EXAMPLE
$$C = \{0, 1, 20, 21, 22\}$$
 on $\Sigma = \{0, 1, 2\}$
has $(l_1, l_2, l_3, l_4, l_5)$
 $= (1, 1, 2, 2, 2)$

Certainly not arbitrarily, e.g. if
$$\Sigma = \{0, 1\}$$

then $(l_1, l_2, l_3, l_4, l_5) = (2, 2, 2, 2, 2)$
is mpossible since Σ^* has only
4 words of length 2: 00
11

THEOREM Let
$$\Sigma$$
 be an alphabet with n letters,
and $(l_1, l_2, ..., l_m)$ positive integers.
 $(a) (Kraft) \text{ If } \sum_{i=1}^{m} \frac{1}{n^{k_i}} = \frac{1}{n^{k_1}} + \frac{1}{n^{k_2}} + ... + \frac{1}{n^{k_m}} \leq 1$
then $\exists a \text{ prefix code } C \text{ on } \Sigma$ with those lengths.
 $(notintaneous)$
 $(b) (McMillan) \text{ If } \exists a uniquely designerable}$
 $code C \text{ on } \Sigma$ with those lengths,
 $4hen \quad \sum_{i=1}^{m} \frac{1}{n^{k_i}} \leq 1$

EXAMPLES If $n=3=[\Sigma]$, say $\Sigma=\{0,1,2\}$ chen Z any u.d. code C with word lengths (1,1,2,2,2,3) because $\frac{1}{3} + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^2} = \frac{9+9+3+3+1}{27} = \frac{28}{27} > 1$ On the other hand, there does I a prefix code (° with lengths (1,23,23,3) because $\frac{1}{3'} + \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^5} = \frac{9+3+3+3+3+1+1}{27} = \frac{23}{27} \le 1$ In fact, let's prove Kraft first, via an algorithm to find C. Assuming (li, _lm) has ti occurrences of length i, then the inequality assumes $\sum_{i=1}^{\infty} \frac{1}{n^{k_i}} = \frac{t_1}{n^1} + \frac{t_2}{n^2} + \frac{t_3}{n^3} + \dots \leq 1$ and we by to pick the shorter words first.

EXAMPLE
$$(l_{1,1}, l_{m}) = (1, 2, 2, 2, 2, 3, 3)$$

has $\frac{t_1}{3^1} + \frac{t_2}{3^2} + \frac{t_3}{3^3} = \frac{1}{3^1} + \frac{4}{3^2} + \frac{2}{3^3} = 1$
 $\Rightarrow \frac{t_1}{3^1} + \frac{t_2}{3^2} + \frac{t_3}{3^3} = \frac{1}{3^1} + \frac{4}{3^2} + \frac{2}{3^3} = 1$
 $\Rightarrow \frac{t_1}{3^1} + \frac{t_2}{3^2} = 1$
 $\Rightarrow \frac{t_1}{3^1} + \frac{t_3}{3^2} = 1$
 $\Rightarrow 3t_1 + \frac{t_3}{3^2} = 3^2$
 $\Rightarrow 3t_1 + \frac{t_3}{3^$

proof of Kraft's neguality: If (l., _ln) has ti occurrences of i and $\frac{t_{1}}{n^{1}} + \frac{t_{2}}{n^{2}} + \frac{t_{3}}{n^{8}} + \dots = \tilde{\Sigma} \stackrel{\perp}{=} n^{t_{1}} \leq 1$ we show how to pick a prefix code C with those lengths. Assuming one has already picked the words of length $\leq i-1$, and show they leave ≥ t; words of length i that avoid them as prefixes. Previously one has proked ti-1 of length i-1 ms create nty with bad prefix ti-2 of length i-2 ms create n°tiz with bod prefix t2 of length 2 ms create ni2t2 with bod prefix ty of length 2 ~ create ni1ts with bod prefix Since there are n' words of length i intotal using alphabet Σ , ...

