S 14.3 Finite fields
Let's play with an...
ExAMPLE

$$
\beta^{3}+\beta+1=0
$$

$$
\mathbb{F}_{2^{3}}=\mathbb{F}_{8}=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right) \text { with } \beta:=\bar{x}
$$

(or $x^{3}+x^{2}+1$ would work)
$=$ an \mathbb{F}_{2}-vector space on basis $\left\{, \beta, \beta^{2}\right\}$

$$
\begin{aligned}
& \text { luside }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\beta^{7} & \beta^{1 \prime}+1 \beta^{2}+\beta \\
\beta^{3}+\beta^{2} & \beta^{2}+\beta+\beta^{3} \\
\beta^{\prime} 1+\beta^{2} & \beta^{2}+1
\end{array}
\end{aligned}
$$

Let's look at the orbits of Frobemins $\mathbb{F}_{8}{ }_{\square}^{F} \mathbb{F}_{8}$
开2
 $\alpha \mapsto \alpha^{2}$

$$
\begin{aligned}
& \text { roof } \\
& \underbrace{x(x+1)}_{\text {linear }} \underbrace{\left(x^{3}+x+1\right) \underbrace{\left(x^{3}+x^{2}+1\right)}_{\text {dec }:=\left(x-\beta^{3}\right)\left(x-\beta^{6}\right)\left(x-\beta^{3}\right)}=x^{x^{3}} \operatorname{Fin}_{2}(x)}_{\text {cubic }}
\end{aligned}
$$

PROP: Every finite subgroup $A \subset F^{x}$ for a field F is cydic $A=\langle\alpha\rangle$. In particular, if \mathbb{F} is finite then \mathbb{F}^{X} is acyclic (so if $|\mathbb{F}|=q=p^{d}$ then $\left.\mathbb{F}^{x} \cong\left(\mathbb{Z} /\left(q_{1}\right) \mathbb{Z}\right)^{+}\right)$
EXAMPLE: ${ }^{(1)} \mathbb{F}_{8}^{x}=\left\{1, \beta, \beta^{2}, \ldots, \beta^{6}\right\}$ $\frac{\beta^{\prime \prime}}{\mathbb{C}^{x}} \cong(\mathbb{Z} / \neq \mathbb{Z})^{+}$
(2) Inside $\mathbb{F}^{x}=\mathbb{C}^{x}$, evens
finite subgroup $A=\mu_{n}=\left\{\begin{array}{c}\text { th } \\ \text { oo ts } \\ \text { of }\end{array}\right\}$

$$
\mu_{8} \cong(\mathbb{Z} / 8 \mathbb{U})^{+}
$$

PROP: Every finite subgroup $A \subset F^{x}$ for a field \mathbb{F} is cyclic $A=\langle\alpha\rangle$.
proof: Let's assume for the moment a fin. abel. group.-

CEMMA: In a frise abelian group A, if $L:=\left[\mathrm{cm}\left\{\begin{array}{l}\text { orders } \\ \text { of } g \in A\end{array}\right\}\right.$ then $\exists g \in A$ with order L.
Then were done since

$$
\begin{aligned}
& \text { were done since } \\
& \langle g\rangle
\end{aligned}
$$

HIS

$$
\mathbb{Z} L \mathbb{Z}
$$

has $L=|\langle g\rangle| \leq|A| \leq L$
every $a \in A$ is a bout in \mathbb{F} every $a \in A$ is a coot in $\leq L$ mots
of $x^{L}-1$, which has in .

CEMMA: In a finite abelian group A, if $L:=\operatorname{cm}\left\{\begin{array}{l}\text { orders } \\ \text { of } g \in A\end{array}\right\}$ then $\exists g \in A$ with order L.
proof 1 (cheating!)
In Chap 12, show every fin. abel. gap A
has $A=\mathbb{U}\left(d_{1} \mathbb{Z} \times \mathbb{Z} / d_{2} \mathbb{Z} \times \ldots \times \mathbb{Z} / d_{t} \mathbb{Z}\right.$
with $\left.d_{1}\left|d_{2}\right| \ldots \left\lvert\, d_{t}=\operatorname{LeM}\left(\begin{array}{c}\text { orders } \\ \text { of } \\ \text { g }\end{array}\right]\right.\right)$
so take $g \in \operatorname{lo\} } \times\{0\} \times \ldots \times\left\{\right.$ gepantor $\left.\frac{1}{} d z\right\}$.
post 2: suBLEMMA:
PAWE if if A abel and $g_{1} h \in A$ Ancorbelion A 2 .
(12), (123)

