Math 5251 Probability (Some of \$1.4, 1.5) We want to talk about the average fength of code words when we imagine the source words $W = \{\omega_1, \omega_2, \dots, \omega_m\}$ being emitted randomly with certain probabilities (p1, p2, -, pm) from a memory less source, meaning the previous words don't affect the probability P: that the next word is wi.

Not a reasonable model for most messages locally, but not so unreasonable for long messages from a source with known word frequencies.

This is an example of the expected value of a vandom variable on a probability space...

DEF'N: A finite probability space is a
finiteset
$$\Omega = i\omega_1, \omega_2, \dots, \omega_m$$
? (like $W=i\omega_1, \dots, \omega_m$)
with probabilities $P(\omega_i) = p_i$ assigned to each ω_i
"the probability that sampling from Ω produces ω_i is p_i "
such that $\begin{cases} p_i \in [0, 1] \\ p_i + p_{2} + \dots + p_m = 1. \end{cases}$

DEF N: A random variable
$$X$$
 on Ω is
a function $X: \Omega \longrightarrow \mathbb{R}$
 $\omega_i \longmapsto X(\omega_i)$
and its expected value
 $\mathbb{E}X := \sum_{i=1}^{n} p_i X(\omega_i)$

EXAMPLES where
$$M = \{A, B, C, D, E\}$$

with $(P_{1}, P_{2}, P_{3}, P_{4}, P_{5})$
 $= (\frac{1}{2}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$
is a probability space, and we have
a random variable $X : \Omega \rightarrow IR$
codeword $w_{1} \longmapsto L(f(w_{1}))$
where $f : A \longmapsto 0$
 $B \longmapsto 1$
 $C \longmapsto 20$
 $D \longmapsto 21$
 $E \longmapsto 22$

whose expected value

$$f X = average_{iengelsh} = \sum_{\substack{i=1\\i=1}}^{5} p_i l(f(i))$$

$$= \frac{1}{8} \cdot 1 + \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 2$$

$$= \frac{11}{8} = 1.375 \text{ from before}$$

Entropy of a sample space (§2.2)
In (948, Clande Shannon bied to quantify
how much information we acquire chence are
told the outcome w; of a sampling from a
probability space
$$\Omega = \{w_1, w_{2,1}, w_{3,1}, w_{3,1}\}$$

having probabilities $p_{13}, p_{23}, p_{13}, w_{3,1}, w_{3,1}\}$
having probabilities $p_{13}, p_{23}, p_{13}, w_{3,1}, w_{3,1}\}$
We will eventually call this the Shannon entropy
 $H(\Omega) = H(p_{13}, p_{23}, p_{13})$ of Ω
The idea is to first define from time
by saying the self-information I(w) for an
outcome heads/tails of a fair coinflip
 $\Omega = \{heads, tails\}$
 $p(heads) = \chi P(trib) = \chi$
 $I = \beta_{2}$
 $I = I(heads) = I(tails) = 1 bit$

Then it one did 2 coin flips, each outcome would have $P(w_i) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = P(heads, heads)$ = P(heads, trils)and should have trice the self-information, that is I(w;)= 2 bits. Similarly k conflips have outromes w; with all $P(\omega;) = \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2} = \frac{1}{2^{k}}$ 6 tomes and should have I(w;) = k bits $= -\log_2(\frac{1}{2^n}) = -\log_2(p_i)$ This motivates the choice that ... DEF'N: An outcome w; n D having Pr(w;)=p; has seff-intomation I(w;):= -log2(pi) and the (Shannon) entropy / intomation for 12 is the expected value EI of the self-information: $H(\Omega) := H(P_1, P_2, -, S_n)$ $= -p_1 \log_2(p_1) - \dots - p_m \log_2(p_m)$ = - Spilog_(pi) in bits.

EXAMPLES
(1)
$$\Omega = [A, B, C, D, C]$$
 with
 $(P_1, P_2, P_3, P_3, P_5)$
 $= (\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8})$
has $H(\Omega) = \frac{1}{2} \cdot 1 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3$
 $= \frac{1}{2} + \frac{12}{8} = \frac{1}{2} + \frac{3}{2} = 2$
(2) $\Omega = \{\omega_{1, --, \omega_{1}}\}$ with uniform distribution
 $(P_{1, --, \gamma}, P_{1, \gamma}) = (\frac{1}{2}, --, \frac{1}{2})$
has $I(c_{1}) = -\log(\frac{1}{2}, --, \frac{1}{2})$
has $I(c_{2}) = -\log(\frac{1}{2}, --, \frac{1}{2}) = \log_{2}(\omega_{1}) \quad \forall i$
and $H(\Omega) = H(\frac{1}{2}, -, \frac{1}{2}) = \frac{1}{2}\log(\omega_{1}) + \dots + \frac{1}{2}\log_{2}\omega_{1})$

e.g.

$$H(\frac{1}{2i2}) < H(\frac{1}{3},\frac{1}{3},\frac{1}{3}) < H(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}) < \dots$$

$$= \log_{2}(2) \qquad = \log_{2}(3) \text{ bits} \qquad = \log_{2}(4)$$

$$= 2 \text{ bits}$$

Q: Why is $H(\Omega)$ always nonnegative?

How well does
$$H(\Omega)$$
 capture the notion of the
information conveyed by knowing the actioned;
from a sampling of Ω . A supporting result...
THEOREM Roman) Any function $H(p_{n_3},p_n)$
defined for all sequences (p_{n_3},p_n) with $p_i \in [0,1]$
having these properties $\sum_{i=1}^{n} p_i = 1$
(i) H_{15} continuous as a function of the p_i
(ii) $H(\frac{1}{n_{3-5}},\frac{1}{n}) < H(\frac{1}{n_{1,3-5}},\frac{1}{n_{2}})$ for all $n=1,2$...
(iii) $H(p_{n_3-5}p_r, q_{n_3-9}q_3) =$
 $ket poppenties $H(p_i, p) + p H(\frac{p_1}{p_{3-5}}, \frac{p_1}{p_1}) + q H(\frac{g_1}{g_{3-5}}, \frac{q_3}{g_3})$
must be of the form
 $H(p_{n_3-7}p_m) = -\sum_{i=1}^{m} p_i \log_b(p_i)$ $p_{p_1}(p) = 0$
for some choice of base $b > 1$
Note:
This pins $H(\Omega)$ down up to a multiple: $\log_b(p) = \log_b(p)$$