this leaves $n^{i} - (n^{i}t_{i} + n^{i}t_{i} + ... + n^{2}t_{i-1} + nt_{i})$ words of length i from which to choose t_{i} for C_{i} . We chain the above quantity is at least ti, since $\frac{t_1}{n'} + \frac{t_2}{n^2} + \dots + \frac{t_{i-2}}{n^{i-2}} + \frac{t_{i-1}}{n^{i-1}} + \frac{t_i}{n^i} \le 1$ Z multiply by n' $n^{i_1}t_1 + n^{i_2}t_2 + \dots + n^2t_{i_2} + nt_{i_1} + t_i \leq n^{i_1}$ i.e. $t_{i} \leq n^{i} - (n^{i}t_{1} + n^{i}t_{2} + ... + n^{i}t_{i-2} + nt_{i})$

proof of McMillon inequality:
Assume C is a uniquely decipherable n-any code
having ti codewords of length i for
$$i = 1, 2, ..., 1$$
.
We want to show $\frac{t_1}{n_1} + \frac{t_2}{n_2} + ... + \frac{t_1}{n_2} \leq 1$
all this sum A ; want A ≤ 1 .
IDEA: Instead, for each $p = 1, 2, 3, ...$ we will show
 $A^P = \sum_{s=1}^{p_1} \frac{c_s}{n_s}$ for some exetticients $c_s \leq n^S$
 $\Rightarrow A^P \leq \sum_{s=1}^{p_2} 1 = pl$
 $\Rightarrow A \leq (pl)^P$ take p^{t_1} not of both sets
 $\Rightarrow A \leq (pl)^P = 1$, as desired
 $\lim_{p \to \infty} (pl)^P = \lim_{p \to \infty} \frac{l(p)^P}{p} = 1$, as desired
 $\lim_{p \to \infty} (pl)^P = \lim_{p \to \infty} \frac{l(p)^P}{p} = \frac{l(p)^P}{p} + \frac{l(p)^P}{p}$

So for C u.d., we need to show

$$A := \frac{t_1}{n!} + \frac{t_2}{n^2} + ... + \frac{t_1}{n^k} has A^{P} = \sum_{s=1}^{P^{L}} \frac{c_s}{n^s} with c_s = n^s$$
In fact, we can interpret C_s as counting the number of messages (w_1, w_2, \dots, w_p) of p words from C with a total length of s letters from Σ .
Since there are n^s strings in Σ^* with s letters, and C is uniquely decipherable, this shows $C_s \leq n^s$; each string comes from at most one message.
ACTIVE LEARNING $f(w_1, w_2) = f(w_1, w_2)$ with 2 source words end up with encodings $f^*(w_1, w_2) = f^*(w_1)f^*(w_2)$ that are
 2 letters long (like $1 | c_1 | w_1 | c_2 | p^*$ is encoded or $1 p^*$
 3 letters long p^*
 5 letters long p^*

$$t_{1} = 10$$

 $t_{2} = 1000$?

(proof by)
EXAMPLE that
$$A := \frac{t_1}{n!} + \frac{t_2}{n^2} + \dots + \frac{t_l}{n^l}$$

has $A^P = \sum_{s=1}^{pl} \frac{c_s}{n^s}$ with
 $s \le n^s$

EXAMPLE:
$$C = \{0, 1, 20, 21, 22\}, \qquad \sum = \{0, 1, 2\}, \qquad v=3$$

 $t=2, t_2=3, \qquad v=3$
 $\left(\frac{t_1}{3^1} + \frac{t_2}{3^2}\right)^2 = \frac{t_1 \cdot t_1}{3^2} + \frac{t_1 \cdot t_2}{3^3} + \frac{t_2 \cdot t_2}{3^4} + \frac{t_2 \cdot t_2}{3^4} + \frac{t_2 \cdot t_2}{3^4} + \frac{2 \cdot 3 + 3 \cdot 2}{3^4} + \frac{3 \cdot 3}{3^4} + \frac{3 \cdot 3}{3^4} + \frac{00}{10}, \qquad 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$
 $1 = 0 = 0$

so all 3 statements are equivalent.