Noethenian R-modules so far...

$$\begin{array}{c} \underbrace{\text{COROLLARY:}}_{\text{Lef }R \text{ be a Noeth.ring}} \left( e.g. R = P.I.D. \\ \underbrace{\text{or}}_{\text{or}} \\ \underbrace{\text{If } R \text{ be a Noeth.ring}}_{\text{order}} \left( e.g. R = P.I.D. \\ \underbrace{\text{or}}_{\text{order}} \\ \underbrace{\text{order}}_{\text{order}} \\ \underbrace{\text{order}}_{\text{$$

pool: (i) every free R-module 
$$\mathbb{R}^{n}$$
  
with a finite basis is a Noeth. R-module.  
This follows via induction on n.  
BASE CASE n=1:  $\mathbb{R}^{l} = \mathbb{R}$  as  $\mathbb{R}$ -module,  
and we assumed  $\mathbb{R}$  is a Noeth. ring,  
so  $\mathbb{R}$  is a Noeth.  $\mathbb{R}$ -module.  
NDUCTIVE STEP:  
Note that the projection homomorphism  
 $\mathbb{R}^{n} \xrightarrow{\pi} \mathbb{R}$  has  $\text{tor}(\pi) = \prod_{i=1}^{r} \mathbb{R}^{n}$   
 $\lim_{i \to r} \mathbb{R}^{n}$  has  $\text{tor}(\pi) = \mathbb{R}^{n}$   
So  $\mathbb{R}^{n}(\text{ker}(\pi)) \Rightarrow \min(\pi)$   
 $\mathbb{R}^{n}/\mathbb{R}^{n-1} \cong \mathbb{R}$   
God  $\mathbb{R}^{n-1}$ ,  $\mathbb{R}$  Noeth. by induction  
 $\Rightarrow \mathbb{R}^{n}$  Noeth.

note that M is genid by 
$$m_1, m_2, ..., m_n$$
  
 $\iff M = Rm_1 + ... + Rm_n$   
 $\iff this horizonon phism is onjective:
 $R^n \xrightarrow{f} M$   
 $e_i \xrightarrow{m_i} m_i$   
 $\begin{bmatrix} r_1 \\ i \\ r_n \end{bmatrix} \xrightarrow{r_i} r_{im_1 + ... + r_n m_n}$   
and hence  $M = im(f) \cong R^n / ker(f)$   
 $\underbrace{Noeth.}$   
 $\Rightarrow Noeth.$$ 

For (iii): every finitely generated R-module M  
has a presentation via a matrix 
$$A \in \mathbb{R}^{l\times n}$$
  
 $M \cong coker(\mathbb{R}^{l} \xrightarrow{A} \mathbb{R}^{n}) = \mathbb{R}^{n}/in(A)$   
 $x = \begin{bmatrix} x_{1} \\ \vdots \\ x_{2} \end{bmatrix} \longrightarrow Ax = \mathbb{R}^{n}/\mathbb{R}\begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix}^{+} \dots \mathbb{R}^{n}\begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix} + \dots \mathbb{R}^{n}\begin{bmatrix} a_{11} \\ \vdots \\ a_{n2} \end{bmatrix} = \mathbb{R}^{n} \xrightarrow{A} \mathbb{R}$ 

Nhen R is not just a Noeth ring, but a PID, we  
and a much better.  
THEOREM: For R a P.I.D., every matrix 
$$A \in R^{n}$$
  
con be brought to Smith Normal Form  
 $S = \begin{bmatrix} d_{1d} & O \\ O & d_{1} & O \\ O & d_{1} & 0 \end{bmatrix} n$  with  $d_{1} d_{2} | \cdots | d_{1} n R$   
Via nuerfible vow and column operations over R,  
that is,  $\exists P \in GLn(R) = \{P \in R^{nm} : At P \in R^{n}\}$   
 $Q \in GL_{R}(R)$   
such that  $PA : Q = S$ .  
As a consequence, if M is a fin. genid. R-module  
presented as  $M = coker(A)$ , then  
 $M \cong R^{N} im(A) \cong R^{N} im(S)$   
 $\cong R^{N} R \begin{bmatrix} d_{1} \\ 0 \\ 0 \end{bmatrix} + ... + R \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ 