$$
\in S_{3}
$$ then gi has order mn: poof: $\imath=(g h)^{i}=g^{i} h^{i} A_{\text {abe lion }}^{\text {lion }}$

$$
\begin{aligned}
& \text { prot: } \\
& \Leftrightarrow g^{i}=h^{-i} \Leftrightarrow 1=g^{i}=h^{-i} \\
& \Leftrightarrow
\end{aligned} \Leftrightarrow
$$

SUBLEMMA:
(f Aaber. and $g_{1} h \in A$ have orders $m_{1} n$ with $\operatorname{ged}(m, n)=1$ then gh has order mn
Now, if A fidel. and $L=\left(\mathrm{cm}\left(\begin{array}{c}\text { orders } \\ \text { of gin } A) \\ \text { dotinct }\end{array}\right)\right.$) let $L=p_{1}^{d_{1}} \cdots p_{r}^{d r} \quad\left(p_{i}\right.$ primes $\left._{\text {distinct }}^{d^{2}}\right)$ find g_{1} of order divisible by $p_{1}^{d_{1}}$
\dot{g}_{r} of order dnisib'e by $p_{r} d_{r}$ then h_{1} of order exactly $p_{1} d_{1}$ \dot{h}_{r} of order exactly $p_{r}^{d r}$ and then $h_{1} h_{2} \ldots h_{r}$ has order

$$
p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{r}^{d r}=L \text { 包 }
$$

EXAMPLE: $\quad q=2, n=4$

$$
\begin{array}{cc}
\mathbb{F}_{2^{4}}=\mathbb{F}_{16}, \mathbb{F}_{16}^{x}=\langle r\rangle=\left\{1, r, \gamma_{1}^{2}, \cdots, \gamma^{14}\right\} \\
r_{15}^{15} \\
\mathbb{F}_{2} & \cong(2 / 15 Z)^{+}
\end{array}
$$

Frobemius orbits $\mathbb{F}_{16} \stackrel{F}{\rightarrow} \mathbb{F}_{16}$

THM: if \mathbb{K} has \mathbb{K} finite, then...

(i) $\left||F|=q=p^{d}\right.$ for some prime p and power $d \geqslant 1$ and $|K|=q^{n}$ for some $n \geq 1$.
(ii) $\mathbb{K}^{x}=\langle\alpha\rangle$ is cyclic.
(ri)

$$
\begin{aligned}
& \mathbb{K}=\operatorname{Split}_{\mathbb{F}}\left(x^{q}-x\right)\left(=: \mathbb{F}_{q}\right) \\
& =\left\{\begin{array}{c}
\text { all roots ot } \\
x^{\text {aq }}-x
\end{array}\right\} \\
& \text { cmigue } \mathrm{p} \text { to } \\
& 150 \text {. }
\end{aligned}
$$

(iv) \mathbb{K} / \mathbb{F} is Gabis, with
where $\mathbb{K} \underset{\sim}{\boldsymbol{G}} \mathbb{K}^{6}$
(v) The only mentenediate
$\left.\left(\mathbb{F}_{q^{n}}\right)^{F^{d}}=\begin{array}{c}\text { fields are } \\ \text { notes } x^{g} d-x\end{array}\right\}=\mathbb{F}_{q} \mathbb{F}_{q} d$ where d dinges n \mathbb{F}_{9}
(vi) $x^{g^{n}}-x=\prod_{d / n \text { ir red. }} f(x) \quad \operatorname{in} E_{q}(x)$
$f(x)$ in $F_{q}(x)$
of degrees
prof (i) (K finite, so \mathbb{F} finite so char $(\mathbb{F})=P$
$\left.\begin{array}{l}1 \operatorname{deg} n=(\mathbb{K}: \mathbb{F}] \\ \mathbb{F}^{\text {s }}\end{array}\right\} \Rightarrow \mathbb{K}=\mathbb{F}^{n}$ so $|l| C|=| F^{n}=q^{n}$
$\left.\begin{array}{l}\mathbb{F} \\ \mid \operatorname{deg} d=\left[\mathbb{F}_{:}: \mathbb{F}_{p}\right]\end{array}\right\} \Rightarrow \mathbb{F} \cong\left(\mathbb{T}_{\rho}\right)^{d}$ so $|\mathbb{F}|=\rho^{d}=\frac{b}{d}$
\mathbb{F}_{p}
(ii) $/$
(iii) $\mathbb{K}=\operatorname{spp}_{\mathbb{F}}\left(x^{4}-x\right)=\left\{\begin{array}{l}\text { all posts } \\ \text { of } x^{4}-x\end{array}\right\}$
since every $\beta \in \mathbb{K}^{x}$ has order dividing

