Reed-Solomon Codes (§17.1, 17.2, 17.3)

These are not hand to write down as
cyclic codes, once we have prinible roots in Fg.
THEOREM (Reed-Solomen codes 1960)
Let
$$\beta$$
 in Fg be a primitive root, and pick $t \leq g_{-1}$.
Then the cyclic code $C \subset (F_g)^n$ with
blocklength $n=g_{-1}$ having generator polynomial
 $g(x) = (x-\beta)(x-\beta^2) - (x-\beta^{t-2})(x-\beta^{t-1}) \in F_g[x]$
is an $[n, k, d]$ F_g -linear code.
 $g_{-1}^{-1} = g_{-1}^{-1} t$
Turthermore, $\tilde{g}(x) = GCD(g(x), x^{t-1}) = g(x)$
 $h(x) = \frac{x^{t-1}}{g(x)} = (x-\beta^t)(x-\beta^{t-1}) - (x-\beta^{t-2})(x-\beta^{t-1})$
 $rate(C) = \frac{g_{-1}^{-1}}{g_{-1}} = 1 - \frac{t-1}{g_{-1}}$
and C is MDS, i.e. tight for Singleton's bound:
 $k = n - (d-1)$
 $g_{-1}^{-1} = (t-1)$

EXAMPLE Suppose we want C to correct up
to 4 errors. We need
$$t=d(C)=2.4+1=9$$
,
so want to pick q in Fq with $t=9 \le q-1$.
E.g. $q=11$ works, and is smallest (but could
try others such as $q=13$ or $16=2^{4} = 27=3^{3}$, etc.)
Look for a primibre β in Fm $(= 21/1)$:
e.g. let's test $\beta=2$
Since $q-1=10=2^{1}\cdot5^{1}$, need to check $\beta^{19}_{-2}=2^{19}_{-2}=2^{2}=32\neq1$
So we can pick $t=9$, $t-1=8$
 $g(x)=(x-2)(x-2^{1})(x-2^{3})-(x-2^{8})$
 $= 9+5x+8x^{2}+3x^{2}+4x^{4}+6x^{5}+10x^{6}+7x^{7}+x^{8}$
 $h(x) = (x-2^{9})(x-2^{10})$
 $= 6+4x+x^{2}$ $1 \le x^{2}x^{3} \le x^{9}$
 $C = Rowspace(G) for G = \begin{bmatrix} 9 \le 8 \le 4 \le 10 = 7 \le 1 \ 0 = 9 \le 8 \le 3 \le 4 \le 10 = 7 \le 1 \end{bmatrix}$

and C is
$$\begin{bmatrix} 10, 2, 9 \end{bmatrix}$$
 with rate $(C) = 1 - \frac{t-1}{9-1} = 1 - \frac{t}{10} = 1 - \frac{t}{5} = \frac{t}{5}$
 $q-1 q-t t$ q

EXAMPLE According to Wikipedia, QR codes use
Reed-Jobomon codes with
$$q=2^8=256$$

working in $F_{256} = F_2(x)/(x^4 + x^4 + x^2 + x^2)$
there $\alpha = \overline{x}$ is a primitive root,
that is, f(x) is a primitive meducible polynomial in $F_2(x]$.
So they would all have blocklength $n=q-1=255$.
However, they vary the choice of t so as to get
different levels of error correction.
Tor example, it mentions as examples two that are
 $\begin{bmatrix} 2^{-1} & 5^{-t} & 1 \\ 255 & 249 & 7 \end{bmatrix}$ correcting up to 3 errors
 $\begin{bmatrix} 255 & 233 & 23 \end{bmatrix}$ correcting up to 11 errors

