrace{(x-\beta)\left(x-\beta^{2}\right)-\left(x-\beta^{t-1}\right)}_{g(x)} \cdot(\underbrace{\left(x-\beta^{t}\right)\left(x-\beta^{t+1}\right) \cdots\left(x-\beta^{g-2}\right)\left(x-\beta^{j-1}\right)}_{h(x)}$
What is not at all clear is why $d(e)=t$.
To see this we use another piece of cyclic code theory, called variant check matrices - see \$17.2

PROPOSITION: when $C \subset\left(\mathbb{F}_{q}\right)^{n}$ is cyclic with generator polynomial $g(x)$ in $\mathbb{F}_{q}[x]$ having distinct roots so $g(x)=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{m}\right)$ with $\beta_{i} \neq \beta_{j} \quad \forall i \neq j$, then $C^{\perp}=$ Rowspace $\left(H^{\prime}\right)$ for the variant check matrix

$$
H^{\prime}=m\{\underbrace{\left[\begin{array}{ccccc}
1 & \beta_{1}^{1} & \beta_{1}^{2} & \cdots & \beta_{1}^{n-1} \\
1 & \beta_{2}^{1} & \beta_{2}^{2} & \cdots & \beta_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \beta_{m}^{i} & \beta_{m}^{2} & \cdots & \beta_{m}^{n-1}
\end{array}\right]}_{n}
$$

proof of PROP:

$$
\begin{aligned}
& \text { proof of PROP: } \\
& c=\left[c_{0} c_{1} \ldots c_{n-1}\right] \text { dots to zero with all cows of } H^{\prime} \\
& \Leftrightarrow c_{0}+c_{1} \beta_{i}+c_{2} \beta_{i}^{2}+\ldots+c_{n-1} \beta_{i}^{n-1}=0 \text { for } i=1,2, \ldots, m \\
& \Leftrightarrow c(x):=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1} \text { has } c\left(\beta_{i}\right)=0 \text { for } i=1,2,,, m
\end{aligned}
$$

$\Leftrightarrow\left(x-\beta_{i}\right)$ divides $c(x)$ in $\mathbb{F}_{q}[x]$ for $i=1,2,, m$ $\stackrel{\text { ned }}{\Longleftrightarrow} g(x)=\prod_{i=1}^{m}\left(x-\beta_{i}\right)$ divides $c(x)$ in $\pi_{l}(x)$
$\beta_{i} \neq \beta_{j} \Leftrightarrow \overline{c(x)}$ is a multiple $F(x) \cdot \overline{g(x)}$ of $\overline{g(x)}$ in $F_{\gamma}[x] /\left(x^{n}-1\right)$
here
$\Leftrightarrow c$ is a sum of $\overline{g(x)}, \overline{x g(x)}, \ldots, \overline{x^{n-1} g(x)}$ in $\mathbb{F}_{f}|x| /\left(x^{n}-1\right)$ $\Leftrightarrow c \in C$.

Hence $C^{i}=\operatorname{RowSpace}\left(H^{\prime}\right)$ 园

How does this help us?
For $g(x)=(x-\beta)\left(x-\beta^{2}\right) \cdots\left(x-\beta^{t-1}\right)$ as in Reed-Solomon,

$$
\left.\begin{array}{rl}
H^{\prime} & =\left[\begin{array}{ccccc}
1 & \beta & \beta^{2} & \beta^{3} & \cdots
\end{array} \beta^{n-1}\right. \\
1 & \beta^{2} \\
\left(\beta^{2}\right)^{2} & \left.\beta^{2}\right)^{3} \\
\vdots & \vdots \\
\vdots & \vdots \\
1 & \beta^{t-1} \\
\left(\beta^{t-1}\right)^{2} & \left(\beta^{t-1}\right)^{3} \\
\cdots & \cdots \\
& =\left(\beta^{t-1}\right)^{n-1}
\end{array}\right]
$$

any choice of $t-1$ columns from here gives linear independent columns, because it will be a Vandermonde matrix:

$$
V:=\left[\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{t-1} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{t-1}^{2} \\
\vdots & & & \\
\alpha_{1}^{t 1} & \alpha_{2}^{t-1} & \cdots & \alpha_{t-1}^{t-1}
\end{array}\right] \quad \begin{array}{r}
\text { with } \\
\text { dis } \\
\text { he }
\end{array}
$$

with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{+1}$ distinct powers of β, hence $\alpha_{i} \neq \alpha_{j} \forall i \neq j$.