$$
\begin{array}{r}
\text { ince every } \beta \in \mathbb{R} \text {, } \alpha^{n} \beta^{n-1}=1 \\
\qquad\left|K^{x}\right|=q^{n}-1=0
\end{array}
$$

ie. β is a not of $x^{x^{4}-1}-1$
and of $x^{\delta^{n}}-x$
and $x^{x^{r}}-x$ only has \tilde{q}^{n} nose, so no more.

EXAMPLE
If we build

$$
\begin{aligned}
& \mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{9}+x^{3}+1\right) \\
& \omega:=\bar{x} \quad \text { so } \omega \text { safisfies } \\
& \omega^{4}+\omega^{3}+1=0
\end{aligned}
$$

then $\tau=\omega^{7}$ satisties $\tau^{4}+\tau+1=0$ i.e. it's a root f

$$
x^{4}+x+1
$$

(iv) \mathbb{K} / \mathbb{F} is Galois, with

$$
\begin{aligned}
& \text { where } \mathbb{K} \underset{\beta}{\underset{G}{F}} \mathbb{F}
\end{aligned}
$$

(v) The only montenmediate
F^{d} fred os are $F_{i n}$

$$
\mathbb{F}_{\mathfrak{q}}
$$

To prove (iv), note that $\mathbb{K} \underset{\beta}{\rightleftarrows} \mathbb{F}$

$$
\beta \longmapsto \beta^{8}
$$

does fix $\mathbb{F}=\mathbb{F}_{q}$ pointwise (since they are roots of

$$
\left.x^{8}-x\right)
$$

and $F^{n}=1_{K}$ since $F^{n}(\beta)=\left(\left(\left(\beta^{\delta}\right)^{q}\right) \ldots\right)^{8}=\beta^{q^{n}}=\beta$
but $F^{d} \neq l_{\mathbb{K}}$ since $F^{d}(\alpha)=\alpha^{d} \neq \alpha$ nimes cyclic generator
Hence $\langle F\rangle$ generates of cyclic subgroup of tut $(\mathbb{K} / \mathbb{F})$ of sizes.

Since $\mathbb{K}=\operatorname{spl}^{1, t_{t}}(\underbrace{x^{n}-x}_{0})$
distinct roots (EM)
so \mathbb{K} / \mathbb{F} is Galois,

$$
\begin{aligned}
&|\operatorname{An} \in(I K / I F)|=[(K: \mathbb{F}]=n \\
& U \| \\
&\langle F\rangle \Rightarrow\langle F\rangle=\operatorname{Ant}(C K / \mathbb{F}) \\
&=\operatorname{Ant}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right) .
\end{aligned}
$$

For (v), the intermediate subfield are

$$
\begin{aligned}
& \text { (v), the intermedice } \\
& \mathbb{K}=\mathbb{F}_{\mathrm{g} n}=\left\{\text { roots of } x q^{n}-x\right\} \\
& \text { nome }[K: ⿻]=e
\end{aligned}
$$

$\frac{1 L}{}=\mathbb{F}_{q} d$ and $q^{n}=|K|=|\mathbb{L}|^{e}=\left(q^{d}\right)^{e}=q^{d e}$ $\mathbb{F}=\mathbb{F}_{q} \quad$ i.e. d is advisor of $n(-d e)$
and $F_{g} d=\left\{\right.$ roots of $\left.x^{d}-x\right\} \subset\left\{\cos t\right.$ ot $\left.x^{n}-x\right\}$ if d divides n
since if β is a not of $x^{\alpha^{d}-x}$
that says $F^{\alpha}(\beta)=\beta \Rightarrow F^{n}(\beta)=(\underbrace{\left.\left(F^{d}(\beta)\right)-\right)^{d}}_{\text {whatimes }}$