Smith normal form over a PID R REMARK: generalizes the situation over a field IF, where A E IF mel can be brought by row operations to now-echelon form and dren using alumn operatous to this form: PA ↔ PAQ= In = S where Ĺ Fl A, F We can third of P.Q as a change-of-bases QTS SP in both F<sup>2</sup> and F<sup>2</sup>: F<sup>2</sup> S-PAQ En

$$\frac{\text{post of THM}: \text{Here is one Suith normal form algorithm}}{\text{for } A = \begin{bmatrix} a_{i1} & a_{i2} \\ a_{i1} & a_{inl} \end{bmatrix} \in \mathbb{R}^{n\times l} \text{ with } \mathbb{R} \text{ a PID}$$
that performs invertible now and coloperations in steges that either noise the ideal  $(a_{11}) \subset \mathbb{R}$  strictly broger, or the quantity n+l strictly smaller.
$$\frac{\text{CASE 0: If } A \neq 0, \quad \exists a_{ij} \neq 0, \text{ so WLOGI } a_{i1} \neq 0 \text{ by}}{\text{permuting rows and columns } (and (a_{in}) \text{ got bigger; end})}$$

$$\frac{\text{CASE 1: } a_{i1} = a_{i1} \forall i; j}{\text{Use } a_{in} \text{ to clear out } i^{\text{st rows and columns,}} (and (a_{in}) \text{ got bigger; end})}{\text{ strage}}$$

Then why is 
$$M = R'/im(A) \cong R'/im(S)$$
?  
Roughly speaking, we have again done  
a change of basis in  $R''$  and  $R''$  with  $P,Q$ :  
 $R' \xrightarrow{A} R''$   
 $Q$  is  $JSP$   
 $R' \xrightarrow{PAQ:S} R''$   
More formally,  $Im(A) = Im(AQ)$   
since  $x \in ImA \Leftrightarrow x = Ay$  for some  $y$   
 $\Leftrightarrow x = AQy' where  $y' = Q'y$   
 $\Leftrightarrow x \in ImAQ$   
And then to Grow  $R'/Im(AQ) \cong R'/Im(PAQ)$ ,  
 $Is surjective, with$   
 $x \in IwnAQ$   
 $is surjective, with$   
 $x \in IwnAQ$   
 $S = Findnces an isomorphism R'/ker(f) \xrightarrow{w} Im(PAQ)$   
 $R'/ImA = R'/ImAQ R'/Im(PAQ)$$ 

· - •

EXAMPLE: 
$$R = Z$$
  
 $A = \begin{pmatrix} v & g & v & g \\ G & H & v & 0 \\ A & v & 2 & 26 \\ 20 & v & 36 \end{pmatrix} \in Z^{H \times 3}$ 
  
Subtract
  
 $d^{12}$ 
  
 $d^{12$ 

Writing 
$$M = R^{\beta} \oplus \bigoplus_{i=1}^{k} R/(d_i)$$
  
one calls  $\beta$  the reaches of  $M$  as an  $R$ -module  
or  $\beta := reark_{R}(M)$ , and  $\beta$  is unique  
(see HW 6 fixer 12.1.1,2,3,4)  
One calls the  $R^{\beta}$  summand the free part of  $M$   
and  $\bigoplus_{i=1}^{k} R/(d_i)$  the bision part or Tor  $(M)$ .  
There are biso useful usays to unde Tor  $(M)$  uniquely:  
(NVARIANT FACTOR FORM  
Tor  $(M) \cong \bigoplus_{i=1}^{k} R/(d_i)$   
with  $(d_i) \ge (d_2) \ge \dots$  (comes from  
Switch rownal torm)  
ELEMENTARY DIVISOR FORM  
Tor  $(M) \cong \bigoplus_{i=1}^{k} R/(p^{1/2})$   
primes  $p \in R$   
 $i=1$   
 $i = 1$   
 $i = 1$ 

ineducibles with  $\lambda_1^{\mu} \ge \lambda_2^{\mu} \ge \dots \ge \lambda_{p}^{\mu}$  (21) (comes from INN. FACTOR FORM using Sun Ze's Thm.)



