Chapters 10412 Modules
DEFIN: R a (not rec. comm) ring with 1
M a (left-) R-module is an abelian group M^{+}and an R-action i.e. a $\operatorname{map} R \times M \rightarrow M$

$$
(r, m) \longmapsto r m
$$

satisfying 1. $m=m$

$$
\begin{aligned}
& r(s(m))=(r s) m \\
& (r+s) m=r m+s m \\
& r\left(m+m^{\prime}\right)=r m+r m^{\prime} \\
& L^{\prime}\left(M^{\prime} \subset M\right. \text { is a subgno }
\end{aligned}
$$

An R-submodule $M^{\prime} \subseteq M$ is a subgroup $\left(M^{\prime}\right)^{+} \leq M^{*}$ with R. $M^{\prime} \subseteq M^{\prime}$
EXAMPLES:
(0) $R=\mathbb{F}$ a field, $\left\{\begin{array}{c}R \text {-modules } \\ M\end{array}\right\}=\left\{\begin{array}{c}\left.F \begin{array}{c}F \text { vecolon } \\ \text { spaces } \\ V\end{array}\right\}\end{array}\right.$ R-submodules $=\mathbb{F}$-linear subspaces
(7) $R=\mathbb{Z}$
$\{R$-modules $M\}=\{$ abelion groups $A\}$ $\begin{aligned} & \text { since for } n \in \mathbb{Z}, \\ & \text { dunes }=\text { subgroups }\end{aligned}, a\left\{\begin{array}{l}a+a+\ldots+a \\ (-a)+\ldots+a)\end{array}\right.$
\mathbb{Z}-submodurles $=$ subgroups
(2) $R=\mathbb{F}[x]$, \mathbb{E} a field

$=T$-stable subspaces $U \subseteq V$
(3) $M=R$ is a module over R itself (via left multiplication)
and $\{R$-submodules of $R\}$

$$
=\{\text { ideals } I \subset R\}
$$

(4) $M=R^{A}=$ free R-module with $\underset{\substack{\text { An R-wodmleM } \\ \text { is tie }}}{\text { basis }}\left\{e_{a}\right\}_{a \in A}=\left\{r_{a_{1}} e_{a_{1}}+\ldots+r_{a m} e_{a_{m}}\right.$: is free \Leftrightarrow
it has a basis $=$ column vectors with entries in R $\left.\begin{array}{l}r_{i} \in R \\ a_{j} \in A \\ n a b=t\end{array}\right\}$ with positions indexed by A and usual + and scaling finite Thar

$$
\text { e.g. } M=R^{n}=\left\{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]: r_{i} \in R\right\}
$$

$$
\begin{aligned}
& \begin{aligned}
& \\
& v \longmapsto r \longmapsto v \\
& x \cdot v \\
& \\
& \hline
\end{aligned} \\
& \mathbb{F}[x] \text {-subomodules of } V \\
& \begin{array}{l}
=f(T) \cdot v \\
\text { for } f(x) \in F(x]
\end{array}
\end{aligned}
$$

Haring on R-basis $\left\{e_{a}\right\}_{a \in A}$ for an R-nodule M means
EXERCISE: $\left\{e_{a}\right\}_{a \in A} R$-span M
is tree \Leftrightarrow abasis $\left\{m_{j}\right\}_{j \in J}$ i.e. every $m \in M$ can it has abasis M be written as
\Leftrightarrow ereng me M prion has a cmique expression
$r_{j 2} m_{j}+\ldots+r_{j 2}^{m_{j}}+j_{a}\left\{e_{a}\right\}_{a \in A}$ are R-linearly independent

$$
\begin{gathered}
r_{a_{1}} e_{a_{1}}+\ldots+r_{a m} e_{a_{m}}=0 \text { in } M \\
\Rightarrow r_{a_{i}}=0 \forall i
\end{gathered}
$$

e.g. if $R=\mathbb{Z}$
$M=\mathbb{Z}^{n}$ is a free $\frac{\mathscr{Z}}{\mathbb{R}}$-module

$$
\begin{aligned}
& \text { is a tree } \\
& \text { with } \begin{array}{l}
R-\text { basis } e_{1, \ldots}, e_{n} \\
\mathbb{Z} \text {. basis }
\end{array}
\end{aligned}
$$

but
$M=\mathbb{Z} n \mathbb{Z}$ is a non-free 2 monk.
Hs spanned by $\{\overline{1}\}$, but not \mathbb{Z} - in.indep. since $n \cdot T=\overline{0}$

$$
\mathbb{N}
$$

e.g. $M=\mathbb{Z}$ as a \mathbb{Z}-module has $\{2,3\}$ as a minimal \mathbb{Z}-spanning set $u n d e r$ S not $\begin{gathered}\text { mali: } \\ \text { ind }\end{gathered}$ but not a \mathbb{Z}-basis
(3) $\cdot 2+(-2) \cdot 3=0$
$\prod_{\text {nothon } 2000}$! only $\{+1\}$ are bases for \mathbb{Z}
DEF'N: $M \xrightarrow{\varphi} N$ is an R-module homomorphism
means $M^{+} \xrightarrow{\varphi} N^{+}$is a grouphomom. and $\varphi(r m)=r \varphi(m) \quad \forall r \in R$. epimonphism/8ujector? $\left.\begin{array}{l}\text { monomorphism/ injector } \\ \text { isomorphism }\end{array}\right\}$ as automorphism.
Given $M \subseteq N$ an R-oubmodule, $a N / M=$ the quotient R-module

$$
\begin{array}{ll}
N / M= & \text { with } N \xrightarrow{N} \xrightarrow{N} N / M \\
N^{+} / M^{+} & n+M \\
\left\{a^{\prime \prime}+M: n \in N\right\} & \text { \& all } 4 \text { Nether Thmis. }
\end{array}
$$

egg.

