Math 5251 Kraft & McMillan inequalities (§3.2)
\nCan we arbitrarily specify the word lengths
\n
$$
l_{1,-1}
$$
, l_m for a code $l = \{u_{1,3}, u_m\}$
\non alphabet Σ of size n?
\n(afield an n-ary alphabet/code
\ne.g. $\Sigma = \{0,1\}$ binary = 2-any
\n $\Sigma = \{0,1\}$ ternary = 8-any

EXAMPLE
$$
C = \{0, 1, 20, 21, 22\}
$$
 on $\Sigma = \{0,1,2\}$
has $(l_1, l_2, l_3, l_4, l_5)$ $\Lambda = 5$
 $= (1, 1, 2, 2, 2)$

Centantly not arbitrarily, e.g. if
$$
\Sigma = \{0,1\}
$$

then $(l_1, l_2, l_3, l_7, l_5) = (2, 2, 2, 2, 2)$
is impossible since Σ^* has only
4 words of length 2 :

If we further insist on the code being
uniquely desirable, it may even more of
a constant on
$$
(l_{1}, l_{m})
$$
; interestingly it's
the same constant for codes that are prefix.

THEDERM Let
$$
\Sigma
$$
 be an alphabet with n letters, and $(l_1, l_2, ..., l_m)$ positive integers.

\n(a) $(Krarth) \parallel \sum_{i=1}^{m} \frac{1}{n^{l_i}} = \frac{1}{n^{l_i}} + \frac{1}{n^{l_i}} + \frac{1}{n^{l_m}} = 1$

\nthen \exists a prefix code C on Σ with those lengths.

\n(b) $(McMillan) \parallel \exists$ a uniquely decipherable code C on Σ with these lengths, C on Σ with those lengths.

\nthen $\sum_{i=1}^{m} \frac{1}{n^{l_i}} \leq 1$

SAME meguality for both 1. So one concludes

\n
$$
\{lengths of u.d.\}
$$
\n
$$
\{lengths of prelix \}
$$
\n
$$
\{lengths of prelix \}
$$
\n
$$
\{lengths of prelix \}
$$
\n
$$
\{l_{i,j,k_m}\} \text{ with } \sum_{i=1}^{k-1} \frac{1}{n!} i \leq 1\}
$$

 $EXAMPLES$ $\#$ $n = 3 = |Z|$, $sq \sum = \{0,1,2\}$ then of any r.d. code C with word lengths 1,1 ² 2,2 ³ because $\frac{1}{3}$ + $\frac{1}{3}$ + $\frac{1}{3^2}$ + $\frac{1}{3^2}$ + $\frac{1}{3^2}$ + $\frac{1}{3^3}$ = $\frac{11111}{24}$ $\frac{3+3+1}{2} = \frac{28}{27} > 1$ On the other hand, there does I a prefix code C with lengths (1,333333) because $\frac{1}{3}$ + $\frac{1}{3}$ = $\frac{17318}{24}$ $3 + 3 + 1 + 1$ $27⁵¹$ Infact, let's prove Kraft tirst, via an algorithm t_0 find C . Assuming (l_{1},l_{2}) has ti occurrences of length i then the inequalityassumes $\sum_{i=1}^{n} \frac{1}{n^{i}} = \frac{t_1}{n^1} + \frac{t_2}{n^2} + \frac{t_3}{n^3} + \dots \le 1$ and we by to pick the shorter words first.

Example (1, -1, 1, 1) = (1, 1, 2, 3, 3, 3)

\nhas
$$
\frac{t_1}{3} + \frac{t_2}{3} + \frac{t_3}{3} = \frac{1}{3} + \frac{t_2}{3} + \frac{2}{3} = \frac{1}{3}
$$

\nhas $\frac{t_1}{3} + \frac{t_2}{3} + \frac{t_3}{3} = \frac{1}{3} + \frac{t_2}{3} + \frac{2}{3} = \frac{1}{3}$

\nThus, $t_1 \leq 3$ and $t_1 \leq 3$ is $3t_1 + \frac{t_2}{3} = 1$

\nand, $t_1 \leq 3$ is $3t_1 + \frac{t_2}{3} = 1$

\nand, $t_1 \leq 3$ is $3t_1 + \frac{t_2}{3} = 3$

\nand, $t_1 \leq 3$ is $3t_1 + \frac{t_2}{3} = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\nand, $t_1 \leq 3 - 3t_1$ is $3t_1 + 3t_1 + 5 = 3$

\

proof of Kraft's nequality: If $(l.,-l.,)$ has ti occurrences of i and $\frac{t_1}{n^1} + \frac{t_2}{n^2} + \frac{t_3}{n^3} + \dots = \sum_{i=1}^{n} \frac{1}{n^{\ell_i}} \le 1$ we show how to pick a prefix code e with those lengths Assuming one hasalreadypicked the words of length $\leq i$ -1, and show they leave $\geq t_i$ words of length i that avoid them aspretixes. Previously one has picked t_{i-1} of length i-1 mm create nt_{id} with bad pretix $t_{\tilde{l}-2}$ of length $\tilde{l}-2$ and create $n^2t_{\tilde{l}-2}$ with bad prefix t_2 of length 2 ms create $n^{12}t_2$ with bad prefix t_1 of length 1 us create $n^{21}t_1$ with bad prefix Since there are n' words of length i mtotal using alphabet Σ , ...