$$\frac{\S(2.2 \text{ Rational Canonical Form}}{\text{Now we can return to the example of R=IF[x],} fo deduce some consequences for a finite dimit IF-vector space V with a linear eperator  $V \xrightarrow{T} V$ .  
Since this V becomes an IF[x]-module, which is finitely gend by any IF-basis of V, one has a unique invariant factor form  
 $V \cong F[x]^{\beta} \bigoplus \bigoplus F[x](a_{i}(x))$   
as  $F[x]_{\text{module}}$  with  $a_{i}(x)a_{i}(x)[\cdots]a_{i}(x)$  in  $F[x]$  module  
 $But \beta=0$  else  $\dim_{F} V \ge \dim_{F} F[x] = \infty$ ,  
so  $V \cong \bigoplus F[x]/(a_{i}(x))$ .  
as  $F[x]_{i=1}$  and  $F[x]/(a_{i}(x))$ .$$

Given a monic polynomial 
$$a(x) = x^{4} + b_{d+1}x^{d+1} + b_{d+1}x^{d+1}$$
  
then  $F(x)/(a(x))$  has an  $F$ -basis  $\{\overline{1}, \overline{x}, \overline{x}^{2}, \dots, \overline{x}^{d+1}\}$   
and mult. by  $x$  acts  $m$  this basis via the  
companion matrix  $C_{a(x)}:$   
 $\overline{1} \quad \overline{x} \quad \overline{x}^{2} \quad \dots \quad \overline{x}^{d-2} \quad \overline{x}^{d-1}$  Since  
 $\overline{1} \quad 0 \quad 0 \quad -b_{1}$   $x \cdot \overline{x} = \overline{x}^{2}$   
 $\overline{x}^{d-1} \quad 1 \quad 0 \quad 0 \quad -b_{2}$   $x \cdot \overline{x} = \overline{x}^{2}$   
 $\overline{x}^{d-2} \quad \overline{x}^{d-1} \quad 0 \quad -b_{2}$   $x \cdot \overline{x} = \overline{x}^{2}$   
 $\overline{x}^{d-2} \quad \overline{x}^{d-1} \quad 0 \quad -b_{2}$   $x \cdot \overline{x} = \overline{x}^{2}$   
 $\overline{x}^{d-2} \quad \overline{x}^{d-1} \quad 0 \quad -b_{2}$   $x \cdot \overline{x}^{d-2} = \overline{x}^{d-1}$   
 $\overline{x}^{d-2} \quad \overline{x}^{d-1} \quad 0 \quad -b_{2}$   $x \cdot \overline{x}^{d-2} = \overline{x}^{d-1}$   
 $\overline{x}^{d-2} \quad \overline{x}^{d-1} \quad 0 \quad -b_{2}$   $x \cdot \overline{x}^{d-2} = \overline{x}^{d-1}$   
 $\overline{x}^{d-2} \quad \overline{x}^{d-1} \quad 0 \quad -b_{2}$   $x \cdot \overline{x}^{d-2} = \overline{x}^{d-1}$   
 $\overline{x} \cdot \overline{x}^{d-2} = \overline{x}^{d-1}$   
 $\overline{x} \cdot \overline{x}^{d-2} = \overline{x}^{d-1}$   $x \cdot \overline{x}^{d-2} = \overline{x}^{d-1}$   
 $\overline{x} \cdot \overline{x}^{d-1} = \overline{x}^{$ 

$$\frac{\operatorname{created} F': \operatorname{Ener} \operatorname{opender} (V_{-}^{-})'$$
his a unique netword converted from via a charge  
of bosts:  $T = \begin{bmatrix} c_{a(0)} & c_$ 