$$
\underset{\cup_{\operatorname{ker} \varphi}^{M}}{M} \underset{\operatorname{im} \varphi}{N}
$$

and $M / \operatorname{ker} \varphi \cong \sin \varphi$
The R-submoduce of M genii by $\left\{m_{j}\right\}_{j \in S}$

$$
\begin{aligned}
& =\left\{\sum_{j}^{\text {hinterum }} r_{j} m_{j}: r_{j} \in R\right\}=\sum_{j \in J} R m_{j} \\
& =R m_{1}+\ldots+R_{m_{t}} \text { if } J=\{1,2, \ldots, t\}
\end{aligned}
$$

DEF'N - PROP:
The following are equivalent for an R-module M, and define M being a Noetherian R-module:
(i) $\mp M_{1} \subsetneq M_{2} \subsetneq \cdots$ ar ∞ ascending chain of R-submodules
Cere $A \subset C=$ ascending chain condition)
(ii) every R-obbmodule of M is finitely geoid, and can cut down any generating set to a finite one.

DEF'N - PROP:
The following are equivalent for an R-module M, and define M being a No iberian R-module:
(i) $\mp M_{1} \subsetneq M_{2} \subsetneq \ldots$ an ∞ chain of adding chain of R-submodules
Cere $A \in C=$ ascending chain condition)
(ii) every R-abmodule of M is tritely genie, and con cut down any generating set to a finite one.
proof: $(i) \Rightarrow(i i)$:
Assuming Acc for M, given N an Rosubmodule of M, then maybe $N=\{0\}$ and ϕ generates it. Otherwise pict $n_{1} \in N-\{0\}$
and maybe $N=R n_{1}$, so done.
Otherwise pict $n_{2} \in N-R n_{1}$
and maybe $N=R n_{1}+R n_{2}$, so done. This process stops, else we have
violating Acc.
(ci) $\Rightarrow(i): A s s u m i n g ~ a l l ~ R-s u b o m o d u l e s ~$ of M are fin. gen'd,
given $M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots$
a chain of R-submodules, since $M_{\infty}:=\bigcup_{i=1}^{\infty} M_{i}$ is an R-oubmudule

$$
=R_{m_{1}+\ldots+R_{N}}^{i=1}
$$

for some $m_{1,-, m_{N}} \in M_{t}$
and then $M_{t}=M_{t=1}=\ldots=M_{\infty}$
and the chain terminates.
REEMARK: (ii) shows Noefherion rings R rings R that are Nsetherion as R-modules
Very important...
COROUARY: (f MCN is an
R-submodule, then
N is a Noetherian
R-module \Longleftrightarrow both M and N / M Noe. R-modules

COROLARY: (I MCN is an
R-sulomodule, then
N is a Noetherian
R-module \Longleftrightarrow both M and N / M
Noes
Noeen. R-module
proof: (\Rightarrow) : If N is Neth.
then $M \subseteq N$ has $A \subset C$ since N does. and N / M has ACC because

$$
\begin{aligned}
& \left\{\begin{array}{c}
R-s u b \operatorname{modules} \\
\text { of } N / M \\
U
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
R-\text { submodules } N^{\prime} \\
\text { of } N \text { containing } M \\
\vdots \\
\vdots
\end{array}\right\} \\
& \begin{array}{c}
\vdots \\
\bar{N}_{2} \\
j^{\prime}
\end{array} \\
& \bar{N}_{1}^{\prime} \\
& \mathrm{N}_{2} \\
& N_{1} \\
& {\left[\begin{array}{l}
N \\
M
\end{array}\right]}
\end{aligned}
$$

(Suppose both M and N / M have ACC and were given

$$
\begin{aligned}
& \text { were given } \\
& N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq-\infty \leq N
\end{aligned}
$$

$\Leftarrow):$
Suppose both M and N / M have $A C C$ and were gives
$M_{1} \cap M \subseteq N_{2} \cap M \subseteq .$.

$$
\bar{N}_{1} \subseteq \bar{N}_{2} \subseteq \ldots . \text { in } N / M
$$

R-oubmodules of M

$$
R-\text { submods ot N/M }
$$

$\Rightarrow \exists t_{1}$ with

$$
\Rightarrow \exists t_{2} \text { win }
$$

$$
N_{t_{i}} \cap \exists=N_{t_{1}} \cap M=\ldots
$$

$$
\Rightarrow \bar{N}_{t_{2}}=\bar{N}_{t_{2}+1}=\cdots
$$

so let $t=\max \left(t, t_{2}\right)$
and we chair $N_{t}=N_{t+1}=N_{t+2}=\cdots$
since given $n \in N_{t+1}$
since $\bar{n} \in \bar{N}_{t+1}=\bar{N}_{t} \exists n^{\prime} \in N_{t}$
with $\bar{n}^{\prime}=\bar{n}$ in N_{t+1} / M

$$
\begin{aligned}
& n^{\prime}-n \in M \\
& 30 \\
& n^{\prime}-n \in N_{t+1} n M=N_{t} n M \\
& \Rightarrow n \in N_{t} \text { 国 }
\end{aligned}
$$

