Math 5251 Probability (Some ot $51.4,1.5$)
We want to talk about the average length of code words when sse imagine the source words

$$
W=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}
$$

being emitted randomly with certain probabilities $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$
from an memongless source, meaning the previous words don t affect the probability p_{i} that the next word is w_{i}.

Not a reasonable model for most messages locally, but not so unreasonable for long messages from a source with known word frequencies.

EXAMPLE For one of our earlierencodings

$$
W=\{A, B, C, D, C\} \quad \text { with } \Sigma=\{0,1,2\}
$$

$f \downarrow\lceil T \downarrow \downarrow \downarrow \downarrow$

$$
\sum^{*}\{0,1,20,21,22\}=C
$$

if we assume source words appear with these probabilities $P(A)=1 / 2^{p_{1}}$

$$
P(B)=P\left(\underset{w_{3}}{C}\right)=P(D)=P(E)=\frac{1}{8}
$$

then what is the average length of a codeword?

DEN:

$$
\begin{aligned}
\begin{array}{l}
\text { average } \\
\text { codeword } \\
\text { length }
\end{array} & =p_{1} l\left(w_{1}\right)+\ldots+p_{m} l\left(\omega_{m}\right) \\
& =\frac{1}{2} \cdot \omega_{2}^{1}+\frac{1}{8} \cdot 1+\frac{1}{8} \cdot 2+\frac{1}{8} \cdot 2+\frac{1}{8} \cdot 2_{l(2)} \\
& l(0) \\
& =\frac{1}{2}+\frac{1}{8}+\frac{6}{8}=\frac{11}{8}=1.375
\end{aligned}
$$

This is an example of the expected value of a random variable on a probability space ..-

DEF'N: A finite probability space is a finteset $\Omega=\left\{\omega_{1}, \omega_{2}, \rightarrow \omega_{m}\right\} \quad\left(\right.$ like $\left.W=\left\{\omega_{1},, \omega_{r}\right\}\right)$ with probabilities $P\left(\omega_{i}\right)=p_{i}$ assigned to each wi
"the probability that sampling from Ω produces w_{i} is p_{i} " such that $\left\{\begin{array}{l}p_{i} \in[0,1] \\ p_{1}+p_{2}+\ldots+p_{m}=1 .\end{array}\right.$

DEF'N: A random variable X on Ω is a function $X: \Omega \rightarrow \mathbb{R}$ $\omega_{i} \longmapsto X\left(\omega_{i}\right)$
and its expected value

$$
\mathbb{E} X:=\sum_{i=1}^{n} p_{i} X\left(\omega_{i}\right)
$$

exAmples
(1) $\Omega=W=\{A, B, C, D, E\}$
with

$$
\begin{aligned}
& \left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right) \\
= & \left(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)
\end{aligned}
$$

is a probability space, and we have a random variable $X: \Omega \rightarrow \mathbb{R}$
codeword
length $\omega_{i} \longmapsto l\left(f\left(\omega_{i}\right)\right)$
where $f: A \longmapsto 0$

$$
\begin{aligned}
& B \longmapsto 1 \\
& C \longmapsto 20 \\
& D \longmapsto 21 \\
& E \longmapsto 22
\end{aligned}
$$

whose expected value

$$
\begin{aligned}
E X=\begin{array}{c}
\text { average } \\
\text { length }
\end{array} & =\sum_{i=1}^{5} p_{i} l\left(f\left(v_{i}\right)\right) \\
& =\frac{1}{8} \cdot 1+\frac{1}{2} \cdot 9+\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 2 \\
& =\frac{11}{8}=1.375 \text { from before }
\end{aligned}
$$

(2) What is the expected value for the roll of one fair 6 -sided die? Toll of two fair dice?

$$
\begin{aligned}
& \Omega_{1}=\left\{\begin{array}{c}
w_{1}, w_{2} a_{3} w_{4} w_{4} c_{5} a_{6} \\
1,2,3,4,5,6
\end{array}\right\} \text { ontomes for ane die } \\
& P\left(\omega_{i}\right)=\frac{1}{6} \quad \forall i \text { called the } \\
& X \left\lvert\, \begin{array}{l}
\left.P\left(\omega_{i}\right)=\frac{1}{6} \forall i<\begin{array}{r}
\text { called the } \\
\text { uniform pubability } \\
\text { spare on } \Omega
\end{array}\right]
\end{array}\right. \\
& \mathbb{R} X(i)=i \\
& \mathbb{E} X=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\ldots+\frac{1}{6} \cdot 6 \\
& =\frac{1}{6}(1+2+3+4+5+6)=\frac{1}{6} \cdot 21=\frac{7}{2}=3.5
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E} X=\frac{1}{6}(1+1)+\frac{1}{6}(1+2)+\cdots+\frac{1}{6}(6+6) \\
& =\frac{1}{36} \cdot 2+\frac{2}{36} \cdot 3+\frac{3}{36} \cdot 4+\frac{4}{36} \cdot 5+\frac{5}{36} \cdot 6+\frac{6}{36} \cdot 7=\frac{252}{36}=7 \\
& 36 \cdot 12+\frac{2}{36} \cdot 1+\frac{3}{36} \cdot 10+\frac{4}{36} \cdot 9+\frac{5}{36} \cdot 8
\end{aligned}
$$