$$
=\beta
$$

For (vi) $x^{g^{n}-x=} \prod_{d / n} \prod_{\substack{\text { irred. } \\ f(x) \operatorname{in} F_{l}(x)}} f(x)$ in $E_{l}(x)$ of degree
note that any ouch $f(x)$ divides $x^{9^{n}-x}$ since if it has β as a wot in some splitingtield, then $\mathbb{F}(\beta)=\mathbb{F}_{q^{d}} \subset \mathbb{F}_{g^{n}}=\left\{\operatorname{rod}\right.$ of $\left.x^{n}-x\right\}$ 1 deg dividing

$$
\mathbb{F}_{F}=\mathbb{F}_{q}
$$

Conversely, every i red. factor $f(x)$ of $x^{4}-x$ is $m_{F_{g},},(x)$ for some $\operatorname{wot} \beta$ of $f(x)$, and \mathbb{F}^{n}

$$
\begin{aligned}
& F_{g}(\beta) \Rightarrow F_{g}(\beta)=F_{g d} \text { with dndidng } n \\
& H_{i} \Rightarrow \operatorname{deg} m_{F_{B}, f}(x)=d \\
& \operatorname{deg}^{\prime \prime} f(x) \text {. }
\end{aligned}
$$

§ 14.4 Simple extensions ($\mathbb{K}_{1} \mathbb{K}_{2}$ later...)
For \mathbb{K} / \mathbb{F} any algebraic extension (possibly infinite [$[K ; \mathbb{F}]$) define its nomalclosure
$\mid N:=$ splitting fie (d over FF for $\left\{m_{\alpha, \mathbb{F}}(x): \alpha \in \mathbb{K}\right\}$
egg.

$$
\begin{aligned}
& \begin{array}{l}
K=Q(\sqrt[3]{2}) \\
F=Q \\
\text { hos } \mathbb{N}=Q(\cos , \sqrt[3]{2})=\operatorname{spl}_{2} t_{Q}\left(x^{3}-2\right)
\end{array}
\end{aligned}
$$

PROP: (i) \mathbb{N} / \mathbb{F} is normal and the smallest in the sense that 'f II...with II/F normal, then

$$
11 \geq \mathbb{N}
$$

PROP: (i) N / \mathbb{F} is normal, and the smallest in the sense that if

(iii) IKFIF finite \& separable

$$
\Rightarrow \text { IN /F Galois }
$$

eg. $\underset{K}{K}=Q(\sqrt[3]{2})$

$$
1
$$

$$
\text { has } \begin{aligned}
N & =\mathbb{Q}(c), \sqrt[3]{2}) \\
& =s p\left(t t_{\mathbb{Q}}\left(x^{3}-2\right)\right. \\
w & =e^{2 \pi i / 3}
\end{aligned}
$$

proof of PROP:
(l) Since $I X\left(:=S P^{\prime}, l_{\mathbb{F}}\left\{m_{\mathbb{E}_{\alpha}}(x): \alpha \in \mathbb{K}\right\}\right.$, IN is nounal.

If $\frac{11}{1} \cdot$. with 12 normal, then every α S' so every rout of $m_{\alpha, 15}(x)$ is alsoinlly, so $\mathbb{N} \subseteq \mathbb{C}$.

For (cis),
\mathbb{K} / \mathbb{F} finite $\Leftrightarrow \mathbb{K}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \begin{gathered}\alpha_{i} \\ \text { alg./ } \\ \mathbb{F}\end{gathered}$

$$
\Rightarrow \mathbb{L}:=\operatorname{spl}_{n} l_{I f}\left\{\begin{array}{cc}
(x) \\
m_{F}, \alpha_{i}
\end{array}\right\} i=1, \ldots, n
$$

is finite, normal, containing \mathbb{K}

$$
\begin{array}{r}
\Rightarrow \| \mathbb{N}, \text { so }[\mathbb{N}: \mathbb{F}]<\infty . \\
(\leq[\mathbb{L}: \mathbb{F}]<\infty) .
\end{array}
$$

