Note
$$F_g = F_2[\alpha]/(x^3+x+1)$$
 with $\alpha := \overline{x}$
 $= \{0,1,\alpha,\alpha+1,\alpha^2,\alpha^2+1,\alpha^2+\alpha,\alpha^2+\alpha+1\}$
has a copy of the subfield $F_2 = \{0,1\}$ inside it,
and it is a 3-dimensional F_2 -vector space
like $(F_2)^3$, which is why it has size $g=2=8$.
PROPOSITION: let F_2 be any finite field with
 g elements. Then
(i) $g = p^d$ for some prime p , called the
characteristic $d = F_g$
(ii) p is the smallest positive integer with
 $\frac{1+1+\dots+1=0}{g}$ is $F_p=Z/p$ as a subfield, and this
makes F_g into an F_p -vector space of dimension d

proof: Let m be the smallest positive integer
for which
$$\frac{1+1+\dots+1}{m+1}=0$$

m times
(m exists since 1,1+1,1+1+1,... must eventually
repeat in FFz, and if $\frac{1+1+\dots+1}{n+1}=\frac{1+1+\dots+1}{n+1}$
then subtracting gives $\frac{1+1+\dots+1}{n=0}$.
We claim m is a prime p, otherwise it m=ab,
 $\frac{1+1+\dots+1}{m=ab}=\frac{(1+1+\dots+1)(1+1+\dots+1)}{b+1}=0$,
 $\frac{1+1+\dots+1}{m=ab}=\frac{1+1+\dots+1}{b+1}=0$, or $\frac{1+1+\dots+1}{b}=0$,
since Fig. contradicting m being smallest.
is a field
Then it is not hard to see that instole Fig one has
 $F_{p}=\frac{2}{0}, 1, 1+1, 1+1+1, \dots, \frac{1+1+\dots+1}{p-1}=\frac{2}{p}$ as a subring
and a subfield.
One sees that this makes Fig an Fip-vector space.

Then if one picks some
$$\mathbb{F}_{p}$$
-basis $v_{i}, v_{2,-}, v_{d}$ for \mathbb{F}_{q}
where $d = \dim_{\mathbb{F}_{q}}(\mathbb{F}_{q})$, we know the map
 $(\mathbb{F}_{p})^{d} \longrightarrow \mathbb{F}_{q}$
 $\begin{bmatrix} c_{i} \\ c_{d} \end{bmatrix} \longmapsto c_{i}v_{i} + c_{2}v_{2} + ... + c_{d}v_{d}$
is a bijection, so $q = \#\mathbb{F}_{q} = \#(\mathbb{F}_{p})^{d} = p^{d}$ IS
A lot of further theory of finite fields
(and coding theory , e.g. BCH wodes)
uses a charming feature of \mathbb{F}_{q} :
PROPOSITION: In \mathbb{F}_{q} and in $\mathbb{F}_{q}[x]$ with $q = p^{d}$
for P prime, one has $(\alpha + \beta)^{P} = \alpha^{P} + \beta^{P}$
DAMPLES:
(1) In \mathbb{F}_{5} , $(1+2)^{5} = 3^{5} = 243 = 3$
 $1^{5}+2^{5} = 1+32=33 = 3$
(2) In $\mathbb{F}_{3}[x]$, $(x^{4}+1)^{3} = x^{2}+\beta x^{3}+\beta x^{4}+1)$
 $= x^{4}+1$

proof of Freshman Dream:
Note that

$$(\alpha + \beta)^{P} = \alpha^{P} + \begin{pmatrix} p \\ 1 \end{pmatrix} \alpha^{P} \begin{pmatrix} a \\ \beta + \begin{pmatrix} p \\ 2 \end{pmatrix} \alpha^{P-2} \begin{pmatrix} p \\ \beta + \dots + \begin{pmatrix} p \\ p-1 \end{pmatrix} \alpha^{P-1} \begin{pmatrix} p \\ \beta \end{pmatrix} \begin{pmatrix} p \\ k \end{pmatrix} = 0$$
 for $1 \le k \le p-1$,
that is $\begin{pmatrix} p \\ k \end{pmatrix} = 0$ for $1 \le k \le p-1$,
because $\begin{pmatrix} p \\ k \end{pmatrix} = \frac{p!}{k!(p-k)!} = \frac{(p(p-1)(p-2) \cdots (p-k+1))}{k(k-1)(k-2) \cdots (1)}$
none of these trace a futur
of p tract conta
cancel that factor of p
in the humentur.
So $(\alpha + \beta)^{P} = x^{P} + \beta^{P}$

This leads to an interesting map on Fg called
the Frobenius map
$$\mathbb{F}_{g} \xrightarrow{\Phi} \mathbb{F}_{g}$$

 $\alpha \longmapsto \Phi(\alpha) := \alpha^{p}$ where
 $g=p^{d}$

ACTIVE LEARNING: (1) Let $F_8 = F_2[x]/(x^3 + x + 1)$ with $\alpha = \overline{x}$ Compute $\underline{\Phi}(\beta) = \beta^2$ for every $\beta \in \overline{F}_g$ (2) Draw arrows $\beta \stackrel{\Phi}{\longmapsto} \beta^2 \stackrel{\Phi}{\longmapsto} \beta^4 \stackrel{\cdots}{\longmapsto} \cdots$ $(a_{||} \underline{e}) \underline{e} = (a)^{2} \underline{e}$ $(a_{||} \underline{e})$ showing how I maps the 8 elements of Fg and breaks it into orbits. Compute the polynomials in Fp[x] $(x-\beta)(x-\overline{\Phi}(\beta))(x-\overline{\Phi}(\beta))\cdots$ for each orbit.

