$$\begin{split} & \left\{ \begin{array}{c} \underbrace{\$ H.3 \ \text{Finite fields}}{} \\ & \left[\underbrace{\texttt{ets play with an ...}}{} \\ & \underbrace{\texttt{KAMPLt}}{} \\ & \underbrace{\texttt{F}_{23} = \texttt{F}_8 \cong \texttt{F}_2[x]}{} \\ & \left[\underbrace{(x_3^3 + x + 1)}{(x_3^3 + x^2 + 1)} \\ & \underbrace{\texttt{with } \texttt{B} := \overline{x}}{} \\ & \underbrace{\texttt{cor } x_3^3 + x^2 + 1}{(x_3^3 + x^2 + 1)} \\ & \underbrace{\texttt{would would}}{} \\ & \underbrace{\texttt{F}_{23} = \texttt{F}_8 \cong \texttt{F}_2[x]}{} \\ & \underbrace{\texttt{f}_2 = \texttt{M} \ \texttt{F}_2^3 - \texttt{Vector } \texttt{space on bossis } \texttt{1} \cdot \texttt{B}, \texttt{B}^2}{} \\ & = an \ \texttt{F}_2^3 - \texttt{Vector } \texttt{space on bossis } \texttt{1} \cdot \texttt{B}, \texttt{B}^2}{} \\ & \underbrace{\texttt{Inside}}_{R} = \texttt{1}^{R} \ \texttt{A}, \texttt{B}^3, \texttt{B}^3, \texttt{B}^3, \texttt{B}^3, \texttt{B}^4, \texttt{S}^5, \texttt{B}^6, \texttt{B}^3}{} \\ & \underbrace{\texttt{Inside}}_{R} = \texttt{1}^{R} \ \texttt{A}, \texttt{B}^3, \texttt{B}^3, \texttt{B}^3, \texttt{B}^3, \texttt{B}^3, \texttt{B}^4, \texttt{B}^3, \texttt{B}^3, \texttt{B}^4, \texttt{B}^5, \texttt{B}^5,$$

PROF: Every Finite subgroup
$$A \subset F^{X}$$

for a field F is cyclic $A = \langle \alpha \rangle$.
In pertocular, if F is finite then
 F^{X} is cyclic (so if $|F| = q = p^{d}$
then $F^{X} \cong (\mathbb{Z}/(q_{1})\mathbb{Z}/)$
 $E \subset AMPLE: F_{g}^{X} = \{1, \beta, \beta^{2}, \dots, \beta^{k}\}$
 $p^{2} \cong (\mathbb{Z}/(q_{1})\mathbb{Z}/)$
(2) Instele $F^{X} = \mathbb{C}, \text{ even}$
finite subgroup $A = \mu_{n} = \{n^{m} \text{ voots}\}$
 $g \in \mathbb{C}, g^{1}$
 $M_{g} \stackrel{\mathcal{L}}{=} (\mathbb{Z}/(g_{1})\mathbb{Z})$

PROP: Greny finite subgroup
$$A ctF^{x}$$

for a field F is cyclic $A = \langle \alpha \rangle$.
proof: Let's assume for the moment
a fin. abel. group.-
CENMA: In a finite abelian
group A , if $L := lem \{orders\}$
then $Jg \in A$ with order L .
Then we've done since
 $\langle g \rangle \leq A (CF^{x})$
IIS
 Z/LZ
has $L = |\langle g \rangle| \leq |A| \leq L$
every a A is a wort in F
of $\chi^{L}-1$, which has $\leq L$ mots
in F .

comma: In a finite abelian group A, if L:= (cm {orders? of geA) then Jg&A with order L. proof (cheating!) In Chop 12, show every fin ale I. group A has A = 2/d, 2/×2/d, 2/×...×2/d. ?! with $d_1 | d_2 | \dots | d_f = \operatorname{Lem} \left(\begin{array}{c} \operatorname{orders} \\ \operatorname{ofgeA} \end{array} \right)$ so take g E log × Eog × ... × ? germation

Poof2: svsi€MMA: (f A abel. and g, h ∈ A (f A abel. and g, h ∈ A have orders min with gcd(m,n)=) have order min with gcd(m,n)=) h

EXAMPLE:
$$j=2, n=4'$$

 $F_{24} = F_{16}$, $F_{16} = \langle x \rangle = j, x, x, ..., y''$
 I
 F_{2}
 F_{2}