Noetherian R-modules so for...
DEF'N - PROP:
The following are equivalent for an R-module M, and define M being a No otherian R-module:
(i) $\mp M_{1} \subsetneq M_{2} \subsetneq \ldots$ an ∞ ascending chain of R-submodules
Cere $A C C=$ ascending stein condition)
(ii) every R-rbmodule of M is tritely genie, and can cut down any generating set twa finite one.

COROUARY: (f MCN is an R-submodule, then
N is a Noetherian R-module \Longleftrightarrow both M are Noe en. R-module

COROLLARY:
Let R be a Noeth.ring (e.g. Ra P.I.D.

$$
\begin{aligned}
& \underset{F}{\mathbb{O}\left[x_{1},-\rho x_{n}\right]} \text {, } \\
& \mathbb{F}\left(x_{1},-x_{n}\right] \text {, }
\end{aligned}
$$

Then
(i) every free R-module R^{n} with a finite basis is a Noeth. R-module,
(ii) more generally, every finitely generated R-module M is a Noeth. R-module,
(iii) and even better, every finitely generated R-module M has a presentation as the cokernel $R^{n} / \operatorname{im}(A)$ of a finite matrix $A=\left(a_{i j}\right) \sum_{j=1, i-n}=1, R^{n \times l}$, ie.

$$
\begin{aligned}
& M \cong \operatorname{wker}\left(\begin{array}{l}
\left.R^{l} \xrightarrow{A} \longrightarrow R^{n}\right)
\end{array}\right)=R^{n} / \operatorname{im}(A) \\
& x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{2}
\end{array}\right] \mapsto A x \quad=R^{n} / R\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{n 1}
\end{array}\right]+\ldots R\left[\begin{array}{c}
a_{12} \\
\vdots \\
a_{n+2}
\end{array}\right]
\end{aligned}
$$

proof:
(i) every free R-module R^{n} with a finite basis is a Noeth. R-module.
This follows via induction on n.
BASE CASE $n=1: R^{\prime}=R$ as R-module, and we assumed R is a Noeth. ring, So R is a North. R-module.
INDUCTIVE STEP:
Note that the projection homomorphism

$$
\begin{aligned}
& R^{n} \xrightarrow{\pi} R \quad \text { has } \operatorname{ker}(\pi)=\left\{\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n-1} \\
0
\end{array}\right] \in R^{n}\right\} \\
& {\left[\begin{array}{c}
r_{1} \\
1 \\
r_{n-1} \\
r_{n}
\end{array}\right] \mapsto r_{n}} \\
& \cong R^{n-1} \\
& \text { and in }(\pi)=R
\end{aligned}
$$

So $R^{n} / \operatorname{ker}(\pi) \approx \operatorname{rim}(\pi)$

$$
R^{n} / R^{n-1} \simeq R
$$

and R^{n-1}, R Noech. by induction

$$
\Rightarrow R^{n} \text { Noeth. }
$$

Tor (ii): every finitely generated
R-module M is a Noeth. R-module,
note that M is genid by $m_{1}, m_{2}, \ldots, m_{n}$

$$
\Leftrightarrow M=R m_{1}+\ldots+R m_{n}
$$

\Leftrightarrow this hornomorphism is sujective:

$$
\begin{aligned}
& R^{n} \xrightarrow{e_{i}} \longmapsto M \\
& {\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right] \longmapsto m_{i}} \\
& r_{1} m_{1}+\cdots+r_{n} m_{n}
\end{aligned}
$$

and hence $M=\operatorname{im}(f) \cong R^{n} / \operatorname{ker}(f)$
Neth.

$$
\Rightarrow \text { Nosh. }
$$

For (iii): every finitely generated R-module M has a presentation via a matrix $A \in R^{l \times n}$

$$
\begin{aligned}
& M \cong \operatorname{cker}\left(R^{l} \xrightarrow{A} R^{n}\right)=R^{n} / \operatorname{im}(A) \\
& x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
\dot{x}_{l}
\end{array}\right] \mapsto A x \quad=R^{n} / R\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{n 1}
\end{array}\right]+\ldots+\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{n l}
\end{array}\right]
\end{aligned}
$$

we just continue the proof of part (ii):
If $M=R m_{1}+\ldots+R m_{n}$, then

$$
\begin{aligned}
& M=R m_{1}+\ldots+R m_{n} \text {, then } \\
& M=\operatorname{im}(f) \cong R^{n} / \operatorname{ker}(f) \text { where } R^{n} \xrightarrow[e_{i}]{ } \mapsto m_{i}
\end{aligned}
$$