Entropy of a sample space ($\$ 2.2$)
In 1948, Claude Shannon tried to quantify how much information we acquire when we are told the outcome w_{i} of a sampling from a probability space $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{m}\right\}$
having probabilities $p_{n_{3}}, p_{m}$ so $P\left(w_{i}\right)=p_{i}$.
We will eventually call this the Shannon entropy

$$
H(\Omega)=H\left(p_{1}, p_{2},-, p_{m}\right) \text { of } \Omega
$$

The idea is to first define fro maize by saying the seff-information $I\left(\omega_{i}\right)$ for an outcome heads/tzils of a fair coinflip

$$
\begin{aligned}
& \Omega=\{\text { heads, tails }\} \\
& w_{1} \quad w_{2} \\
& P(\text { head })=1 / 2 \quad P(\text { til })=1 / 2 \\
& =p_{1} \quad=p_{2} \\
& \text { is } I(\text { heads }):=I(\text { tails }):=1 \text { bit }
\end{aligned}
$$

Then if one did 2 coin $f l i p s$, each outcome would have $P\left(\omega_{i}\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=P($ heads, heads) $=P($ heads, tails $)$ and should have twice the seff-information, that is, $I\left(\omega_{i}\right)=2$ bits.
Similarly k coin flips have outcomes w_{i} with

$$
\text { all } P\left(w_{i}\right)=\underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2}}_{k \text { times }}=\frac{1}{2^{k}}
$$

and should have $I\left(w_{i}\right)=k$ bits

$$
=-\log _{2}\left(\frac{1}{2^{k}}\right)=-\log _{2}\left(p_{i}\right)
$$

This motivates the choice that...
DEF'N: An outcome $w_{i} n \Omega$ having $\operatorname{Pr}\left(w_{i}\right)=p_{i}$ has seff-mformation $I\left(w_{i}\right):=-\log _{2}\left(p_{i}\right)$
and the (Shannon) entopy/information for Ω is the expected value $\mathbb{E I}$ of the seff-information:

$$
\begin{aligned}
H(\Omega) & :=H\left(p_{1}, p_{2},-, p_{m}\right) \\
& =-p_{1} \log _{2}\left(p_{1}\right)-\ldots-p_{m} \log _{2}\left(p_{m}\right) \\
& =-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right) \quad \text { in } \underline{\text { bits }} .
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \text { EXAMPLES } \\
& \begin{aligned}
(1) \Omega & =\{A, B, C, D, \in\} \text { with } \\
& \left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right) \\
& =\left(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8} \frac{1}{8}\right) \\
\text { has } H(\Omega) & =\frac{1}{2} \cdot 1+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3 \\
& =\frac{1}{2}+\frac{12}{8}=\frac{1}{2}+\frac{3}{2}=2
\end{aligned}
\end{aligned}
$$

(2) $\Omega=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ with uniform distribution

$$
\left.\begin{array}{rl}
\left(p_{1}, \ldots, p_{m}\right) & =\left(\frac{1}{m}, \ldots, \frac{1}{m}\right) \\
\text { has } I\left(w_{i}\right) & =-\log _{2}\left(\frac{1}{m}\right)
\end{array}\right)=\log _{2}(m) \forall i \quad \begin{aligned}
\text { and } H(\Omega)=H\left(\frac{1}{m}, \ldots, \frac{1}{m}\right) & =\frac{1}{m} \log _{2}(m)+\ldots+\frac{1}{m} \log _{2}(m) \\
& =\log _{2}(m)
\end{aligned}
$$

egg.

$$
\begin{aligned}
& H\left(\frac{1}{2} \frac{1}{2}\right)<H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)<H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)<\ldots \\
& =\log _{2}(1) \quad=\log _{2}(3) \text { bits } \\
& =1 \text { bit }=\log _{2}(4) \\
& =2 \text { bits }
\end{aligned}
$$

Q: Why is $H(\Omega)$ always nonnegative?

How well does $H(\Omega)$ capture the notion of the information conveyed by knowing the outcome w: from a sampling of Ω ? A supporting result...
THEOREM (Roman) Any function $H\left(p_{1},->p_{m}\right)$ defined for all sequences $\left(p_{1}, \ldots p_{m}\right)$ with $p_{i} \in[0,1]$ $\sum_{i=1}^{m} p_{i}=1$ having these properties
(i) H is continuous as a function of the p_{i}
(ii) $H\left(\frac{1}{n_{0}}, \frac{1}{n}\right)<H\left(\frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$ for all $n=1,3-$
(iii)

$$
\begin{aligned}
& H(\underbrace{p_{1} \rightarrow p_{r}}, \underbrace{q_{1},-q_{s}})= \\
& \text { Let } p=p_{1}+\ldots \text {.apr ref } q=q_{0}++q_{s} \\
& H(p, q)+p H\left(\frac{p_{1}}{p},-\frac{p_{r}}{p}\right)+q H\left(\frac{q_{1}}{q}, \ldots, \frac{q_{s}}{q}\right)
\end{aligned}
$$

must be of the form

$$
\begin{aligned}
& \text { inst be of the form } \\
& H\left(p_{a, 1} p_{m}\right)=-\sum_{i=1}^{m} p_{i} \log _{b}\left(p_{i}\right) \\
& \text { for some choice of base } b>1
\end{aligned}
$$

for some choice of base $b>1$
This pins $H(\Omega)$ down up to a multiple: $\log _{b}(p)=\frac{\log _{2}(p)}{\log _{2}(b)}$ (Shannon picked $b=2$)