THEOREM (Reed-Solomon codes 1960) Let β in F_{g} be a primitive root, and pick $t \leq g-1$. Then the cyclic code $C \subset (F_{g})^{n}$ with blocklength n = g-1 having generator polynomial $g(x) = (x-\beta)(x-\beta^{2}) - (x-\beta^{t-2})(x-\beta^{t-1}) \in F_{g}[x]$ is an [n, k, d] F_{g} -linear code. g^{-1} g^{-t} tTurthermore, $\tilde{g}(x) = GO(g(x), x^{t-1}) = g(x)$ $h(x) = \frac{x^{t-1}}{g(x)} = (x-\beta^{t})(x-\beta^{t-1}) - (x-\beta^{n-2})(x-\beta^{n-1})$ $rate(C) = \frac{g-t}{g^{-1}} = 1 - \frac{t-1}{g^{-1}}$ and C is MDS, i.e. tight for Singleton's bound $g^{-1} = (t-1)$

proof of Reed-Solomon Theorem:
Most of the assertions come from our discussion.
of cyclic codes, once we realize that

$$g(x) = (x-\beta)(x-\beta^2) - (x-\beta^{t-2})(x-\beta^{t-1})$$

 $g(x) = (x-\beta)(x-\beta^2) - (x-\beta^{t-1}) \cdot (x-\beta^t)(x-\beta^t) - (x-\beta^{t-2})(x-\beta^t)$
 $g(x) \qquad h(x)$
Mhat is not at all clear is why $d(C) = t$.
To see this we use another piece of cyclic code theory,
called variant check indices - see §17.2

Proposition: When $C \subset (F_{g})^{n}$ is cyclic with generator polynomial g(x) in $F_{g}(x)$ having distinct noots so $g(x) = (x - \beta_1)(x - \beta_2) - (x - \beta_m)$ with $\beta_i \neq \beta_j \quad \forall i \neq j$, then $C^{\perp} = \operatorname{RowSpace}(H')$ for the variant check matrix

$$H' = \left\{ \begin{bmatrix} 1 & \beta_1^1 & \beta_1^2 & \dots & \beta_1^{n-1} \\ 1 & \beta_2^1 & \beta_2^2 & \dots & \beta_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \beta_m^1 & \beta_m^2 & \dots & \beta_m^{n-1} \end{bmatrix} \right\}$$

$$\begin{array}{c} \mathbf{v} \\ \mathbf{proof of PROP:} \\ C = \left[c_{0} \ c_{1} \ \cdots \ c_{n-1} \right] dots to zero with all rows of H' \\ \iff c_{0} + c_{1}\beta_{i} + c_{2}\beta_{i} + \cdots + c_{n-1}\beta_{i}^{n-1} = 0 \quad \text{for } i = 1,2,-,m \\ \iff c(x) := c_{0} + c_{1}x + c_{2}x^{2} + \cdots + c_{n-1}x^{n-1} \text{ has } c(\beta_{i}) = 0 \text{ for } i = 1,2,-,m \end{array}$$

$$\begin{array}{l} & (x-\beta_{i}) \text{ divides } c(x) \text{ in } \mathbb{F}_{q}[x] \quad \text{for } i=1,2,\dots,m \\ & g(x)=\prod_{i=1}^{m} (x-\beta_{i}) \quad \text{divides } c(x) \text{ in } \mathbb{F}_{q}[x] \\ & \Rightarrow \quad g(x)=\prod_{i=1}^{m} (x-\beta_{i}) \quad \text{divides } c(x) \text{ in } \mathbb{F}_{q}[x] \\ & \Rightarrow \quad \overline{c(x)} \text{ is a multiple } f(x) \cdot \overline{g(x)} \text{ of } \overline{g(x)} \text{ in } \mathbb{F}_{q}[x]/(x^{n}-1) \\ & \Rightarrow \quad c \text{ is a sum of } \overline{g(x)}, \overline{xg(x)}, \dots, \overline{x^{m}g(x)} \text{ in } \mathbb{F}_{q}[x]/(x^{n}-1) \\ & \Leftrightarrow \quad c \in \mathbb{C} \\ & \text{Hence } \mathbb{C}^{1} = \operatorname{RewSpace}(\mathbb{H}^{r}) \quad \text{ and } \end{array}$$