THM: If IK has K finite then...
(i)
$$|IF| = g = p^{d}$$
 for some prime p
and $|K| = g^{n}$ for some $n \ge 1$.
(ii) $|K^{\times} = \langle x \rangle$ is cyclic.
(iii) $|K = Split_{F}(g(\theta - x)) (=: ff_{gn})$
 $= 2 all noots of 2 considered
 $\chi(\theta' - x) = \int_{B_{1}}^{B_{1}} f_{F_{2}}(g(\theta - x)) (=: ff_{gn})$
 $= 2 all noots of 2 considered
 $\chi(\theta' - x) = \int_{B_{2}}^{B_{1}} f_{F_{2}}(g(\theta - x)) (=: ff_{gn})$
 $= 2 all noots of 2 considered
 $\chi(\theta' - x) = \int_{B_{2}}^{B_{1}} f_{F_{2}}(g(\theta - x)) (=: ff_{gn})$
 $= 2 all noots of 2 considered
 $\chi(\theta' - x) = \int_{B_{2}}^{B_{2}} f_{F_{2}}(g(\theta - x)) (=: ff_{gn}) = \langle F \rangle$
 $f_{F_{2}}(F_{2}) = \int_{B_{2}}^{B_{2}} f_{F_{2}}(g(\theta - x)) = \int_{B_{2}}^{B_{2}} f_{F_{2}}(g(\theta$$$$$

(vi)
$$\chi_{0}^{0} - \chi = \prod \prod f(x) \quad in F(x)$$

 $d[n \ in red.$
 $f(x) \ in F(x)$
 $d[n] \ in F(x)$
 $d[n] \ in F(x)$
 $f(x) \ in F(x)$
 $f(x)$

EXAMPLE
If we build

$$IF_{16} = IF_{2}(x)/(x^{9} + x^{3} + 1)$$

$$c_{9} := x$$
so c_{9} satisfies
 $w^{4} + \omega^{3} + 1 = 0$
then $T = \omega^{7}$ satisfies $T^{4} + T + 1 = 0$
 s_{10} , it's a vot of
 $x^{9} + x + 1$

(iv)
$$[K / F is Galois, with Filennes
For F5 Galois, with Filennes
For F5 Gal $\cong (24.621)$
chere $[K - 5 | K = Galois, with $\cong (24.621)$
chere $[K - 5 | K = Galois, with $\cong (24.621)$
(v) The party intermediate
F4 freids are F5n
F4 freids are F5n
F5 = $\{v_{1}v_{2}v_{3}v_{5}-x\} = F5d$ where d divides n
F5
To prove (iv), note that $[K - 5 | K = \beta^{2}$
does fix $FF = F5g$ pointwise (since they are nots of
 $x^{3} - x$)
and $F = 1 | K = F(\beta) = (((\beta^{3})^{3}) \dots)^{3} = \beta^{3} = \beta$
but $F^{4} = 1 | K = F(\alpha) = \alpha^{3} \pm \alpha = \alpha$
for $d < n$ given and $f^{3} = \alpha^{3} = \alpha^{3} = \alpha^{3}$
Hence $\langle F \rangle$ generators a syclic subgroup of
Aut ($|K/F|$ of sizen$$$$

Since
$$|K = split_{F}(x^{M-x})$$

so $|K/|F$ is Galois,
 $|Ant(|K/|F)| = [|K:|F] = n$
 $U|$
 $\langle F \rangle \Rightarrow \langle F \rangle = Ant(|K/|F)$
 $= Ant(|F_{gn}/|F_{g})$.
For (w), the intermediate subfields are
 $|K = |F_{gn} = \{roots of \times^{n-x}\}$
 $|K = |F_{gn} = \{roots of \times^{n-x}\}$
 $|L = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|L = |F_{gd} \text{ and } g^{n} = ||K| = |L|^{2} = (q^{1})^{2} - q^{2}$
 $|L = |F_{gd} \text{ and } g^{n} = ||K| = |L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = |L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = |L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = |L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = |L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||K| = ||L|^{2} = (q^{1})^{2} - q^{2}$
 $|I = |F_{gd} \text{ and } g^{n} = ||F_{gd} + |F_{gd} +$

For (vi)
$$\chi^{9} - \chi = \prod \prod f(x)$$
 in $F(x)$
 $f(x) = \inf F(x)$ $f(x)$ in $F(x)$
 $f(x) = \inf F(x)$ $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$
 $f(x) = \inf F(x)$

S14.4 Simple extensions (IK, IK2 later...)