But kerf) is a R-submodule of R^{n}
so kerf) is finitelygenid as an R-module,
say by rectors $\left[\begin{array}{c}a_{11} \\ \vdots \\ a_{m 1}\end{array}\right]\left[\begin{array}{c}a_{12} \\ \vdots \\ a_{n 2}\end{array}\right]_{0},-,\left[\begin{array}{c}a_{1 l} \\ \vdots \\ a_{n l}\end{array}\right] \in R^{n}$
Thus $\operatorname{ker}(f)=R\left[\begin{array}{c}a_{11} \\ a_{n 1}\end{array}\right]+\ldots+R\left[\begin{array}{c}a_{1 l} \\ a_{n l} \\ a_{n l}\end{array}\right]=\operatorname{im} A$ if

$$
\text { so } \begin{aligned}
M \cong R^{n} / \operatorname{ker}(f)= & R^{n} / \operatorname{im}(A) \\
& =\operatorname{aker}\left(R^{l} A R^{n}\right) .
\end{aligned}
$$

When R is not just a Noeth. ring, bat a PID, we can do much better.
THEOREM : For R a P.I.D., every matrix $A \in R^{n \times l}$ cam be brought to Smith Nounal Form
via invertible row and column operations over R, that is, $\exists P \in G \ln (R)=\left\{P \in R^{n \times n}: \operatorname{de} P \in R^{x}\right\}$

$$
Q \in G L_{R}(R)
$$

such that $P A Q=S$.
As a consequence, if M is a fin. genid. R-module presented as $M=\operatorname{coker}(A)$, then

$$
\begin{aligned}
& M \cong R^{n} / \operatorname{im}(A) \cong R^{n} / \min (S) \\
& \cong R^{n} / R\left[\begin{array}{l}
d_{1} \\
0 \\
\vdots \\
j
\end{array}\right]+\ldots+R\left[\begin{array}{l}
0 \\
\vdots \\
\vdots \\
\dot{j}
\end{array}\right] \\
& \cong R /\left(d_{1}\right) \oplus \ldots \oplus R /\left(d_{r}\right) \oplus R^{n-r}\left(\begin{array}{l}
R \\
R-r(d)
\end{array}\right.
\end{aligned}
$$

COR: Fin. genid abelian groups are direct sums of cyclic groups

$$
A \cong \mathbb{Z}^{n-r} \oplus \mathbb{Z} / \alpha_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / d_{r}
$$

REMARK: Smith normal form over a $A D R$ generalizes the situation over a field \mathbb{F}, where $A \in \mathbb{F}^{n \times l}$ can be brought by row operations to row-echelon form
and then using column operations 6 this form:

We can think of P, Q as a change -of haves in both $\mathbb{F}_{\text {and }} \mathbb{F}^{n}$:

$$
\begin{aligned}
& \mathbb{F}^{l} \xrightarrow{A} \mathbb{F}^{n} \\
& Q \mid s \\
& \left.\mathbb{F}^{l} \xrightarrow{s-P A Q}\right|^{-} \mathbb{F}^{n}
\end{aligned}
$$

prov of THM: Here is one Suith nounal form algorithm

$$
\begin{aligned}
& \text { foot of THM: Here is one Suit normal born } \\
& \text { for } A=\left[\begin{array}{cc}
a_{11} & - \\
a_{1 l} \\
i & \vdots \\
a_{n 1} & a_{n l}
\end{array}\right] \in R^{n \times l} \text { with } R_{a} \text { PD }
\end{aligned}
$$

that performs muertble row and col operations in stages that either make the ideal $\left(a_{11}\right) \subset R$ strictly larger, or the quanfty $n+l$ strictly smaller.

CASE 0: If $A \neq 0, \exists a_{i j} \neq 0$, so WLOG $a_{11} \neq 0$ by permuting rows and columns (and ($a_{n 1}$) got bigger; end stage)

CASE n: $a_{11} \mid a_{i j} \forall i, j$
Use $a_{n 1}$ to clear out $1^{\text {st }}$ now and column, and induct on $n+l$:

$$
\left[\begin{array}{c|cc}
a_{21} & 0 & \cdots \\
\hline 0 & a_{22} * \\
\vdots &
\end{array}\right] \quad \text { (end stage). }
$$

CASE 2: $\exists a_{i j}$ not divisible by a_{11}
... on next page ...

CASE 2: $\exists a_{i j}$ not divisible by a_{11}
CASE Da: \exists such an $a_{i j}$ in $1^{\text {st }}$ row or column.
WLOG by symmetry it in $1^{\text {st }}$ column, and by row permutations, it is a_{21}

$$
\text { So } A=\left[\begin{array}{cc}
a_{11} & \cdots \\
a_{21} & \cdot \\
\cdots
\end{array}\right] \begin{aligned}
& \text { If } a_{21}\left(a_{11}\right. \text {, swap rows 18 2, } \\
& \text { so }\left(a_{11}\right) \text { gets bigger ; end stage. }
\end{aligned}
$$

If $a_{21} \nmid a_{11}$, then $\operatorname{gogcd}\left(a_{11}, a_{21}\right)$ properly durdes both, $s(g) \not \supset\left(a_{11}\right)$ and $g=r a_{11}+S a_{21}$ §dvide by g

$$
\left\{\begin{array}{l}
\{\text { divide by } g \\
\hat{a}_{11}+\delta \hat{a}_{21}
\end{array} \quad \text { where } \hat{a}_{11}=\frac{a_{11}}{g}, \hat{a}_{21}=\frac{a_{21}}{g}\right.
$$

Then $P=\left[\begin{array}{cc|c}r & s & 0 \\ -\hat{a}_{21} & +\hat{a}_{11} & \\ \hline & & \\ & & 1 \\ 1 & O \\ & 0 & 1\end{array}\right]$ has $\operatorname{det} P=r \hat{a}_{11}+s \hat{a}_{21}=1$
so (a_{11}) got bigger ; end stage.
CASE 2b: a_{11} divides all of (15 row and column, but $a_{11}+a_{i j}$ for some $i, j \geq 2$.
Then use a_{11} to zero ont (st now and column, and then add column j to column 1, putting us back in CASE $2 a$.

