More about finite fields:
characteristic ($\$ 15.2$), Frobenius map ($\$ 17.5$)
Note $\mathbb{F}_{8}=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ with $\alpha:=\bar{x}$

$$
\begin{aligned}
& =M_{2}[x] /\left(x+x+\alpha^{2} \alpha^{2} \alpha^{2} \alpha \alpha^{2}+\alpha+1\right\} \\
& =\left\{0,1, \alpha, \alpha+1, \alpha^{2}, \alpha^{2}+\alpha^{2}+\alpha,\{0,1\}\right. \text { in i }
\end{aligned}
$$

has a copy of the subfield $\mathbb{F}_{2}=\{0,1\}$ inside it, and it is a 3 -dimensional \mathbb{F}_{2}-vector space like $\left(\mathbb{F}_{2}\right)^{3}$, which is thy it has size $q=2^{3}=8$.
Proposition: Let \mathbb{F}_{q} be any finite field with g elements. Then
(i) $q=p^{d}$ for some prime p, called the characteristic of \mathbb{F}_{q}
(ii) p is the smallest positiveinteger with

$$
\underbrace{p \text { is ene smaller }}_{\text {ptimes }} \begin{aligned}
& 1+1+\ldots+1
\end{aligned}=0 \mathbb{F}_{q}
$$

(iii) \mathbb{F}_{q} contains $\mathbb{F}_{p}=\mathbb{Z} / p$ as a subfield, and this makes F_{q} into an \mathbb{F}_{p}-recto rspace of dimension d.
proof: Let m be the smallest positive integer for which $\underbrace{1+1+\ldots+1}_{m \text { times }}=0$
Cm exists snice $1,1+1,1+1+1, \ldots$ must eventually repeat in \mathbb{F}_{q}, and if $\underbrace{1+1+\ldots+1}_{\text {a ties }}=\underbrace{1+1+\ldots \ldots c 1}_{b \text { bes }}$ then subtracting gives $\underbrace{1+1+\cdots+l}_{m=b-a}=0$).
We claim m is a prime p, otherwise if $m=a b$,

$$
\begin{aligned}
& \underbrace{1+1+\ldots+1}_{m=a b \text { times }}=\underbrace{(1+1+\ldots+1)}_{a \text { times }} \underbrace{(1+1+\ldots+1)}_{b \text { times }} \\
& \Rightarrow \text { either } \underbrace{1+1+\ldots+1}_{a}=0 \text { or } \frac{1+1+\ldots+1}{b}=0,
\end{aligned}
$$

since \mathbb{F}_{q} contradicting m being smallest. is a field
Then it's not hard to see that inorde \mathbb{F}_{q} one has

$$
\begin{aligned}
& \text { Then it's not have } \\
& F_{p}=\{0,1,1+1,1+1+1, \ldots, \underbrace{1+1+1}_{p-1 \text { times }}\}=\mathbb{Z} / p \text { as a subbing } \\
& \text { and a subfield. }
\end{aligned}
$$

and a subfield.
One sees that this makes \mathbb{F}_{q} an \mathbb{F}_{p}-vector space.

Then if one picks some \mathbb{F}_{p}-basis $v_{1}, v_{2},-v_{d}$ for \mathbb{F}_{q} where $d=\operatorname{dim}_{F_{p}}\left(\mathbb{F}_{q}\right)$, we know the map

$$
\begin{aligned}
& \left(\mathbb{F}_{p}\right)^{d} \longrightarrow \mathbb{F}_{q} \\
& {\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{d}
\end{array}\right] \longmapsto c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{d} v_{d}}
\end{aligned}
$$

is a bijection, so $q=\# \mathbb{F}_{q}=\#\left(\mathbb{F}_{p}\right)^{d}=p^{d}$
A lot of further theory of finite fields (and coding theory, e.g. BCH codes) uses a charming feature of \mathbb{F}_{q} :
 ("The Freshman Dream") for p prime, one has $(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}$ EXAMPLES:
(1) $\ln \mathbb{F}_{5},(1+2)^{5}=3^{5}=243=3$

$$
1^{5}+2^{5}=1+32=33=3
$$

(2)

$$
\ln \mathbb{F}_{3}[x], \quad \begin{aligned}
\left(x^{4}+1\right)^{3} & =x^{12}+3 x^{8}+3 x^{4}+1 \\
& =x^{12}+1
\end{aligned}
$$

prot of Freshman Dream:

$$
\begin{aligned}
& \text { Note that } \\
& (\alpha+\beta)^{p}=\alpha^{p}+\binom{p}{1} \alpha^{p-1} \beta^{1}+\binom{p}{2} \alpha^{p-2} \beta^{2}+\ldots+\binom{p}{p-1} \alpha^{1} \beta^{p-1}+\beta^{p}
\end{aligned}
$$

CLAIM: These wefficients all vanish in \mathbb{F}_{q}, that is $\binom{p}{k}=0$ for $1 \leq k \leq p-1$, because $\binom{p}{k}=\frac{p!}{k!(p-k)!}=\frac{(p(p-1)(p-2) \cdots(p-k+1)}{k(k-1)(k-2) \cdots(1)}$ none of these has a factor of p that conic cancel that factor of p in the numerator.