For (iii), if K / \mathbb{F} is finite and separable

$$
\text { every } \alpha \in\left(K \text { has } m_{\alpha, 1}(x) \text { a separable } p\right. \text { ply. }
$$

$$
\Rightarrow\left(\mathbb{K}:=\operatorname{spl}\left(t_{l f}\left(m_{m_{\alpha, I F}}(x): \alpha \in \mathbb{K}\right\}\right)\right.
$$

is Galois

Passing to normal closure is useful...
THEOREM (on the puimitre element)
IKe, \mathbb{F} finite, separable
$\Rightarrow \mathbb{K} / \mathbb{F}$ is simple,
i.e. $\mathbb{K}=\mathbb{E}(\alpha)$ for some $\alpha \in \mathbb{K}$, called a primitive element.

e.g. $\mathbb{F}_{q n}=\mathbb{F}_{q}(\alpha)$
any α such that

$$
\begin{aligned}
& \mathbb{F}_{q^{n}}^{x}=\langle\alpha\rangle \\
&=\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n}-2\right.
\end{aligned}
$$

proof: \mathbb{K} / \mathbb{F} separable, finite has nom al closure \mathbb{N} / \mathbb{F} Galois, so Ant $(\mathbb{N} / \mathbb{F})$ is finite, so only has finitely many subgroups, and hence \exists only finitely many aubfields 11

Surprisingly, this property characterizes simple extensions $K \mathcal{F}$..

LEMMA: Let IKTF be finite.
Then \mathbb{K} / \mathbb{F} is simple $\Longleftrightarrow \exists$ only finitely

$$
\begin{gathered}
\text { many } \\
\text { intermediate } \\
\text { extensions }
\end{gathered}
$$

proof: \Leftrightarrow : If \mathbb{F} is finite, then \mathbb{K} is finite

So $|\mathbb{F}|=\infty$. Since \mathbb{K} / \mathbb{F} finite, $\mathbb{K}=\mathbb{F}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$ By induction on n, itouffices to show $\mathbb{F}(\alpha, \beta)=\mathbb{F}(\gamma)$ for every $\alpha, \beta \in \mathbb{K}$ and some $\gamma \in \mathbb{K}$.

There are only finitely many intermediate subtierds between iKe $(F$ or $\mathbb{F}(\alpha, \beta) \& \mathbb{F}$, so since $|F|=\infty, \exists \infty$ many subfields $\mathbb{F}(\alpha+c \beta), \mathbb{F}\left(\alpha+c^{\prime} \beta\right)$ with $c, c^{\prime} \in \mathbb{F}$, and two must wincide.
$\exists c, c^{c}$ in \mathbb{F} with $\mathbb{F}(\alpha+c \beta)=\mathbb{F}(\alpha+c r \beta)$
Then

$$
\begin{aligned}
\text { Then } & \alpha+c \beta \in \mathbb{F}(\alpha+c \beta) \\
& \alpha+c^{\prime} \beta \in \mathbb{F}(\alpha+c \beta)=\mathbb{F}(\alpha+c(\beta) \\
\Rightarrow & \left(-c^{\prime}\right) \beta \in \mathbb{F}(\alpha+c \beta) \\
\Rightarrow & \beta \in \mathbb{F}(\alpha+c \beta) \\
& \Rightarrow \alpha \in \mathbb{F}(\alpha+c \beta) \\
\Rightarrow & \mathbb{F}(\alpha, \beta)=\mathbb{F} \frac{(\alpha+c \beta)}{\gamma}
\end{aligned}
$$

$(\Rightarrow):$ if $\mathbb{K}=\mathbb{F}(\alpha)$, then note that for any $\mathbb{1}$ wite $\mathbb{K}=\mathbb{I F}(x)$ one has

$$
\begin{aligned}
& \text { one has } \\
& m_{\alpha, 11}(x) \text { divides } m_{\alpha, F}(x) \operatorname{in} \Downarrow[x] \text {. }
\end{aligned}
$$

Setting $\mathbb{H}^{\prime}:=\mathbb{F}\left(\right.$ coefficients of $\left.m_{\alpha, 4}(x)\right)$

Couchasion: evens il with $1 K=\mathbb{F}(\alpha)$

is of form

$$
\begin{aligned}
& \text { of form } \\
& 11=\mathbb{F}\binom{\text { cuffs of }}{m(x)}
\end{aligned}
$$

where $m(x)$ is some factor of $m_{\alpha_{1} F}(x)$ in $1 K[x]$.
There are only finitely many such $m(x)$'s
... ending grot of the Lemma \mathbb{K} / \mathbb{F} simple \Leftrightarrow fin. many $\mathbb{F} \subseteq \mathbb{\subseteq} \subseteq \mathbb{K}$.
and hence also the THM \mathbb{K} / \mathbb{F} finite, separate $\Rightarrow \mathbb{K} \mathbb{F}$ simple.

