Math 5251 Uyclic Redundancy Orets (Chap.S)	
1 = function part of edges for error - attedon, no correction)	
1 + here the course takes an algebraic turn ((like path 4281, 5285-5286)	
2 = 10,13 as actual numbers, namely ... s	
85.1 If $= 6F(2) = 2/2 = 2/222$ = integers used 2	
11.4	200
12.4	200
13.4	200
14.4	200
15.5	200
16.4	200
17.4	200
18.4	200
19.5	200
10.5	200
10.5	200
10.5	200
10.5	200
10.5	200
10.5	200
10.5	
10.5	
10.5	
10.5	
10.5	
10.5	
10.5	
10.5	
10.5	
10.5	
10.5	

HIs called
$$
F_2
$$
 = the field with 2 elements
\n= GF(2) = Gabis field sth 2 elements
\n= $2/2 = 2/3Z$ = integers modulo 2
\n $2/2 = 2/3Z$ = integers modulo 2
\n $2/3 = 2/3Z$
\n $2/3Z$
\n $2/3Z$

$$
\frac{5}{5} \times 2 \times \frac{17}{2} [x] := \frac{7}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{7}{2} \times \frac{1}{2} \times \frac{1}{2}
$$

We can similarly do this in $\mathbb{F}_2[x] = \text{polynomials } nx$ with \mathbb{F}_2 orefficients.

ACTIVE LEARNING

$$
f_1(x) = x^4 + x^2
$$

 $f_2(x) = x^4 + x^2 + 1$

(a)
$$
\ln \mathbb{F}[x]
$$
, divide $f_i(x)$, $f(x)$ by
 $g_i(x)=x$
 $g_i(x)=x+1$

^b How can one spot quickly whether x divides $f(x)$ in $F_x[x]$? $x+1$ divides $f(x)$ in $F_L(x)$? (c) How dues the answer to (6) relate to plugging in $x=0$, $x=1$, that is, evaluating $f(s)$, $f(t)$ in F_2

5.3 Cyclic redundancy checks CRC's = an error-detection scheme where sender 2 receiver 1st pick a generator polynomial g x e h_2 lx and we'll see some choices are better 2nd sender agrees to send messages as bitstrings whose corresponding polynomial $d(x) \in \mathbb{F}_2[x]$ ϵ always divisible by $g(x)$, by tacking or deg g extra bits at the end 3rd the noisy channel transmits wetticients of some compted $\breve{d}(x)$ instead of $d(x)$ 4 receiver computes the $\tilde{d}(x)$ by $g(x)$;

remander
$$
e(x)
$$
 upon dividing $d(x)$ by $g(x)$.
 reports \int no error if $e(x)=0$,
envor if $e(x)\neq0$.

EXAMPLE We agree on
$$
g(x)=x^2+x+1
$$
 in $F_1[x]$
\nas g ementor polynomial.
\n $\frac{1}{x}$ want to send you the information 10101,
\nso I must pick 10101 $\frac{1}{x}$ be send
\n $\frac{deg(g)}{3}$
\narranging that $f(x) = x^2 + x^5 + x^3 + ax^2 + bx + c$
\nis $divis$ ible by $g(x)$:
\n $\frac{1011}{\frac{101010106}{\frac{1011}{\frac$

receive dlx as d ^x ¹⁰¹⁰¹¹⁰¹ If you 10011 you compute 10111 ⁰¹ ex and are happy no error receive dlx as ¹⁰ ⁰¹¹⁰¹ youcompute If you called ^a ¹ bitenor 1011 1044T 1 ¹ ex ⁰ ERROR retransmit receive dlx as 1050min you compute If you called ^a 2 bit or bursterror 4 bits apart s 1011 ¹⁰⁷ ex ⁰ ERROR retransmit

ACTIVE LEARNING (a) What happens if you receive $\tilde{d}(x)$ as 80101108 ? b) Can you explain why 1-bit errors are always detected by this CRC with $g(x) = x^3 + x + 1 \Leftrightarrow$ 1011 ?

We can analyze the errors undetected by the CRC glx. once we know a fact from Chap. 10: in H2(x and much more generally, one has uniqueness for the quotient, remainder $g(x)$, $r(x)$ here $g(x)$) $\frac{1}{f(x)}$ in this sense: $f(x) = q_1(x) \cdot 9(x) + r_1(x)$ with deg (r_i) < deg (g) $\boldsymbol{\varrho}$ x_1 . J ϕ $i=1,2$ then $r_1(x)=r_2(x)$ and $q_1(x)=q_2(x)$

In particular, $g(x)$ drides $f(x) \iff r(x)=0$ N N $($ x $)$ $($ $f(x)$

 $coROUARY$: If $d(x)$ is sent, but $\widetilde{d}(x)$ + $d(x)$ received, the CRC with generator $g(x)$ misses the error ^s g x) $\left\lfloor d(x) - d(x) \right\rfloor$ in the $1 \times$