THEOREM (see Appendix A. 5 for one standard proof)

$$
\begin{gathered}
\mathbb{f}_{\substack{\alpha_{i} \neq \alpha_{j} \\
\text { for } i \neq j}}, \operatorname{det}\left[\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{t-1} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{t-1}^{2} \\
\vdots & \vdots & \vdots \\
\alpha_{1}^{t-1} & \alpha_{2}^{+1} & \alpha_{t-1}^{t-1}
\end{array}\right]=\underbrace{\underbrace{\alpha_{2}-\alpha_{t-1}}_{\neq 0}}_{\neq 0} \prod_{1 \leq i<j \leq t-1}(\underbrace{\alpha_{j}-\alpha_{i}}_{\neq 0}) \\
)
\end{gathered}
$$

proof: Here's another stundard proof, by induction on t using row operations, which don't change the determinant. Well illustrate the inductive step for $t-1=4$.
factoring α_{i} out of each entry in column

$$
\stackrel{\stackrel{v}{=} \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}}{ } \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \alpha_{3}^{3} & \alpha_{4}^{3}
\end{array}\right]
$$

$$
\text { Want this } \operatorname{det}\left(U_{t}\right)=\prod_{1 \leq i<j \leq 4}\left(\alpha_{j}-\alpha_{i}\right)
$$

Subtract α_{i} (row i) from row $i+1$ for $i=1,2,3$ to give

$$
\operatorname{det}\left(u_{4}\right)=\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & \alpha_{2}-\alpha_{1} \alpha_{3}-\alpha_{1} \alpha_{4}-\alpha_{1} \\
0 & \alpha_{1}^{2} \alpha_{2}-\alpha_{1} \alpha_{2}^{2} \alpha_{3}^{2}-\alpha_{1} \alpha_{3} \alpha_{4}^{2}-\alpha_{1} \alpha_{4} \\
0 & \alpha_{2}^{3}-\alpha_{1} \alpha_{2} \alpha_{3}^{3}-\alpha_{3} \alpha_{1} \alpha_{3} \alpha_{4}^{3}-\alpha_{1} \alpha_{4}^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{det}\left(U_{4}\right)=\operatorname{det}\left[\begin{array}{lll}
\alpha_{2}-\alpha_{1} & \alpha_{3}-\alpha_{1} & \alpha_{4}-\alpha_{1} \\
\left(\alpha_{2}-\alpha_{1}\right) \alpha_{2} & \left(\alpha_{3}-\alpha_{1}\right) \alpha_{3} & \left(\alpha_{4}-\alpha_{1}\right) \alpha_{4} \\
\left(\alpha_{2}-\alpha_{1}\right)_{2}^{2} & \left(\alpha_{3}-\alpha_{1}\right) \alpha_{3}^{2} & \left(\alpha_{n}-\alpha_{1}\right) \alpha_{4}^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\prod\left(\alpha_{j}-\alpha_{i}\right) \\
& 2 \leq i<j \leq 4 \\
& \text { by induction, since this } \\
& \text { looks like } U_{3} \\
& =\prod_{1 \leq i<j \leq 4}\left(\alpha_{j}-\alpha_{i}\right) \\
& \text { 图 }
\end{aligned}
$$

Once we know the variant check matrix H^{\prime} generating e^{\perp} has all $t-1$ onsets of columns independent，we know $d(C) \geq t$ ．But then the Singleton bound forces $k \leq n-(d(C)-1)$

$$
\begin{aligned}
& \%-t \leq 夕^{2}-(d(c)-y) \\
\Rightarrow & d(c) \leq t . \text { So } d(c)=t \text { 囷 }
\end{aligned}
$$