For IK/IF any algebraic extension
(possibly infinite [IK:IF])
define its normal closure
IN := splitting field over IF for
$$IN := splitting field over IF for $IN_{\alpha, F}(x): \alpha \in IK$$$

E.g.
$$|K = Q(3/2)$$

 $|F = Q$
 $hos IN = Q(c3/3/2) = Split_Q(x^2-2)$
 $hos instances yet$

For (ii),
K/IF finite (=) [K=IF (x, y-y), alg./IF
=> [L:= splity { M_F, ai}]i=y-yn
IS finite, normal,
unterining IK
=> IL 2 IN, so [IN:IF] <->.
(S[IL:IF] <>>.
For (iii), if (K/IF is furite and separable
every ace(K has
$$M_{a,iF}(K)$$
 a separable
pdy.
=> [N:= splitk($M_{a,iF}(K)$: ace[K])
is Galois \$

Passing to vormal clasure is useful...
THEOREM (on the primitive element)
IK/IF finite, separable

$$\Rightarrow |K/IF is simple,$$

i.e. $|K = IF(\alpha)$ for some
 $\alpha \in IK$, called a primitive
 $\alpha \in$

e.g. $H_{gn} = H_{g}(\alpha)$ any a such that proof: IK/IF separable, finite has normal closure N/F Galois, So Aut (IN/IF) is finite, so only has finitely many subgroups, and hence Jonly finitely many arbitralds IL FCILCIN Tr KI FCILCIK or in Surprisingly, this property characterizes simple extensions K/F

$$\begin{array}{c} \exists c,c' & \text{in } \mathbb{F} \text{ with } \mathbb{F}(\alpha + c\beta) = \mathbb{F}(\alpha + c'\beta) \\ c \neq c' \\ \forall + c'\beta \in \mathbb{F}(\alpha + c\beta) \\ & \alpha + c'\beta \in \mathbb{F}(\alpha + c\beta) \\ & \Rightarrow (e - c')\beta \in \mathbb{F}(\alpha + c\beta) \\ & \Rightarrow (e - c')\beta \in \mathbb{F}(\alpha + c\beta) \\ & \Rightarrow \alpha \in (\mathbb{F}(\alpha + c\beta)) \\ & \Rightarrow \alpha \in (\mathbb{F}(\alpha + c\beta)) \\ & \Rightarrow \mathbb{F}(\alpha_{1}(\beta)) = \mathbb{F}(\alpha + c\beta) \\ & & & & \\ \hline (=) : \text{ ff } \mathbb{I}(x = \mathbb{F}(\alpha)_{x} \text{ then } \mathbb{I}(x = \mathbb{F}(\alpha)) \\ & & & & \\ \text{ one has } & & & \\ \text{ note that for only } \mathbb{I} \text{ with } \mathbb{I} \\ & \text{ one has } & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

EXERCISE for \$14.4 and K/F simple (=> fin. many FELSK. Consider two normal, but inseparable extensions in characteristic p prime :

$ K_{l} = Split_{\overline{f}_{p}(t)}(x^{p}-t) = \overline{F}_{p}(t^{k})$	$ K_{z} = \operatorname{Split}_{\overline{F}_{p}(s,t)} ((x^{p}-t)(x^{p}-s))$ $= \overline{F}_{p}(s^{p},t^{p})$
$F_{1} = \overline{F}_{p}(t)$	$ _{\mathbb{F}_{2}} = \overline{\mathbb{F}}_{p}(s,t)$

Explain why
(a) IK₁/F₁ is simple, i.e. IK₁=F₁(∞) for some act (and there are no strictly intermediate subfields IL with F₁⊊IL⊊K₁,
(b) whereas IK₂/F₂ is not simple, i.e. show directly that F₂(∞) ⊋ IK₂ for every α∈IK₂
(and we already sow a while ago that ∃ ∞ many subfields F₂ ⊋ F₂(s+ct) ⊋ K₂ for c ∈ F_p

Must can G= Ant (IK(Q) for
IK = split Q(f(x)) with deg(f) small?