 $proot:$ Write $d(x) = q(x) \cdot q(x)$ where $q(x) \in \mathbb{F}_n$ possible since d(x) was sent that way by CKC mes. ^x misses the error Then g $\tilde{\xi}(x)$ \Leftrightarrow remainder $e(x)=0$ M $g(x)\int \overline{\mathcal{X}(x)}$ $e(x) = 0$ uniquence of remains $\tilde{d}(\alpha) = \tilde{q}(\alpha) \cdot g(\alpha)$ for some $\tilde{q}(\alpha) \in \mathbb{F}_2$ x $d(x) - d(x) = \int_{0}^{\infty} (x) g(x) - \int_{0}^{\infty} f(x) dy$ $(x) - f(x)$ or $f(x)$

for some g(x

 $g(x) | d(x) - d(x)$.

CORolUARY Assume
$$
g(x) \in \mathbb{F}_2[x]
$$
 has $deg(g) \ge 1$ and
\nnonzero constant term, that is
\n $g(x) = 1 + a x + a x^2 + ... + a_{r-1}x^{r+1} x^r$ with r21.
\nThen when used to generate a CRC,
\n(a) $g(x)$ never misses 1-bit errors,
\n(b) $g(x)$ also controls every 2-bit error
\nuntil they are at least N_o bits apart
\nwhere N_o := smallest N for which $g(x) / x^{N}$.

EXAMPLES
\n(i)
$$
g(x) = x^3+x+1
$$
 catches all 1-bit errors
\nand all 2-bit errors up to bits part,
\nsince x^3+x+1 $\begin{array}{c} x+1\\ x^2+1\\ x^3+1 \end{array}$
\n x^3+1
\n x^4+1
\n x^5+1
\n x^6+1
\n x^8+1
\nbut x^3+x+1 $\begin{array}{c} x^4+1\\ x^7+1 \end{array}$; $N_0 = 7$.
\n(i) We can later easily produce small $g(x)$ using much better,
\ne.g. $x^{15}+x+1$ has $N_0 = 2^{15}-1 = 32767$

(3) Note that when we use a CRC with generator g(x)=x+1, this is the same as our old parity check bit scheme: $6002-68$ 300 where b_{l+1} = $b_1 + b_2 + ... + b_{l}$ in F_2 = $\begin{cases} 0 & \text{if } \sum_{r=1}^{R} b_r \text{ even} \\ 1 & \text{if } \sum_{r=1}^{R} b_r \text{ odd} \end{cases}$ Since $g(x)=x+1$ has nonzero constant lem it detects all 1-bit eurons. But it has $N_0 = 1$, and misses all 2-bit enors since $x + 1$ $x + 1 = (x + 1)(x - 1)(x - 2)$ 1.5 in $F_2(x)$ $\forall N \ge 1.$

$$
A 1-bit error means $\tilde{d}(x) - d(x) = x^{n+1}e^{x}$
\nsome n, and we claim $g(x)$ can't divide x':
\n $g(x)$ as $h(x) \in F_{2}[x]$ if the highest power x^{M} and smallest power x''
\nso $h(x) = x^{m} + a_{m+1}x^{m+1} + \cdots + a_{n-1}x^{n-1} + x^{n}$,
\none finds $g(x)h(x) =$
\n
$$
(1+q_{1}x+...+q_{n+1}x^{n+1}+x^{n+1}x^{n+1}+...+a_{n-1}x^{n-1}+x^{n}) =
$$
\n
$$
x^{m} + (\text{terms, motion}) x^{m+1} + x^{m+1} + \cdots + x^{n-1} + x^{n}
$$
\nwhich can't equal $x^{n} = 0 + 0 \cdot x^{1} + 0 \cdot x^{2} + ... + 0 \cdot x^{n-1} + x^{n}$.
\nA 2-bit error N bits apart means $d(x) - d(x) = x^{n} + x^{n+1}$
\nfor some n, and the claim
\n
$$
g(x) | x^{n}(x^{n}+1) = g(x) | x^{n} + 1
$$
\n
$$
x^{n} + x^{n+1} = g(x)h(x) \quad \text{with some } h \text{ written as above,}
$$
\n
$$
= x^{m} + (\text{terms, motion}) x^{M+n-1} + x^{M+n}
$$
\nthen this forces $m = n$, so one can cancel xⁿ from
\nboth $h(x)$ and $x^{n} + x^{n+1}$, giving
\n
$$
1 + x^{N} = g(x)h(x)
$$
, i.e. $g(x) | x^{N+1} \cdot M = g(x)h(x)$
$$