Then why is $M=R^{n} / \operatorname{im}(A) \cong R^{n} / \operatorname{im}\left(S_{n}\right)$?
FAQ
Roundly speaking, we have again done
a change-of-basis in R^{n} and R^{l} with P, Q :

$$
R^{l} \xrightarrow{A} R^{n}
$$

$Q \uparrow s \quad l \leq P$
$R^{l} \xrightarrow{P A Q=S} R^{n}$
More formally, $i m(A)=i m(A Q)$
since $x \in \operatorname{in} A \Leftrightarrow x=A y$ for some y
$\Leftrightarrow x=A Q y^{\prime}$ where $y^{\prime}=Q^{-1} y$
$\Leftrightarrow x \in \operatorname{im} A Q$
And then to show $R^{n} / \operatorname{lm}(A Q) \cong R^{n} / \operatorname{im}\left(\frac{P A Q}{=S}\right)$, note the composite map $R^{n} \xrightarrow{P} R^{n} \rightarrow R^{n} /$ in (PAQQ) is sujective, with

$$
\begin{aligned}
& \text { is sujectuve, with } \\
& x \in \operatorname{ker}(f) \\
& \Leftrightarrow P_{x} \in \operatorname{im}(P A Q) \quad \text { i.e. } \operatorname{ker}(f)=\operatorname{im} A Q \\
&
\end{aligned}
$$

So f induces an isomaphism $R^{n} / \operatorname{ken}(f) \xrightarrow{\simeq} \operatorname{im}(f)$

$$
R^{n} / \text { mm } A=R^{n} / / i m A Q \quad R^{n \prime \prime} / m(P A \theta)
$$

EXAMPLE: $\quad R=\underline{Z}$

Smith normal form Hence the \mathbb{Z}-module (abel group)

$$
\left.d_{1}^{\prime \prime}\right|_{11} d_{2}
$$

$$
\begin{aligned}
& \text { Hence the } \mathbb{Z} \text {-model } \\
& \text { cover }(A)=\mathbb{1}^{4} / \operatorname{im}(A) \cong \mathbb{Z}^{4} / \operatorname{im}(S) \\
& =\mathbb{Z} / \text { in }\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z}+\mathbb{Z} \oplus \mathbb{Z}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
10 & 8 & 18 \\
6 & 4 & 10 \\
14 & 12 & 26 \\
20 & 16 & 36
\end{array}\right] \in \mathbb{Z}^{4 \times 3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { subtract } \downarrow \text { brow }
\end{aligned}
$$

> AQ
> II

Writing $M=R^{\beta} \oplus \stackrel{t}{\oplus} R /\left(d_{i}\right)$
one calls β the rank of M as an R-module or $\beta:=\operatorname{rank}_{R}(M)$, and β is unique (see HW 6 Ex eR. 12.1. $1,2,3,4$)
One calls the R^{β} summand the free pant of M and $\underset{i=1}{ \pm} R /\left(d_{i}\right)$ the torsion pant or $\operatorname{Tor}(M)$.
There are two useful ways to mite $\operatorname{Tor}(M)$ uniquely: (see D2F (nvariant factor form $\$ 121$ poof)

$$
\operatorname{Tor}(M) \cong \bigoplus_{i=1}^{t} R /\left(d_{i}\right)
$$

with $\left(d_{1}\right) \geq\left(d_{2}\right) \geq \ldots$. (comes from Smith normal form)

ELEMENTARY DIVSOR FORM

$$
\operatorname{Tor}(M) \cong \bigoplus_{\substack{\text { primer } p \in R \\ \text { inducible }}} \bigoplus_{i=1}^{l_{p}} R /\left(p^{\lambda_{i}^{(p)}}\right)
$$

inmeducibles with $\lambda_{1}^{(p)} \geq \lambda_{2}^{(p)} \geq \ldots \geq \lambda_{l p}^{(p)}(\geq 1)$
(comes from INV. FACTOR FORM using sum Zee's The.)