$$\frac{deg(f(x)) = 2}{deg(f(x)) = 2}, \quad f(x) = x^{2} + bx + c \in Q[x]$$

$$\cdot |f(f(x)) = 2, \quad f(x) = x^{2} + bx + c \in Q[x]$$

$$\cdot |f(f(x)) = x^{2} + bx + c \in Q[x], \quad |K| = Q$$

$$(G = \{x\} < S_{2})$$

$$\cdot |f(f(x)) = x^{2} + bx + c = (x + bx)^{2} + (x + bx)^$$

deg(f(x)) = 3, $f(x) = x^{3} + ax^{2} + bx + c$ · (f f(x) is reducible in Q[x], either K=Q (if f=(11100)) or it splits f= (mear) (x-az)(x-az) and were back in the previous case with $G = S_2 < S_2 = S_{[\alpha_1, \alpha_2, \alpha_3]}$ " <5> · [f f(x) is irreducible in Q(x), then any rat & of fix) has [Q(x): Q]=3. But $G = Aut(K/Q) \longrightarrow S_3$ so either G = A3 or this case occurs the discriminant In this case, -463-403C-278+18abc 1K=Q(a, w) is a perfect square in Q? Then IK= Q(x) Use on Hw!

$$\frac{deg f(x) = 4}{(4 + 1 + 1 + 1)}$$

$$- |K = Q (4 = 1 + 1 + 1 + 1)$$

$$- |K = Q(JD) + \delta x + JD$$

$$is a voot of an inved. quadratic factor
$$(4 = 2 + 1 + 1)$$

$$- beck mether inveducible cubic ase
$$(4 = 3 + 1)$$

$$- |K = Q(JD_{1}, JD_{2}) + \delta x + JD_{1} + roots + dt$$

$$(4 = 3 + 1)$$

$$- |K = Q(JD_{1}, JD_{2}) + \delta x + JD_{1} + roots + dt$$

$$(4 = 3 + 1)$$

$$- |K = Q(JD_{1}, JD_{2}) + \delta x + JD_{1} + roots + dt$$

$$(4 = 3 + 1)$$

$$- |K = Q(JD_{1}, JD_{2}) + \delta x + JD_{1} + roots + dt$$

$$(4 = 3 + 1)$$

$$- |K = Q(JD_{1}, JD_{2}) + \delta x + JD_{1} + roots + dt$$

$$(4 = 3 + 1)$$

$$- |K = Q(JD_{1}, JD_{2}) + \delta x + JD_{1} + roots + dt$$

$$(4 = 3 + 1)$$

$$- |K = Q(JD_{1}, JD_{2}) + \delta x + JD_{2} +$$$$$$

- ivreducible case on next page ...

$$\frac{\text{Discriminants}}{- \text{detecting separatoility}} and Aut (1/K/Q) < An < Sn or not.
Let $\alpha_{i_1, \dots, \alpha_n}$ be indeterminates (variables)
so $\Omega(\alpha_{i_1, \dots, \alpha_n}) = \text{varbonal functions} \frac{f(\alpha_{i_1, \dots, \alpha_n})}{g(\alpha_{i_1, \dots, \alpha_n})}
Consider $f(x) = (x - \alpha_1) \cdots (x - \alpha_n) \\ \in Q(\alpha_{i_1, \dots, \alpha_n}) [x] \\ \in \mathbb{Z}[\alpha_{i_1, \dots, \alpha_n}][x] \\ = x^n - (\alpha_{i_1} + \dots + \alpha_{i_n}) x^{n-1} + (\alpha_{i_1} \alpha_{i_2} + \alpha_{i_1} \alpha_{i_3} + \alpha_{i_2} \alpha_{i_3} + \alpha_{i_3} \alpha_{i_3} + \alpha_{i_1} \alpha_{i_1} \alpha_{i_2} + \alpha_{i_1} \alpha_{i_2} + \alpha_{i_1} \alpha_{i_2} + \alpha_{i_2} \alpha_{i_3} + \alpha_{i_3} \alpha_{i_3} + \alpha_{i_3} \alpha_{i_3} + \alpha_{i_4} \alpha_{i_5} \alpha_{i_5} + (-1)^n \frac{d_{i_6} \alpha_{2} \cdots \alpha_{i_n}}{f_{i_1} \dots f_{i_n}} \\ \in Q(\alpha_{i_1, \dots, \alpha_n}) [x]$$$$