How does this help us?
Tor
$$g(x) = (x - \beta)(x - \beta^{2}) \cdots (x - \beta^{t-1})$$
 as in Reed-Solomon,

$$H' = \begin{bmatrix} 1 & \beta & \beta^{2} & \beta^{3} & \cdots & \beta^{n-1} \\ 1 & \beta^{2} & (\beta^{1})^{2} & (\beta^{2})^{3} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \beta^{2} & (\beta^{2})^{2} & (\beta^{3})^{2} & \cdots & (\beta^{t-1})^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \beta^{t-1} & (\beta^{2})^{t-1} & (\beta^{3})^{t-1} & \cdots & (\beta^{t-1})^{n-1} \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_{1} & \beta^{2} & (\beta^{2})^{2} & \cdots & \alpha^{t-1} \\ 0 & \beta^{2} & (\beta^{2})^{2} & \cdots & \alpha^{t-1} \\ 0 & \alpha^{2} & \alpha^{2} & \alpha^{2} & \cdots & \alpha^{t-1} \\ 0 & \alpha^{2} & \alpha^{2} & \cdots & \alpha^{t-1} \\ 0 & \alpha^{2} & \alpha^{2} & \alpha^{2} & \cdots & \alpha^{t-1} \\ 0 & \alpha^{2} & \alpha^{2} & \alpha^{2} & \cdots & \alpha^{t-1} \\ 0 & \alpha^{2} & \alpha^$$

THEOREM (see Appendix A.S for one standard pool)
If
$$\alpha_{ij} \neq \alpha_{j}$$
, $det \begin{bmatrix} \alpha_{i} & \alpha_{i} & \cdots & \alpha_{i+1} \\ \alpha_{ij} \neq \alpha_{j}^{\alpha_{i}} & \cdots & \alpha_{i+1}^{\alpha_{i+1}} \end{bmatrix} = \alpha_{ij} \alpha_{2} \cdots \alpha_{i+1} \prod_{1 \le i < j \le i < 1} (\alpha_{ij} - \alpha_{i})$
Front: $\alpha_{ij} \neq \alpha_{ij}^{\alpha_{i}} + \alpha_{i+1}^{\alpha_{i+1}} \end{bmatrix} = \alpha_{ij} \alpha_{2} \cdots \alpha_{i+1} \prod_{1 \le i < j \le i < 1} (\alpha_{ij} - \alpha_{i})$
Front: $\alpha_{ij} = \alpha_{ij} + \alpha_$

$$det(U_{4}) = det \begin{bmatrix} \alpha_{3}-\alpha_{1} & \alpha_{3}-\alpha_{1} & \alpha_{4}-\alpha_{1} \\ (\alpha_{3}-\alpha_{1})\alpha_{2} & (\alpha_{3}-\alpha_{1})\alpha_{3} & (\alpha_{4}-\alpha_{2})\alpha_{4} \\ (\alpha_{3}-\alpha_{1})\alpha_{3}^{2} & (\alpha_{5}-\alpha_{1})\alpha_{3}^{2} & (\alpha_{4}-\alpha_{1})\alpha_{4}^{2} \end{bmatrix}$$

$$fneter out \begin{bmatrix} 1 & 1 & 1 \\ \alpha_{2} & \alpha_{3} & \alpha_{4} \\ \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} \end{bmatrix}$$

$$fneter out \begin{bmatrix} \alpha_{3}-\alpha_{1} \\ \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} \end{bmatrix}$$

$$= \prod (\alpha_{5}-\alpha_{1})$$

$$g_{2} = \alpha_{3}^{2} - \alpha_{4}^{2}$$

$$form churn j^{-1} = \prod (\alpha_{5}-\alpha_{1})$$

$$g_{3} = \pi (\alpha_{5}-\alpha_{1})$$

$$g_{3} = \pi (\alpha_{5}-\alpha_{1})$$

$$g_{4} = (\alpha_{5}-\alpha_{1})$$

$$g_{5} = \pi (\alpha_{5}-$$