EXAMPLE: $R=\mathbb{Z}$

$$
M=\mathbb{Z}^{4} \oplus \mathbb{\mathbb { Z }} / \underbrace{100 \mathbb{Z}}_{2^{2} \cdot 5^{2}} \oplus \mathbb{Z} / \underbrace{3000 \mathbb{Z}}_{2^{3} \cdot 3^{\prime} \cdot 5^{3}} \oplus \mathbb{Z} / \underbrace{280 \mathbb{Z}}_{2^{3} \cdot 5^{\prime} \cdot 7^{1}}
$$

(f) $\mathbb{Z} \not \boldsymbol{7}^{\prime} \mathbb{Z}$

ELEM. DIVISOR FORM

$$
\begin{aligned}
& \cong \mathbb{Z}^{4} \oplus \mathbb{Z}\left(2 ^ { 3 } \cdot 3 ^ { 1 } \cdot 5 ^ { 3 } \cdot 7 ^ { \prime } \mathbb { Z } \oplus \mathbb { Z } \left(2 ^ { 3 } \cdot 5 ^ { 2 } \mathbb { Z } \oplus \mathbb { Z } \left(2^{2} \cdot 5^{5} y\right.\right.\right. \text { INAROR } \\
& =\mathbb{Z}^{4} \oplus \mathbb{Z} / \underbrace{21000}_{d_{3}} \mathbb{Z} \oplus \underset{d_{2}}{\mathbb{Z} / 200 \mathbb{Z}} \oplus \underset{d_{1}}{\mathbb{Z} / 20 \mathbb{Z}}
\end{aligned}
$$

§12.2 Ratorral Canonical Form
Now we can return to the example of $R=\mathbb{F}[x]$, to deduce some consequences for a finite dimil \mathbb{F}-vector space V with a linear operator $V \xrightarrow{\tau} V$.
Since this V becomes an $\mathbb{F}[x]$-module, which is finitely genid by any IF-basis of V, one has a unique invariant factor form

$$
\begin{array}{ll}
V \underset{\uparrow}{\cong} \mathbb{F}[x]^{\beta} & \xlongequal[i=1]{m} \mathbb{F}[x] /\left(a_{i}(x)\right) \\
\text { as } \mathbb{F}[(x)- \\
\text { module } & \text { with } a_{1}(x)\left|a_{2}(x)\right| \cdots \mid a_{m}(x) \text { in } \mathbb{F}[x] \\
& a_{i}(x) \text { all manic polynomials }
\end{array}
$$

But $\beta=0$ else $\left.\operatorname{dim}_{\mathbb{F}} V \geqslant \operatorname{din}_{\mathbb{F}} F_{[x}\right]=\infty$,

T-stable subspace

Given a monic polynomial $a(x)=x^{d}+b_{d-1} x^{d-1}+\ldots+b_{,} x+b_{0}$ in $\mathbb{F}[x]$, then $\mathbb{F}[x] /(a(x))$ has an \mathbb{F}-basis $\left\{\overline{1}, \bar{x}, \bar{x}^{2}, \ldots, \bar{x}^{d-1}\right\}$ and ult. by x acts in this harris via the companion matrix $C_{a(x)}$:
since

$$
\begin{aligned}
& x \cdot \overline{1}=\bar{x} \\
& x \cdot \bar{x}=\bar{x}^{2} \\
& \vdots \\
& x \cdot \bar{x}^{d-2}=\bar{x}^{d-1} \\
& x \cdot \bar{x}^{d-1}=\bar{x}^{d} \\
&=-\sum_{i=0}^{d-1} b_{i} \cdot \bar{x}^{i}
\end{aligned}
$$

COROLAARY: Every \mathbb{F}-linear operator $V \rightarrow V$ has a unique rational canonical form via a change of basis:

$$
T=\left[\begin{array}{llll}
\underline{\left|\overline{C_{a_{1}(x)}}\right|} \mid & & \\
& \left|\overline{C_{a_{2}(x)}}\right| & & \\
& & \ddots & \\
& & & \boxed{C_{a_{n}}(x)} \mid
\end{array}\right]
$$

with $a_{1}(x)\left|a_{2}(x)\right| \cdots \mid a_{m}(x)$ and each $a_{i}(x)$ manic in $\mathbb{F}[x]$. Furthermore, $\operatorname{det}(x I-T)=a_{1}(x) a_{2}(x) \cdots a_{m}(x)$ and $a_{m}(x)$ is the minimal polynomial for T, meaning

$$
\operatorname{ker}\left(\mathbb{F}[x] \xrightarrow[x]{\longrightarrow} \mathbb{F}^{n x_{n}}\right)=\left(a_{m}(x)\right)
$$

COROLARY: Every \mathbb{F}-linear opendor $V \rightarrow T$
has a unique rational canonical form via a change of basis: $T=$

with $a_{1}(x)\left|a_{2}(x)\right| \cdots \mid a_{m}(x)$ and each $a_{i}(x)$ monica $E(x)$.
Furthermore, $\operatorname{det}(x I-T)=a_{1}(x) a_{2}(x) \cdots a_{m}(x)$
and $a_{m}(x)$ is the minimal poplynomica for T, messing
$\operatorname{ker}\left(\mathbb{F}(x) \xrightarrow{\rightarrow} \mathbb{F}^{h / 4}\right)=\left(a_{m}(x)\right)$.
$\operatorname{ker}\left(\mathbb{F}[\underset{x}{x}] \rightarrow \mathbb{F}^{n+m}\right)=\left(a_{m}(x)\right)$.
proof: The uniqueness comes from the uniqueness of invariant factor form for

$$
V=\bigoplus_{i=1}^{m} \mathbb{F}[x] /\left(a_{i}(x)\right)
$$

The assertion about $\operatorname{det}(x I-T)$ comes from checking that $\operatorname{det} C_{a(x)}=a(x)$, which is an easy exercise in column expansion.