EXAMPLE: Who are the similarity classes  
of matrices 
$$A \in \mathbb{F}_{3}^{2\times2}$$
?  $A \approx PAP^{-1}$   
Which ones are  $M \oplus \mathbb{G}_{2}(\mathbb{F}_{3}^{2})$ ?  
Either  $V = \mathbb{F}_{3}^{2} \xrightarrow{A} \mathbb{F}_{3}^{2}$  has  
 $V \cong \mathbb{F}_{3}[x]/(a_{1}(x)) \oplus \mathbb{F}_{3}[x]/(a_{1}(x)) \text{ with } a_{1}(x) = x+b_{0}$   
and  $A$  is similar to  $\begin{bmatrix} b_{0} & 0\\ 0 & -b_{0} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$   
OR  
 $V \cong \mathbb{F}_{3}[x]/(a_{1}(x)) \text{ with } a_{1}(x) = x^{2}+b_{1}x+b_{0}$   
and  $A$  is similar to  $\begin{bmatrix} 0 & -b_{0}\\ 1 & -b_{0} \end{bmatrix}$  with  $b_{0}, b_{1} \in \mathbb{F}_{3}$  (9 choices  
and  $A$  is similar to  $\begin{bmatrix} 0 & -b_{0}\\ 1 & -b_{1} \end{bmatrix}$  with  $b_{0} \in [1, 1]$   
Atmong these, the ases with  $b_{0} \neq 0$  lie in  $\mathbb{G}_{1}(\mathbb{F}_{3})$   
So  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 & -b_{0}\\ 1 & -b_{1} \end{bmatrix}$  with  $b_{0} \in [1, 1]$   
 $b_{1} \in \mathbb{F}_{3}$ .  
 $b_{1} \in \mathbb{F}_{3}$ .

$$\frac{S|2,3}{V} \text{ Jordan lanonical form}$$
When IF is algebraically closed, e.g.  $F=C$  or  $F=F_{ep}$ ,  
the monic inveducible polynomials  $p(x)$  in  $F[x]$  are  
all linear of the form  $p(x)=x-c$  with  $c\in F$ .  
Hence the elementary divisor form for  
an operator  $V \xrightarrow{T} V$  as an  $F[x]$ -module is  
 $V \cong \bigoplus \bigoplus_{i=1}^{c} F[x_i]/((x-c)^{A_i^{(s)}})$   
 $c\in F$   $i=1$   
with  $A_i^{(s)} \ge A_i^{(s)} \ge ... \ge A_{ie}^{(s)}$  ( $\ge 1$ )  
The AxA matrix  $J_c^A$  for mult by  $\overline{x}$  acting  
in the basis  $\{\overline{1}, \overline{x}=\overline{c}, (\overline{x}=c)^2, ..., (\overline{x}=c)^{A-i}\}$  for  $F[x]/((x-c)^A)$   
is called a Jordan block of size  $\lambda$  with eigenvalue  $c:$   
 $T \xrightarrow{F} c (\overline{x}=c)^2 \dots (\overline{x}=c)^{A+i}$   
 $\int_{-\infty}^{-\infty} \frac{1}{(x-c)^A} \int_{-\infty}^{-\infty} \frac{1}{(x-c)^A} \int_{-\infty}^{\infty} \frac{1}{(x-$ 

COROLLARY: For algebraically closed fields f  
every linear operator 
$$V = V$$
 with  $dm_{\rm F}V$  thite  
has a change of basis to a unique  
Jordan cononical form with Jordan blocks  
of size  $\lambda_1^{(c)} \ge \lambda_2^{(c)} \ge \dots \ge \lambda_{\rm c}^{(c)}$  for various scolar  
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ 0 & 1 & c \end{array}\right] \chi_1^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ 0 & 1 & c \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ 0 & 1 & c \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 & c & 0 \\ 0 & 1 & c \\ \end{array}\right] \chi_2^{(c)}$   
 $\left[\begin{array}{c} 1 &$ 