$$
S 0(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}
$$

This leads to an interesting map on \mathbb{F}_{q} called the Frobenins map $\mathbb{F}_{q} \xrightarrow{\Phi} \mathbb{F}_{q}$ $\alpha \longmapsto \Phi(\alpha):=\alpha^{p}$ where
active learning:
(1) Let $F_{8}=F_{2}[x] /\left(x^{3}+x+1\right)$ with $\alpha:=\bar{x}$

$$
=\left\{0,1, \alpha, \frac{\left.\alpha+1, \alpha^{2}, \alpha^{2}+1, \alpha^{2}+\alpha, \alpha^{2}+\alpha+1\right\}}{2}\right.
$$

Compute $\Phi(\beta)=\beta^{2}$ for every $\beta \in \mathbb{F}_{8}$
(2) Draw arrows
showing how Φ maps the 8 elements of F_{8} and breaks it into orbits.

Compute the polynomials

$$
\begin{aligned}
& \text { mpute the polynomials } \\
& (x-\beta)(x-\Phi(\beta))\left(x-\Phi^{2}(\beta)\right) \text { in } \mathbb{F}_{8}[x]
\end{aligned}
$$

for each orbit.
(3) Factor $y^{8}-y$ into irreducibles in $\mathbb{F}_{2}[y]$, and in $\mathbb{F}_{8}[y]$.

PROPOSITION:
The Frobenins map $\mathbb{F}_{q} \xrightarrow{\Phi} \mathbb{F}_{q}$ for $g=p^{d}$
(i) is a bijection,
(ii) respecting + and x, that is,

$$
\begin{aligned}
& \Phi(\alpha+\beta)=\Phi(\alpha)+\Phi(\beta) \\
& \Phi(\alpha \beta)=\Phi(\alpha) \Phi(\beta)
\end{aligned}
$$

(iii) fixes every $\alpha \in \mathbb{F}_{p}\left(\subset \mathbb{F}_{q}\right)$

$$
\text { i.e. } \Phi(\alpha)=\alpha \quad \forall \alpha \in \mathbb{F}_{p}
$$

(iv) has $\Phi^{d}(\alpha)=\alpha \quad \forall \alpha \in \mathbb{F}_{q}$
proof: Let's check (iv) first. To compute $\Phi^{\alpha}(\alpha)$,

$$
\text { note } \begin{aligned}
\Phi(\alpha) & =\alpha^{p} \\
\Phi^{2}(\alpha) & =\Phi(\Phi(\alpha))=\Phi\left(\alpha^{p}\right)=\left(\alpha^{p}\right)^{p}=\alpha^{p^{2}} \\
\Phi^{3}(\alpha) & =\Phi\left(\alpha^{p^{2}}\right)=\left(\alpha p^{p}\right)^{p}=\alpha^{p} \\
\Phi^{k}(\alpha) & =\alpha^{p^{k}} \\
\text { so } \Phi^{d}(\alpha) & =\alpha^{p^{1}}=\alpha^{q}
\end{aligned}=\alpha \cdot \alpha^{q-1}= \begin{cases}0 \text { if } \alpha=0 \\
& =\alpha \cdot 1=\alpha \text { if } \alpha \in \mathbb{F}_{8}^{x} \\
& =\alpha \alpha \in \mathbb{F}_{\delta} .\end{cases}
$$

Once we know $\Phi^{d}(\alpha)=\alpha$ as in (iv), then Φ is a bijection as in (i), since Φ^{d-1} is its nurse bijection: $\left(\Phi \cdot \Phi^{d-1}\right)(\alpha)=\Phi^{d}(\alpha)=\alpha$

$$
\left(\Phi^{d-1} \circ \Phi\right)(\alpha)=\Phi^{\alpha}(\alpha)=\alpha
$$

Also, (iii) is just the $d=1$ special case of (iv). And (i) is checked via the Freshman Dream

$$
\text { for }+\left[\Phi(\alpha+\beta)=(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}=\Phi(\alpha)+\Phi(\beta)\right]
$$

and X is easy:

$$
\Phi(\alpha \beta)=(\alpha \beta)^{p}=\alpha^{p} \beta^{p}=\Phi(\alpha) \Phi(\beta)
$$

EXAMPLES
(1) $\ln \mathbb{F}_{3}[x], x^{2}+x+2$ is irreducible (why?), so

$$
\begin{aligned}
& \mathbb{F}_{9}=\mathbb{F}_{3}[x] /\left(x^{2}+x+2\right) \text { is a field, with } \beta=\bar{x} \\
& =\{0,1,2, \beta, \beta+1, \beta+2,2 \beta, 2 \beta+1,2 \beta+2\}
\end{aligned}
$$