EXERCISE for $\oint 14.4$ and \mathbb{K} / \mathbb{F} simple \Leftrightarrow fin. many $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$.
Consider two normal, but inseparable extensions in characteristic p prime :

$$
\begin{aligned}
& \mathbb{K}_{1}=\operatorname{spli}_{\bar{F}_{p}(t)}\left(x^{p}-t\right) \\
& =\overline{\mathbb{F}}_{p}\left(t^{1 / p}\right) \\
& \mathbb{F}_{1}=\overline{\mathbb{F}}_{p}(t)
\end{aligned}
$$

$$
\mathbb{K}_{2}=\operatorname{spl}_{\text {pit }}^{\bar{F}_{p}(s, t)}\left(\left(x^{p}-t\right)\left(x^{p}-s\right)\right)
$$

$$
=\mathbb{F}_{p}\left(s^{1 / p}, t^{1 / p}\right)
$$

$$
\mathbb{F}_{2}=\overline{\mathbb{F}}_{p}(s, t)
$$

Explain why
(a) $\mathbb{K}_{1} / \mathbb{F}_{1}$ is simple, i.e. $\mathbb{K}_{1}=\mathbb{F}_{1}(\alpha)$ for some $\alpha \in K_{1}$ and there are no strictly intermediate subfields H with $\mathbb{F}_{1} \not \subset \mathbb{1} \nsubseteq \mathbb{K}_{1}$,
(b) whereas $\mathbb{K}_{2} / \mathbb{F}_{2}$ is not simple, ie. show directly that $\mathbb{F}_{2}(\alpha) \subsetneq \mathbb{K}_{2}$ for every $\alpha \in \mathbb{K}_{2}$ (and we already saw a while ago that $\exists \infty$ many sub fields $\mathbb{F}_{2} \subsetneq \mathbb{F}_{2}(s+c t) \subset \mathbb{K}_{2}$ for $c \in \mathbb{F}_{p}$
§ 14.6 Galois groups of polynomials
PROP: IK IF finite, Galois

$$
\text { say } K=\operatorname{spplin}_{l F}(f(x)) \text { with roots } \alpha_{1, \ldots}, \alpha_{n} \text { for } f(x) \text { in } K \text {. }
$$

Then
(i)

$$
\begin{aligned}
& G=G \operatorname{col}(\mathbb{K} / \mathbb{F}) \stackrel{\varphi}{\longrightarrow} \\
& S_{n}=S_{\left\{\alpha_{1, \ldots}, \alpha_{n}\right\}} \\
& =p \text { penintation }\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}
\end{aligned}
$$

(ci) $G \cong \varphi(G)<S_{n}$
acts transitively (with a single orbit) on the roots within a given irreducible factor of $f(x)$.
Hence if $f(x)$ is irreducible in $F(x]$, then $\varphi(G)$ is a transitive subgroup of S_{n}, ie. $\{1,2, \ldots, n\}$ lie m a single $\varphi(G)$-orbit,
Proof: (i): Any $\sigma \in$ Gal C(K) (F) permutes
 since $K=\mathbb{F}\left(\alpha_{1},-, \alpha_{n}\right)$.
(ii): Isomorphism Extension Thy \square

What can ${ }^{G}$ Ant (KKCQ) for
$1 K=\operatorname{spl}_{\mathrm{L}}(f(x))$ with $\operatorname{deg}(f)$ small?

$$
\operatorname{deg}(f(x))=2, \quad f(x)=x^{2}+b x+c \in \mathbb{Q}[x]
$$

- If $f(x)$ splits in $\mathbb{Q}[x], i k=\mathbb{Q}$

$$
\left(G=\{1\}<S_{2}\right)
$$

- If $f(x)$ is irreducible m $Q Q[x]$, which happens if and only if $D=b^{2}-4 c$ is not a perfect square in Q, and then $\mathbb{K}=\mathbb{Q}(\sqrt{D})$:

$$
\begin{gathered}
0=x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4} \\
x+\frac{b}{2}= \pm \sqrt{\frac{b^{2}}{4}-c}= \pm \frac{1}{2} \sqrt{D} \\
\text { so } G=S_{2}=S_{\left\{\alpha_{1}, \alpha_{2}\right\}}
\end{gathered}
$$