$$
\begin{aligned}
& \text { an easy exercise in column expansion. } \\
& \text { To see that } \operatorname{ker}\left(\mathbb{F}(x) \rightarrow \mathbb{F}^{n \times n}\right)=(f(x))
\end{aligned}
$$

fores $(f(x))=\left(a_{m}(x)\right)$, note that $a_{m}(\bar{x})$ annihilates $V=\bigoplus_{i=1}^{m} \mathbb{F}(x) /\left(a_{i}(x)\right)$, so $a_{m}(\tau)=0 \mathrm{im} \mathbb{F}^{n \times i n}$ and hence $f(x)$ divides $a_{m}(x)$. But no lower degree polynomial in \bar{z} annihilates $\mathbb{F}[x] /\left(a_{m}(x)\right)$, so it cant annihilate $V_{\text {, i.e. }} \operatorname{deg} f=\operatorname{deg} a_{m}$

$$
\begin{aligned}
& \text { e. } \operatorname{deg} f=\operatorname{deg} a_{m} \\
& \Rightarrow(f(x))=(a(x)) .
\end{aligned}
$$

EXAMPLE: Who are the similarity classes $A \approx$ PAP $^{-1}$ of matrices $A \in \mathbb{F}_{3}^{2 \times 2}$? Which ones are $M \mathrm{Gt}_{2}\left(\mathrm{~F}_{3}\right)$?
Either $V=\mathbb{F}_{3}^{2} \xrightarrow{A} \mathbb{F}_{3}^{2}$ has

$$
V \cong \mathbb{F}_{3}[x] /\left(a_{1}(x)\right) \oplus \mathbb{F}_{3}[x] /\left(a_{1}(x)\right) \text { with } a_{1}(x)=x+b_{0}=\begin{aligned}
& \text { mols, linear } \\
& \text { sol } b_{0} \in \mathbb{F}_{3}
\end{aligned}
$$

and A is similar to $\left[\begin{array}{cc}b_{0} & 0 \\ 0 & -b_{0}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ or $\left[\begin{array}{cc}-1 & -1 \\ -1\end{array}\right]-\left[\begin{array}{ll}0 & 0 \\ 0\end{array}\right]$
OR

$$
V \cong \mathbb{F}_{3}[x] /\left(a_{1}(x)\right) \text { with } a_{1}(x)=x^{2}+b_{1} x+b_{0}
$$

and A is similar to $\left[\begin{array}{ll}0 & -b_{0} \\ 1 & -b_{1}\end{array}\right]$ with $b_{0}, b_{1} \in \mathbb{F}_{3}\left(\begin{array}{ll}9 & \text { choices } \\ \text { to cal }\end{array}\right)$
Among these, the cases with $b_{0} \neq 0$ lie in $\mathcal{G}_{2}\left(\mathbb{F}_{3}\right)$ so $\left[\begin{array}{ll}1 & 1\end{array}\right],\left[\begin{array}{l}-1 \\ 1\end{array}\right]$, and $\left[\begin{array}{ll}0 & -b_{0} \\ 1 & -b_{1}\end{array}\right]$ with $b_{0} \in\{ \pm 1\}$

$$
\underbrace{b_{1} \int \begin{array}{l}
b_{1} \\
b_{1} \in \mathbb{F}_{3}
\end{array}}_{6 \text { choices total }}
$$

$S_{12.3 \text { Jordan Canonical Form }}$
When \mathbb{F} is algebraically closed, egg. $\mathbb{F}=\mathbb{C}$ or $\mathbb{F}=\overline{F_{p}}$, the monic reducible polynomials $p(x)$ in $\mathbb{F}[x]$ are all linear of the form $p(x)=x-c$ with $c \in \mathbb{F}$.
Hence the elementary divisor form for an operator $\bar{V} \underset{\longrightarrow}{T} V$ as an $\mathbb{F}[x]$-module is

$$
V \cong \bigoplus_{c \in \mathbb{F}} \bigoplus_{i=1}^{l_{c}} \mathbb{F}\left[x_{1} /\left((x-c)^{\lambda_{i}^{(c)}}\right)\right.
$$

The $\lambda x \lambda$ matrix J_{c}^{λ} for mut. by \bar{x} acting in the basis $\left\{\bar{T}, \overline{x-c}, \overline{(x-c)^{2}}, \ldots,(x-c)^{\lambda-1}\right\}$ for $\mathbb{F}[x] /\left((x-c)^{2}\right)$ is called a Jordan block of size λ with eigenvalue c :

COROLCARY: For algebraically closed fields \mathbb{F}, every linear operator $V \xrightarrow{T} V$ with dim V finite has a change-of-basis to a unique

Jordan canonical form with Jordan blocks ofrize $\lambda_{1}^{(c)} \geqslant \lambda_{2}^{(c)} \geq \ldots \geq \lambda_{l_{c}}^{(c)}$ for various sabort $\underset{c \in \mathbb{F}}{ }$
$\longleftarrow 2$ a bitpainful to draw the general form!