$\begin{aligned} & \text { and Frobenius map } \mathbb{F}_{9} \xrightarrow{\Phi} \mathbb{F}_{9} \\ & \alpha \longmapsto \alpha^{3}\end{aligned}$
having orbits

$$
\begin{aligned}
& \text { OD } \quad \beta \rightleftarrows \beta^{3}=\beta\left(\beta^{2}\right)=\beta(2 \beta+1)=2 \beta^{2}+\beta \\
& =2(2 \beta+1)+\beta \\
& 1 \text { 勺 } \quad \beta+1 \rightleftarrows \beta^{3}+1=2 \beta+2+1 \\
& =2 \beta+2 \\
& -1=2 ⿹ \quad \beta+2 \cong \beta^{3}+2^{3}=\beta^{3}+2=2 \beta+2+2=2 \beta+1 \\
& (y-\beta)\left(y-\beta^{3}\right)=(y-\beta)(y-(2 \beta+2))=y^{2}-2 y+\beta(2 \beta+2) \\
& =y^{2}+y+2 \longleftarrow \text { quadratic } \\
& (y-(\beta+1))(y-2 \beta)=y^{2}-y+2=y^{2}+2 y+2 \\
& \text { in } F_{3}[x] \\
& (y-(\beta+2))(y-(2 \beta+1))=y^{2}+1
\end{aligned}
$$

and one can check

$$
\begin{aligned}
& y^{9}-y=y\left(y^{8}-1\right)=y\left(y^{2}-1\right)\left(y^{6}+y^{4}+y^{2}+1\right) \\
& =\underbrace{y(y-1)(y+1)\left(y^{2}+y+2\right)\left(y^{2}+2 y+2\right)\left(y^{2}+1\right)} \\
& \text { linear } \\
& \text { irreducible } \\
& \text { in } F_{3}[y] \\
& \begin{array}{l}
=y \cdot(y-1) \cdot(y-2) \cdot(y-\beta)(y-\Phi(\beta)) \cdot(y-(\beta+1))(y-\Phi(\beta+1)) \cdot(y-(\beta+2))(y-\Phi(p+2)) \\
=\underbrace{}_{\Phi}=1
\end{array}
\end{aligned}
$$

(2) $\mathbb{F}_{16}=F_{2}[x] /\left(x^{4}+x+1\right)$ with $\gamma=\bar{x}$ a primitive not,

$$
=\underset{\substack{611 \\ \gamma^{15}}}{\left\{0,1, \gamma, \gamma^{2}, \gamma^{3}, \ldots, \gamma^{13}, \gamma^{14}\right\}}
$$

It has Frobenins map $\mathbb{F}_{16} \xrightarrow{\Phi} \mathbb{F}_{16}$ with orbits

and one can check

$$
\begin{aligned}
& y^{16}-y=y(y+1)\left(y^{2}+y+1\right)\left(y^{4}+y+1\right)\left(y^{4}+y^{3}+y^{2}+y+1\right)\left(y^{4}+y^{3}+1\right) \text { in } F_{2}(x) \\
& =y(y+1)\left(y-\gamma^{5}\right)\left(y-\gamma^{10}\right)(y-\gamma) \cdot\left(y-\gamma^{3}\right) \cdot\left(y-\gamma^{2}\right) . \\
& \begin{array}{ccc}
\left(y-\gamma^{2}\right) & \left(y-\gamma^{6}\right) & \left(y-\gamma^{14}\right) \\
\cdot\left(y-\gamma^{14}\right) & \left(y-\gamma^{2}\right) & \left(y-\gamma^{3}\right) \\
-\left(y-\gamma^{2}\right) & \left(y-\gamma^{2}\right) &
\end{array}
\end{aligned}
$$

Some general facts about a finite field \mathbb{F}_{G} that we wont prove, but are not that hard:

THEOREM:

- One can build a fife field \mathbb{F}_{q} of size $q=p^{d}$ for every prime p and power d, that is, there exist in reducible polynomials $f(x) \in \mathbb{F}_{p}[x]$ of every degree d, to build $\mathbb{F}_{g}=\mathbb{F}_{p}[x] /(f(x))$
- They are all isomorphic as fields, that is, \exists a bijection $\mathbb{F}_{q} \xrightarrow{f} \mathbb{F}_{q}^{\prime}$
with $f(\alpha+\beta)=f(\alpha)+f(\beta)$ whenever fields $\mathbb{F}_{q}, \mathbb{F}_{q}^{\prime}$ $f(\alpha \beta)=f(\alpha) f(\beta)$ have same size q.
- In $\mathbb{F}_{q}[x], x^{q}-x=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{q}\right)$

$$
\text { if } \mathbb{F}_{q}=\left\{\alpha_{1}, \alpha_{2}, \rightharpoonup \alpha_{q}\right\}
$$

In $\mathbb{F}_{p}[x], x^{q}-x=g_{1}(x) \cdots g_{m}(x)$
where $g_{i}(x)$ are all the ireducibles in $\mathbb{F}_{p}(x]$ whose degree divides d (with $q^{=} p^{d}$)

- The Φ-orbits on \mathbb{F}_{g} are the sets of roots of the $g_{i}(x)$
- $\mathbb{F}_{p^{d}}$ is a subfield of $\mathbb{F}_{p^{\prime}} \Leftrightarrow d / d^{\prime}$