$$
\operatorname{deg}(f(x))=3, \quad f(x)=x^{3}+a x^{2}+b x+c
$$

- If $f(x)$ is reducible in $\mathbb{Q}[x]$, either $K K=Q \quad\left(i f f=\left(l_{\text {in ear }}\right)(\right.$ (linemen $)($ mar $\left.)\right)$ or it splits $f=\binom{\left(x-\alpha_{1}\right)}{$ near }$\left(\begin{array}{c}\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \\ \text { incl } \\ \text { inced }\end{array}\right)$ and were back in the precious case with $G=S_{2}<S_{3}=S_{\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}}$

$$
\langle " \quad\rangle
$$

I $f(x)$ is irreducible in $\mathbb{Q}(x)$, then any rot α of $f(x)$ has $[\mathbb{Q}(\alpha): Q]=3$. But $G=$ fut $(K / Q) \longrightarrow S_{3}$, so either $G=A_{3}$ or S_{3}

this case oc curs \Leftrightarrow the discriminant ${ }^{2}+4 a^{2}+18 a b c$
$D=a^{2} b^{2}-4 b^{3}-2 c^{2} c-10$. is a perfect square in Q ?

Then $\mathbb{K}=Q_{Q}(\alpha)$ Use on th!!
$\operatorname{deg} f(x)=4$

- If $f(x)$ is reducible, either
$-\mathbb{K}=\mathbb{Q} \quad(\quad 4=1+1+1+1)$
$-\mathbb{K}=\mathbb{Q}(\sqrt{D})$ for \sqrt{D}
is a root of an med. quadratic factor

$$
(4=2 t+1)
$$

- back in the irreducible cubic arse

$$
(4=3+1)
$$

$-K K=Q\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ for $\sqrt{D_{i}^{\prime}}$ roots of two irred. foetors ($4=2+2$ case) with discriminant D_{1}, D_{2}.
If itheppens $D_{1} D_{2}$ is a pertectsquarein Q) then $K=Q\left(\sqrt{D_{1}^{\prime}}\right) \Rightarrow \sqrt{D_{2}}$ and $G=S_{2}=2 / 2 U 2$,
else $G=V_{4} \cong \mathbb{Z}$ 化 $\times \mathbb{Z}\left(2 \mathbb{L}<S_{4}\right.$

$$
\left.\{e,(12)(34),(13)(24),(14)(23)\} S_{\{0,3}, 9,4\right\}
$$

- irreducible case on next page...
- If $f(x)$ is wived. in $Q[x]$, the possible transitive subgroups of S_{n} are

There is again a polynomial
D in the coefficient of $f(x)=x^{4}+a x^{3}-b x^{2}+d x+c$
" $D(a, b, c, d) \in \mathbb{Q}$, foll called the discriminant, and - D vanishes $\quad \Leftrightarrow f(x)$ inseparable

- D is a perfect square $\Leftrightarrow G=V_{4} \circ A_{4}$ not a perfect square $\Leftrightarrow G=S_{n}$ or $\begin{gathered}D_{1} \\ \text { or }\end{gathered}$

Discriminants

- defecting separability
and $A_{n}(C K / Q)<A_{n}<S_{n}$
or not.
Let $\alpha_{1}, \ldots, \alpha_{n}$ be indeteminates (variables)
so $Q\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ rational functions

$$
\frac{f\left(\alpha_{1},-, \alpha_{n}\right)}{g\left(\alpha_{1},-\alpha_{n}\right)}
$$

Consider $f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$

$$
\begin{aligned}
& \in \in \underbrace{\in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)[x]}_{\begin{array}{c}
s_{1}:= \\
\text { st elementary } \\
\text { symmetric } \\
\text { function }
\end{array}} \\
& \in \mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{n}\right][x] \\
& =x^{n}-\underbrace{\left(\alpha_{1}+\ldots+\alpha_{n}\right)}_{s_{2}} x^{n-1}+\underbrace{\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}+\alpha_{n-1} \alpha_{n}\right)}_{1-1)^{n} \alpha_{1} \alpha_{2} \ldots-\alpha_{n}} x^{n-2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { function } \\
& -\ldots+(-1)^{n} \underbrace{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}_{s_{n}} \\
& \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{S_{n}}[x]
\end{aligned}
$$