this leaves n² - (n²¹ + n²² + n² + n² + i n² + n+ i n+ i de n+ n+ i de n+ n+ i n+ m+ i n+ m+ i n+ e. We claim the above quantity is at least t_i , since $\frac{t_1}{n!} + \frac{t_2}{n^2} + ... + \frac{t_{i-2}}{n^{i-2}} + \frac{t_{i-1}}{n^{i-1}} + \frac{t_i}{n^{i}} \le 1$ 3, multiply by n' $n^{i-1}t_1 + n^{i-2}t_2 + ... + n^{2}t_{i-2} + n t_{i-1} + t_{i} \leq n^{i}$ i.e. $t_i \leq n^i - (n^{i-1}t_i + n^{i-1}t_{i+1} + n^2t_{i-1} + nt_{i-1})$

Provef of McMillan inequality:

\nAssume C is a uniquely decipherable number of lengths in the
$$
i = 1, 2, ..., l
$$
.

\nWe want to show
$$
\frac{t_1}{n!} + \frac{t_2}{n^2} + ... + \frac{t_l}{n^2} \le 1
$$

\n1DEA: Instead, for each $p = 1, 2, 3, ...$ be will show
$$
A^p = \sum_{s=1}^{pl} \frac{c_s}{n^s} + \frac{c_s}{n^s}
$$
 for each $p = 1, 2, 3, ...$ be will show
$$
A^p = \sum_{s=1}^{pl} \frac{c_s}{n^s} + \frac{c_s}{n^s}
$$

\n
$$
\Rightarrow A^p \le \sum_{s=1}^{pl} 1 = p^p
$$

\n
$$
\Rightarrow A \le (p1)^p
$$

\n
$$
\Rightarrow A \le (p2)^p = \lim_{p \to \infty} (p1)^p = 1
$$
, as desired

\n
$$
\lim_{p \to \infty} (p2)^p = \lim_{p \to \infty} \lim_{q \to \infty} \frac{\ln(p1)^p}{p} = \lim_{q \to \infty} \frac{\ln(p) + \frac{\ln(p)}{p} + \frac{\ln(p)}{p}}{1 - \frac{\ln(p)}{p} + \frac{\ln(p)}{p}}
$$

\nOnculus
$$
\frac{\ln(\ln\log x)}{\ln(\ln\log x)} = \frac{e^x}{e^x} = 1
$$

So for C u.d., we need to show
\n
$$
A:= \frac{t_1}{n!} + \frac{t_2}{n^2} + ... + \frac{t_1}{n^2}
$$
 has
$$
A^p = \sum_{s=1}^{p1} \frac{c_s}{n^s} with \frac{1}{c_s} \leq n^s
$$
\nIn fact, we can interpret c_s as counting the number of messages $(u_1, u_2, -v_1)$ of p words from C
\nwith a total length of s letters from Z.
\nSince there are n's things in Z^{*} with s letters,
\nand C is uniquely decipherable, this shows
\n $c_s \leq n^s$; each string comes from at most one message.
\n
$$
ACTIVE LEARNING_1
$$
\nIf W^{*} $\frac{1}{2}$ { $0,1,2$ }^{*} has outcomes from at most one message.
\n(a) how many messages (u_1, u_2) with a source words end up with
\nencoding $f^*(u_1, u_2) = f'(u_1) f'(u_2)$ that are
\n 2 letters long (like 110 or 01) ?
\n3 letters long (like 110 or 01) ?
\n5 letters long ?
\n(b) How would those answers change if (2 had more effects and)

$$
t_{1} = 1000
$$

(post by)
EXAMPLE 4x +
$$
\frac{t_1}{n^2} + \frac{t_2}{n^2} + ... + \frac{t_k}{n^2}
$$

has $A^p = \sum_{s=1}^{p} \frac{c_s}{n^s} \text{ with } c_s \le n^s$

where

$$
C_s
$$
 = number of messages $(w_1, w_2, -, w_p)$ of p words
from C with a total length of s letters from Σ .

EXAMPLE:
$$
\begin{array}{rcl}\n\mathbf{C} & \mathbf{1}_{0,1,20,21,22} & \mathbf{2}_{1,23} \\
& \mathbf{1}_{1,2} & \mathbf{1}_{2,3} \\
& & \mathbf{1}_{2,3} & \mathbf{1}_{2,3} \\
& & & \mathbf{1}_{2,3} \\
& & & & \mathbf{1}_{2,3} \\
& & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& & & & & & & & & \mathbf{1}_{2,3} \\
& &
$$

so all 3 statements are equivalent