(3) Factor y⁸-y into irreducibles in F2[y], and in F8[y].

PROPOSITION:
The Followins map
$$\mathbb{F}_q \xrightarrow{\Phi} \mathbb{F}_q$$
 for $q=p^d$
 $x \longmapsto x^p$

proof: Let's check (iv) first. To compute
$$\overline{\Phi}^{d}(\alpha)$$
,
note $\overline{\Phi}(\alpha) = \alpha^{p}$
 $\overline{\Phi}^{2}(\alpha) = \overline{\Phi}(\overline{\Phi}(\alpha)) = \overline{\Phi}(\alpha t) = (\alpha t)^{p} = \alpha t^{p}$
 $\overline{\Phi}^{3}(\alpha) = \overline{\Phi}(\alpha t^{p}) = (\alpha t^{p})^{p} = \alpha t^{p}$
 $\overline{\Phi}^{k}(\alpha) = \alpha t^{pk}$
so $\overline{\Phi}^{k}(\alpha) = \alpha t^{p} = \alpha^{p} = \alpha \cdot \alpha^{q-1} = \int_{\alpha \cdot 1 = \alpha}^{\alpha} it \alpha \in \mathbb{F}_{g}^{x}$
 $= \alpha \quad \forall \alpha \in \mathbb{F}_{g}$.

-

Once we know
$$\overline{\Phi}^{d}(\alpha) = \alpha$$
 as in (iv),
then $\overline{\Phi}$ is a bijection as in (i), since $\overline{\Phi}^{d-1}$ is its
moreouse bijection: $(\overline{\Phi} \cdot \overline{\Phi}^{d-1})(\alpha) = \overline{\Phi}^{d}(\alpha) = \alpha$
 $(\overline{\Phi}^{d-1} \circ \overline{\Phi})(\alpha) = \overline{\Phi}^{d}(\alpha) = \alpha$
Also, (iii) is just the d=1 special case of (iv).
And (i) is checked via the Freshman Dream
for $+ [\overline{\Phi}(\alpha + \beta) = [\alpha + \beta] = \alpha^{2} + \beta^{2} = \overline{\Phi}(\alpha) + \overline{\Phi}(\beta)]$
and χ is easy:
 $\overline{\Phi}(\alpha \beta) = (\alpha \beta)^{2} = \alpha^{2} \beta^{2} = \overline{\Phi}(\alpha) = \overline{\Phi}(\beta) = \overline{\Phi}(\alpha)$

(1) In
$$F_3[x]$$
, $x^2 + x + 2$ is inveducible (Why?), so
 $F_q = F_3[x]/(x^2 + x + 2)$ is a field, with $\beta = \overline{x}$
 $= \{0, 1, 2, \beta, \beta + 1, \beta + 2, 2\beta, 2\beta + 1, 2\beta + 2\}$
and Fubbenius map $F_q \xrightarrow{\Phi} F_q$
 $\propto \longmapsto \propto^3$

(2)
$$F_{16} = F_2 [x] / (x^{\eta} + x + 1)$$
 with $f = \overline{x}$ a primitive not,

$$= \{0, 1, Y, Y^2, y^3, \dots, y^{13}, y^{14} \}$$
It has Frobonius map $F_{16} \xrightarrow{\Xi}_{X} F_{16}$ with orbits
 $\alpha \mapsto \alpha^2$
 F_2
 g^{15}
 $f_{16} = y - y^2$
 $g^{15} = y^{16} = y - y^2$
 $g^{16} = y^2$

and one can check

$$y^{16} - y = y(y+i)(y^{2}+y+i)(y^{2}+y+i)(y^{2}+y^{2}+y^{2}+y+i)(y^{2}+y^{2}+i)inF_{2}(x)$$

 $= y(y+i)(y-t^{5})(yt^{0})(y-t) \cdot (y-t^{3}) \cdot (y-t^{2}) \cdot (y-$

Some general facts about a finite field IFG that we won't prove, but are not that hard:

THEOREM: One can build a finite field Itz of size g=pd for every prime p and power d, that is, there exist inreducible polynomials f(x) = IFp [x] of every degree d, to build Fig= Fig (x)/(f(x)) They are all isomorphic as fields, that is, $\exists a bijection F_{g} \xrightarrow{f} F_{g}'$ with $f(\alpha + \beta) = f(\alpha) + f(\beta)$ therefore fields ff_{q}, ff_{q} $f(\alpha \beta) = f(\alpha) f(\beta)$ have some size g. • In Fq[x], $x^{9} - x = (x - \alpha_{1})(x - \alpha_{2}) - (x - \alpha_{q})$ if Fg={ $\alpha_{1}, \alpha_{2}, \dots, \alpha_{q}$ } $J_{x} \mathbb{F}_{p}(x), x^{2} - x = g_{x}(x) \cdots g_{n}(x)$ where g: (x) are all the irreducibles in F, (x) whose degree drides d (with q=p") • The $\overline{\Phi}$ -orbits on $\overline{F_g}$ are the sets of nots of the $\overline{g}(k)$ Fpd is a subfield of Fpd \ > d | d'