Mach 5251 Huffman Coding (\$3.4) It turns ont that given the source word probabilities $(p_{1,-},p_{m})$ for $W = \{w_{1,-},w_{m}\}$, we can easily find an n-any encoding f: W -> Z* that achieves the minimum for avglength(f), via Huttman coding. lets

- describe the binary case first, (Z={0,1})

- prove that it achieves the minimum,

- then explain how to modify it for n-any.

Binary Huttman encoding algorithm: Assume by re-indexing that $p_1 \ge p_2 \ge \dots \ge p_{m-2} \ge p_{m-1} \ge p_m$ and recursively define f: W-> io,13* by induction on m: Fm>2, build a Huffman encoding for a source $W' = \{ \omega_1, \omega_2, \dots, \omega_{m-2}, \omega_{m-1} \}$ with probabilities { Pr, P2, -> Pm2, PmitPm } and then tack on an extra 0 to f(wm,) and an extra 1 i.e. $f(\omega_i) = \begin{cases} f(\omega_i) & \text{if } \overline{c} = i, 2, \dots, m-2 \\ f(\omega_{m-i}) & \text{if } \overline{c} = m-1 \\ f(\omega_{m-i}') & \text{if } \overline{c} = m \end{cases}$ Ushally this is visualized via banary Huffman trees,

reading ode words as paths from rost to leaves...

EXAMPLES
(1)
$$W = \{A, B, C, D\}$$

probabilities $\frac{1}{2} \ge \frac{1}{2} \ge \frac{1}{2$

(2) If some pi coincide (or their sums coincide), the Huffman encoding may not be unique, e.g. $W = \{A, B, C, D, f\}$ B K2/52/52/52/5 $W' = \{ DE, A, B, C \}$ 7531521536 W"= {DE, BC, A} چي چي چ ABC, DE j 3/2 2/5

BETTER EXAMPLE of non-uniqueness. has two possible binany Huffman tree structures, $W = \{A, B, C, D\}$ puolos 3 3 6 6 having different adeword lengths (but necessarily some ang length):

 $\frac{1}{3} A^{\circ} O^{\circ} O^{\circ} O^$ $(l_1, l_2, l_3, l_4) = (1, 2, 3, 3)$ anglength(h1)= $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 3$ 16 h₁: A→♡ $=\frac{2+4+3+3}{6}=2$ B 🛶 10 C -> 100 D hans 101

 $(l_1, l_2, l_3, l_4) = (2, 2, 2, 2)$ anglength (h,)= $\frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 2 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 2$

THEOREM Let W= {w1,-,wm] have probabilities {Pa,--, Pm] and h: W-> {9,1} any Huffman encoding. Then (a) h is prefix, so u.d., and (b) for any u.d. encoding f: W -> {0,13* $arglength(h) \leq arglength(f)$ (so h achieves the minimum bounded in Shannon's Thm.)

why can't we find something shorter,
like
$$(2,2,2,3)$$
?

ACTIVE LEARNING Explain why a binary ode with lengths (2,2,2,2,2) is never u.d. Can you find two very different arguments? proof of THEOREM :

For (a), note that each Huffman codeword fles) is the labels on a path from root to a leaf in the tree. So flw) can t be a prefix of another flw'), else the path from the root continues lower, so it wasn't stopping at a leaf to read flw).

For (b), assume that f: W -> {0,13* is a u.d. encoding achieving the minimum of anglength (f) among all u.d.encoding We'll show $arglength(h) \leq arglength(f)$ in several steps

STEP 1. We can assume f is prefix, not just n.d., because of the Kraft-Mc Millan Theorems: the lengths (li, _, lim) for f(w1), _, f(wm) setsty Z _ nl; 51 and hence I a prefix ade with the same lengths.

Step 2: We can assume after re-indexing that if $p_1 \ge p_2 \ge \dots \ge p_{m-2} \ge p_{m-1} \ge p_m$ then $f' has l_1 \leq l_2 \leq ... \leq l_{m-2} \leq l_{m-1} \leq l_m$. Otherwise, if l_{τ}^{-} > lit, swap images $f(\omega_i), f(\omega_{in})$ of ω_i, ω_{i+1} creating a new u.d. f with smaller anglength(f)= Žpili. STEP 3: We can assume $l_{m_1} = l_m$, otherwise if $l_{m_1} < l_m$ then we can drop the last letter of $f(w_m)$ without ruining the prefix property (Why?), and making anglength(f) smaller. STEP 4: We can assume I some is m-1 such that f(w;) and f(wm) have same length li= lm and differ only in their last digit: $f(\omega_i) = a_1 a_2 \cdots a_{p_1} o$ $f(\omega_m) = a_1 a_2 \cdots a_{n-1}$ (In which case, re-index so that i= m-1). This is because otherwise, we could again drop the last letter of $f(\omega_m)$ without mining the prefix property (why?), but reducing anglength(f).