COROLLARY: For algebraically closed fields ff, every linear operator V ISV with damp V thinks has a change-of-basis to a unique Tordan cononical form with Jordan blocks of rise  $\lambda_{1}^{(c)} \ge \lambda_{2}^{(c)} \ge \dots \ge \lambda_{c}^{(c)}$  for various soder (eff 
 I c O
 J (c)

 O'ic
 J (c)

 I c O
 <  $\frac{\operatorname{Furthermore}_{\lambda}}{\det (\chi I - \tau)} = \prod_{\alpha, \sigma} (\alpha, -c)^{|\lambda^{(\alpha)}|} \quad \text{Jure } [\lambda^{(\alpha)}] = \lambda^{(\alpha)}_{\sigma + \sigma} (\alpha, -c)^{(\alpha)}$ and the minimal polynomial for T is m(x)= TT(x-c). ceF In porticular, Tis diagonalizable ⇔ each 2<sup>(3</sup>≤1 ↔ m<sub>T</sub>(x) has distinct roots proof: Uniqueness comes from uniqueness of elementary drisor form over F[x]. The assertion about det(xI-T) comes from  $det(xI-J_{c}^{(2)})=(x-c)^{\lambda}.$ The rest of the assertions are easy to check. EXAMPLE: How many conjugacy classes of A in GL\_(C) are there with det(xI-A) =  $(x+i)^2(x-4)^3$ ? A has Jordan form (BO) where  $B = \begin{bmatrix} -i \\ -i \end{bmatrix} = \begin{bmatrix} -i \\ 1 - i \end{bmatrix}$ and (=|4|) or |4| or |400|, so 2.3=6[4] or |4| or |40|, so 2.3=6[4] or |40| or |40|, so 2.3=6[4] or |40| or |40|, so 2.3=6



PROP: If 
$$A \in \mathbb{Z}^{n \times n}$$
 has full rank  
i.e.  $\operatorname{romk}_{Q}(A) = n$ , and  $\operatorname{Swith} \operatorname{normal}$   
form  $S = \begin{bmatrix} d_{1} & 0 \\ 0 & d_{n} \end{bmatrix}$ , then  $L = \operatorname{im} A$   
has  $\mathbb{Z}^{n}/L = \operatorname{coher} A \cdot \operatorname{of} \operatorname{cardinality}$   
 $|\det A| = (\det S| = |\operatorname{coher} A| = d_{1}d_{2} - d_{n}$   
and  $\mathbb{Z}^{n}/L = \operatorname{coher} A \cong \operatorname{cher} S \cong \bigoplus_{i=n}^{n} \mathbb{Z}/d_{i}\mathbb{Z}$ 

proof: Neive seen all the coternel  
isomorphism assertions,  
and det 
$$S = d_1 \cdots d_n = \left[ \bigoplus_{i=1}^n \frac{2}{i} \frac{1}{d_i} \mathbb{Z}_i \right]$$
.  
Also note since  $S = PAQ$  with  
 $P_iQ \in GL_n(2)$   
one has det  $S = det PAQ$   
 $= det P_i det A \cdot det Q$   
 $= \pm i$   
 $= \pm det A$ 

e.g. 
$$[= im \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \subset \mathbb{Z}^2$$
  
=  $\mathbb{Z} \begin{bmatrix} 4 \\ 2 \end{bmatrix} + \mathbb{Z} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ 

$$L = imA = im \begin{bmatrix} 42\\ 24 \end{bmatrix} \text{ hes Swith form } \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix} = S$$

$$\searrow \begin{bmatrix} 44 & -6 \\ 2 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & -6 \\ 2 & 0 \end{bmatrix} \xrightarrow{7}$$
so  $S = PAQ$  for some  $P,Q \in GL_2(Z)$ .

Changing 
$$A \mapsto AQ$$
 attens the choice of battice  
generators for  $in A = in AQ$ , while P performs  
a lattice change of basis on  $Z^{2}$ :  
 $Z^{2}/L = wher A$   
 $\cong wher S$   
 $= Z^{2}/Z[_{0}] + Z[_{0}]$   
 $\cong Z/\partial Z \times Z/GZ$