Furthermore,

$$
\operatorname{det}(x I-T)=\prod_{c \in \mathbb{F}}(x-c)^{\left|\lambda^{(c)}\right|} \text { where }\left(\lambda^{(c)} \mid=\lambda_{1}^{(c)}+\lambda_{2}^{(c)}+\ldots\right.
$$

and the minimal polynomial for T is $m_{T}(x)=T(x-c)^{\lambda_{1}^{(c)}}$.
Inparbicular, T is diagonalizable \Leftrightarrow each $\lambda_{1}^{(c)} \leq 1 \Leftrightarrow m_{T}(x)$ has distinct roots.

COROLLARY: For algebraically closed fields \mathbb{F}, every linear operator $V I \rightarrow V$ with dm $m_{\mathbb{F}} V$ frise has a change-of basis to a unique
Jordan canonical form with Jordan blocks of size $\lambda_{1}^{(c)} \geq \lambda_{2}^{(c)} \geq \ldots \geq \lambda_{l_{c}^{(c)}}$ for various saber $\underset{c \in \mathbb{F}}{ }$

proof: Uniqueness comes from uniqueness of ebmentany divisor form over $\mathbb{F}[x]$.
The asserbon about $\operatorname{det}(x I-T)$ comes from

$$
\operatorname{det}\left(x I-J_{c}^{(\lambda)}\right)=(x-c)^{\lambda}
$$

The rest of the assertions are easy to check.
EXAMPLE: How many conjugacy classes of A in $G L_{5}(\mathbb{C})$ are there with $\operatorname{def}(x I-A)=(x+i)^{2}(x-4)^{3}$?
A has Jordan form $\left[\begin{array}{l|l}B & O \\ \hline O & C\end{array}\right]$ where $B=\left[\begin{array}{cc}{[-i} \\ \hline-i\end{array}\right]$ or $\left[\begin{array}{cc}-i & 0 \\ 1 & -i\end{array}\right]$

$$
\text { and } C=\left[\begin{array}{ll}
(4) & \\
\sqrt[3]{4}
\end{array}\right] \text { or }\left[\begin{array}{ll}
40 \\
14 & 4 \\
4
\end{array}\right] \text { or }\left[\begin{array}{lll}
4 & 0 & 0 \\
1 & 4 & 0 \\
0 & 1 & 4
\end{array}\right], \begin{aligned}
& 2.3=6 \\
& \text { choices }
\end{aligned}
$$

REMARKS on lattices
A lattice L of rank r is a free abelian group $L \cong \mathbb{Z}^{r}$.
egg.

$$
\begin{aligned}
& L=\operatorname{im}\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \subset \mathbb{Z}^{2} \\
& =\mathbb{Z}\left[\begin{array}{l}
4 \\
2
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 12=|\operatorname{det} A| \\
& =\left|\operatorname{Let}\binom{4 n}{2 n}\right| \\
& =16-4=12 /
\end{aligned}
$$

The green circled points give us 12 coset representatives for the quotient group $\mathbb{Z}^{2} / L=\mathbb{Z}^{2} /$ in A, but what is its abelian group structure?

PROP: If $A \in \mathbb{Z}^{n \times n}$ has full rank i.e. $\operatorname{romk}_{\mathbb{Q}}(A)=n$, and Smith nomal form $S=\left[\begin{array}{ll}d_{1}, 0 \\ 0 & d_{n}\end{array}\right]$, then $L=i m A$ has $\mathbb{Z}^{n} / L=$ cobber A of cardinality

$$
|\operatorname{det} A|=\left(\operatorname{det} S|=| \text { cooker } A \mid=d_{1} d_{2} \cdots d_{n}\right.
$$

and $\mathbb{Z} / L=$ cover $A \cong$ cher $S \cong \bigoplus_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}$
proof: Nerve seen all the ockernel isomorphism assertions,

$$
\text { isomorphism }=d_{1} \cdots d_{n}=\left|\bigoplus_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}\right| \text {. }
$$

Also note, since $\delta=P A Q$ with $P, Q \in G G_{n}(\mathbb{Z})$ one has $\operatorname{det}=\operatorname{det} P A Q$

$$
\begin{aligned}
& =\operatorname{det} P \operatorname{det} A \cdot \frac{\operatorname{det} Q}{= \pm 1} \\
& = \pm \operatorname{det} A
\end{aligned}
$$

egg.

$$
\begin{aligned}
L & =\operatorname{im}\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \subset \mathbb{Z}^{2} \\
& =\mathbb{Z}\left[\begin{array}{l}
4 \\
2
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

$L=\operatorname{im} A=i m\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$ has Smith form $\left[\begin{array}{ll}2 & 0 \\ 0 & 6\end{array}\right]=S$

$$
\left[\begin{array}{cc}
4-6 \\
2 & 0
\end{array}\right] \mapsto\left[\begin{array}{cc}
0 & -6 \\
2 & 0
\end{array}\right]
$$

so $S=P A Q$ for some $P, Q \in G L_{2}(\mathbb{Z})$.

Changing $A \mapsto A Q$ afters the choice of lattice generators for in $A=\operatorname{im} A Q$, while P performs a lattice change of basis on \mathbb{Z}^{2} :

$$
\begin{aligned}
\mathbb{Z}^{2} L & =\text { weer } A \\
& \cong \text { cover } S \\
& =\mathbb{Z}^{2} / \mathbb{Z}\left[\begin{array}{l}
2 \\
0
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \cong \mathbb{Z} \mid \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}
\end{aligned}
$$

