EXAMPLE of noise	ess codi	ng:
PERFORMENTIC AL THE PHONETIC AL MORSE CODE G	♥ 91%	Morse code Note how letter
B BRAVO O OSCAR C CHARLIE P PAPA	IDER 	Trequencies affect
E ECHO • R ROMEO F FOXTROT•••• S SIERRA	·-·	e.g. E = "."
H HOTEL •••• U UNIFOR I INDIA •• V VICTOR		T= "-" Versus
K KILO -• X X-RAY	EY • E -•	Q="" Z=""

We'll see how to optimally (!) design it with the 3 symbols {•, -, space}, introducing the concept of entropy, and thiftman coding (\$3.4).

(3) QR - codes achieve both some error-detection and correction

They use Reed-Solomon codes (\$17.3) (see WSJ article by Engenia Cheng)

(4) R. Ehrenboorg's parlor trick "Decoding the Hamming code" (see link on syllabors) uses the binary Hamming [7,4,3] and from § 12.4 On the math & abstraction level: Like Math 5248, - early part (noiseless coding) only uses elementary counting, probability, calculus; not so hard - later part (noisy coding) uses modular arithmetic, portionlarly Z/pZ for p prime as finite fields, constructs all finite fields using polynomials with 24pz wefficients. Does liveor algebra, matrices over finite fields. A bit harder than 5248! I occasionally ask for proofs on HW & exams, but

all easier than ones from Jecture or book.

Sant with a finite alphabet of symbols
$$\Sigma$$

e.g. $\Sigma = \{ \cdot, -, space \}$ in Mosse code
 $\Sigma = \{ A, B, C, ..., Y, Z \}$ in English
 $\Sigma = \{ 0, 1 \}$ for computer applications
brancet
and can form the collection Σ^* of all words
in the alphabet Σ
e.g. $\Sigma = \{ 0, 1 \}^*$
 $has \ \Sigma^* = \{ 0, 1 \}^*$
 $= \{ \emptyset, 0, 1, 00, 01, 10, 11, 000, 001, \}$

the empty word

Given a finite set
$$W$$
 of source words or letters
a map $f: W \longrightarrow \Sigma^*$ is called a
coding or encoding of W using alphabet Σ .
The image of f is a subset C called the
set of code words.

EXAMPLES
(1) W= [spoken Englishy
$$\longrightarrow \{A,B,C_{3},...,Y,Z\}^{*}$$

words $= \sum^{*}$
and $C = mage(f)$
 $= \{witten Englishwords\}$

Messages come from

$$W^* = \{sequences(\omega_1, \omega_2, -, \omega_n) \text{ of } source words } \omega_i \in W \}$$

and a message is encoded by concatenating the mages under f of each word ω_i :
 $W^* \xrightarrow{f^*} \Sigma^*$
 $f^*(\omega_{1,2}, \omega_n) = f(\omega_1)f(\omega_2) \cdots f(\omega_n)$
EXAMPLE The map $W = \{A_iB_iC_iD_iA_j^2\}$ with $\Sigma = \{o_i\}_2^2$
given by $f(\bigcup_{i=1}^{*} \bigcup_{j=1}^{*} \bigcup_{j=1$

DEF'N:
Say the code f is uniquely decipherable
if no two distinct messages (
$$\omega_{1}, -, \omega_{n}$$
)
 $(\omega_{1}', -, \omega_{m}')$
get encoded by the same image under f^{*},
that is $W^{*} \xrightarrow{f^{*}}_{-} \Sigma^{*}$ is an
injective function.
(Requires $W \xrightarrow{f}_{-} \Sigma^{*}$ injective, but
that is not enough)

Example
Morse code with a final space at the end of
each word is uniquely decipherable,
but without the final space it would not be
e.g.
$$T = "-"$$

 $M = "---" =>$
 $O = "--"$
 $f^{(TONTOM) = f^{(MMMM)} = f^{(TOTTOTTOT)}$
 $= 12$ dashes in a row

(3) The code
$$A \xrightarrow{f} 0$$
 is prefix.
 $B \xrightarrow{-} 1$
 $C \xrightarrow{-} 20$
 $D \xrightarrow{-} 21$
 $E \xrightarrow{-} 22$

NON-EXAMPLE
If W= {A, B, C} then it is uniquely
If W= {A, B, C} then it is uniquely
If UT decipherable,

$$\Sigma^*_2 [0, 01, 11]$$
 but not prefix;
one way to decipher is after given the
whole message, one can work backward
from the end to decipher it
e.g. 000011101001
 \tilde{J}_1
 $0|0|001|1101001$
 \tilde{J}_2
 $0|0|001|1101001$
Not instantaneous.

We Il insist on uniquely decipherable odes in this course. It will turn out there is no reason to sacrifice it, unless storage is an issue

- see "loss less" vs. "lossy" compression in Wikipedia