LAST (INDUCTIVE) STEP:
Create the smaller Huffman code
$$h': W' \rightarrow 10,13^{*}$$

for the source with probabilities $p_{1}, p_{2}, \neg, p_{1}, q_{2}, p_{2}, q_{2}, q_{2$

This lets us prove arglength(h) ≤ arglength(f) by notation on m = IV/l, since it's easy b check in the base case where m=2 (so h(A)=0 h(B)=1) and then in the inductive step, use arglength(h') ≤ arglength(f') together with the two boxed facts above.

It's easy to modify Huttinan coding for an n-any alphabet Z= {0,1,2,--,n-1]: the Huffman trees are n-any and built by grouping $P_1 \ge P_2 \ge \dots \ge P_{n-m} \ge P_{n-m+1} \ge \dots \ge P_{m-1} \ge P_m$ in W? $p_1 \ge p_2 \ge \dots \ge p_{n-m} \ge \sum_{i=n-m+1}^{m} P_i$ The only issue is that n-any trees have their number of leaves $\equiv 1 \mod n-1$ j.e. remainder of 1 on drision by n-1. So one pads piz-2pm m> p_z...2pm 202...20 PM with zeroes to make M=1 mod n-1.

EXAMPLE Morse code is a ternary and prefix
code f:
$$W = \{A, B, C_{3-7}, Z\} \longrightarrow \{o, -, space\} = \sum_{m=26}^{\infty}$$

How well does a ternary Huffman code h: $W \rightarrow \{0, 1, 2\}$ beat its ang length? Since $n = 26 \not\equiv 1 \mod 2$, need to add an extra fake 27^{th} letter with probability $p_{27}=0$, then use a computer to build a ternary Huffman tree...

Letter	Engl Proba	ish bilig		Morse code lengths (with space)	Ternany Unfilman Lode Llengths
	J		ſ	J.	
	÷E	0.12702	2	2	Ternany
	т	0.09056	2	2	hiffman code
	А	0.08167	3	2	tree structure:
	0	0.07507	3	2	*
	I	0.06966	3	2	t,=0
	Ν	0.06749	3	3	<u>t</u> =5
	S	0.06327	4	3	
	н	0.06094	4	3	1-5
	R	0.05987	4	3	000
	D	0.04253	4	3	
	L	0.04025	4	3	
	С	0.02782	4	3	0 tf2
	U	0.02758	4	3	
	М	0.02406	4	3	Like 27th letter
	W	0.0236	5	3	with probability O
	F	0.02228	5	4	
	G	0.02015	5	4 0	vg engh(h) = 2.7
	Y	0.01974	5	4	
	Р	0.01929	5	4	Λ
	В	0.01492	5	4	lorse code
	v	0.00978	5	5	with final space) has
	к	0.00772	5	5 (en	gh tallies
	J	0.00153	5	⁶	at to to to to to
	Х	0.0015	5	6	
	Q	0.00095	5	7 = (9	σ_{1} γ_{1} γ_{2} γ_{3} γ_{2} γ_{3} σ_{2}
	Z	0.00074	5	7	$a_{1}(1) = 341$
				• 00	grengen (T) = 0.11

REMARK

Atthough a Huttman encoding achieves the minimum for anglength (f) among u.d. codes, it may not get as low as Shannon's <u>H(W)</u> Log.(n) lover bound. But one way to improve it is is by grouping source words W= (w_j__,wn) into sequences W^(l) = { (win, win, -, win): w: \in W } sent lat a time, called the lth extension of W, with $P(\omega_{i_1},\omega_{i_2},\dots,\omega_{i_k}) = P_{i_1}, P_{i_2},\dots,P_{i_k}$

EXAMPLE
$$W = \{A, B\}$$

has $H(W) = \frac{3}{4} \log_2(\frac{4}{3}) + \frac{1}{4} \log_2(4) \approx 0.811278$
and binary Huffman encoding $f(A)=0$
 $f(B)=1$
with anglength(f) = $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 1 = 1$ (> 0.811278)
 $= H(W)$

But its 2nd extension

$$W^{(\lambda)} = \left[AA, AB, BA, BB \right]$$

$$\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4}$$

$$= \frac{2}{16} = \frac{3}{16} = \frac{3}{16} = \frac{1}{16}$$
has binary Huffman encoding as shown:
AA
 $\frac{3}{16} = \frac{3}{16} \cdot \frac{1}{16} \cdot \frac{3}{16} = \frac{1}{16}$
so arglength(f) = $\frac{9}{16} \cdot \frac{1}{16} \cdot \frac{3}{16} \cdot \frac{2}{16} \cdot \frac{3}{16} \cdot \frac{3}{16} \cdot \frac{1}{16} \cdot \frac{3}{16} \cdot \frac{3}{16} \cdot \frac{1}{16} \cdot \frac{3}{16} \cdot \frac{3}{16} \cdot \frac{1}{16} \cdot \frac{3}{16} \cdot \frac{3}$