
 

Chapters 10412 Modules
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DEF N PROP
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Noetherian R modules so far
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Lef R be a Noeth ring
e g R a PhD
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Cii more generally everyfinitelygenerated
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When R is notjust a Noeth ring but a PID we

can do much better nxl
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COR Fm gen id abelian groups are

direct sums of cyclicgroups
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proofottHM Here is one Smithnormalformalgorithm

for A 141 affe c R
with RAPID

thatperformsinvertible row
and 01operations instages

that either make the ideal au
CR strictlylarger

or the quantity n t l strictly smaller

CASE If A to Faij to so WLOG an Io by
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CASE am Iaij Hi.j
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and inducton ntl
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on nextpage



CASE2 F ag
notdivisibleby an

CASE2 F such an aij in 1st
row or column

WLOGbysymmetry it's in
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row permutations it is Aa

So A Iffy
HasIan swap rows ie 2
so fan getsbigger endstage

If azfam then g god au asc properly dividesboth

and g ray c say
so g Can
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then ith
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CASEIB a dividesall of1stnow andcolumn but
a f aij for some i j 22
Then use a to Zero out 1stnow and

column

and then add columnj tocolumn 1 puttingus
back in CASE 2A



Then why is M R mfA R m

PAQ
Roughlyspeaking we have again done
a change of basis in Rh and Rl with P Q
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t
writing M RB Rkdi

i 1

one calls p the rack of M as an R module

or P ran KR M andp is unige
see HW 6EXER 12 I l 2,3

Onecalls theRP summand the freepoet of M
and Rhd the thou peut or Tor M

There are twouseful waystouniteTor
M uniquely

Isee DIF
12.1 for

INVARIANTFACTOR FORM proof
t

Tor M Radi
i 1

with d z da z 1 FEI informalTom

ELEMENTARYDIVISOR FORM

Tor M 0 RAPH
primesp CR
irreducible with 492724 2 Zi

comesfromINV FACTORFORMusingSunZe's 1hm



EXAMPIE 12 2 inneinteherm.ge
forms

M 24 2 1002 02 2002 to 74250K
in

22.52 23.353 23.5 7

SunZe's Theorem

E24 2 2321 02 2321 02 222 ELEM

to
Eino
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Hana Eiji
I Z 2T 7 Z I I k 2 E or

FORM

24 2 21000 I 2 20071 2 202
F T2 I



Sscaztdationalcanonicalformy
Now we can return to the exampleof R Fly
to deduce some consequences for
a finite dime F vectorspace
with a linearoperator V Is V

since this V becomes an FET module

which is finitely gen d by any F basis of V
one has a unique invariantfactorform

EfxIf FlxycaicxD
T

asEET with a adx famG in ECT
module

ai all monicpolynomials

But f 0 else din V Z din FG D

so VE FGkaiGD
As iffy eachofthese is a
module an IF linear

T stablesubspace



Given a monic polynomial alxf xdtbd.cl
d t tbxtboinlFCxJ

thenIF aGD has an F basis T E I I d

and malt by x acts in this basis via the

o
t

bd

COROLLARY Every F linear operator V
has auniquenational canoedfoner via a change

of basis T

with aG adx l IamG andeach aicx monicinEfl
Furthermore det XI T a Gadd amCx

andamCx istheminimalpolynomial fort meaning
Ker Fl x TIF amCx

X l T



COROLLARYEveryFlinearoperator V
hasauniquenationalcanoed

foner via achange

ofbasis T

with aG adxl 1amx andeachailxmonicinEfl
Furthermore detXI T aGadd amCx

andAmex istheminimalpolynomialfortmeaning
Ker F amCx

proof Theuniqueness comes
from theuniqueness

of invariantfaqtor form
for

V FM aim
i L

The assertion about def XI
T comes from

checking that det Cae
a ex which is

an easy exercise in columnexpansion

To see that kerf FEE IT
fix

forces Hx CamCx note that am G

annihilates FlxycaicxD so am t in5
and hence f x divides amCx But no lower

degree polynomial in it annihilates F MainAD

so it can'tannihilate V i.e degf degam
so HGH aG 7



CECE Who are the sanitaryclasses

of matrices A c Fg
2 2

A X PAP 1

Which ones are in Glycez

Either V Fz2 A s Ff has
V tfslxycaixDofslxlka.cn with 9 Iba

and A issimilarto If ftp.r i
g Yoeoj5

OR

VE FIX Cx withaCxI x7bxtbo

and A is similar to 19 1 with
bo b et 9Efaiges

Amongthese thecaseswithboto lie inGLIFs

f f f it and 1975 withboEHis
bEtzdetGI T

x o

detft cTheft 6 choices total
Eto Tinvertible



SSRB ordancanonicalformJ

When F is alogicallyclosed e g F Q or F It
the monic irreduciblepolynomials p x in the are

all linear of the form pex x c with a EE

Hence the elevator for
an operator Is as an FH module is

ee ni yV E Fake x c

c EF El
with aY z Neil G

The Xxx matrix Je formult.by I acting
in the basis T XI KIT CID for FER cf
is called a Jordan block of size X witheigenvalue c

I i
O

i
j c

k 4exit



COROLLARYL For algebraically closedfieldsAT

every linearoperator V IN
with d.in Vfmite

has achange of basis to a unique
Hair cono nical force with Jordan blocks

of size Xi z 4 z z Xi for various scaffff

Iria
I i iii

In i
Furthermore
det XI T I Cx c

l where hi't HIE't

and theminimalpobnomialfor T is my x e

Inparticular T is diagonalizable
each si mix hasdistinctroots



COROLCARYIForalgebraicallyclosedfieldsAT
everylinearoperator IN withd.inVfmite
hasachangeofbasistoaunique
JordancanonicalfirmwithJordanblocks
ofsizeXi z4 z zXi forvarioussq

f
Furthermore
detXI T Ix c

lwhereI KATIE't

andtheminimalpoynomialforTismy x c

Inparticular Tisdiagonalizable
eachH's mixhasdistinctroots

Phet Uniqueness comes from uniqueness
ofelementary

divisor form over El x

Theassertion about detGI T comes from

det XI Jd x d
The restofthe assertions are easy

tocheck D8

EXAMPLE Howmany conjugacy
classesofA inGLCa

aretherewith deftxI Al Cxti14 413

A hasJordanform fB
where B or

and C f g or f or 1 4,01 so 2 Infices



REMARKS on lattices

A lattice L of rank r is a free

abelian group LE Z

e g f im 4224 c 22

2144 2124
poset

0 reps forETNA

O 12 1defAt
Edo detail

jogs a ar

0

The greencircledpointsgive
us 12 coset

representatives forthe qwntentgnup.KZL 27mA but what is its

abelian group structure



PREP If A c 2mm has full rack
i e rank A n and Smith normal

form S CdfPdf then he im A

has 27L cokerA of cardinality

1defAf detSl 1cokerAl d da du

and ZYL coker A Ewkers Kai Z

proofi We've seen all the cokernel
isomorphism assertions

and dets di du t.IQ Kai El

Also note since S PAQ with
P Q cGluck

one has deff detPAQ
deff det A DELI

I I
I l
def A



e g f im 42 24 C 22 O

KILI told

IIE 144

im A im LL has Smithform 381 5

LEGALITY
so 5 PAQ for some P Q C GLIK

Changing At AQ altersthechoice of lattice

generators for in A in AQ while P performs

a lattice changeofbasis on 2

24L cokerA
18 0 E cokers

fief 2 431 2181
8so so I 2Kx 7462c


