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THE MATRIX MODEL FOR DESSINS D’ENFANTS

JAN AMBJØRN† AND LEONID CHEKHOV∗

Abstract. We present the matrix models that are the generating functions for branched covers
of the complex projective line ramified over 0, 1, and∞ (Grotendieck’s dessins d’enfants) of fixed
genus, degree, and the ramification profile at infinity. For general ramifications at other points,
the model is the two-logarithm matrix model with the external field studied previously by one
of the authors (L.Ch.) and K.Palamarchuk. It lies in the class of the generalised Kontsevich
models (GKM) thus being the Kadomtsev–Petviashvili (KP) hierarchy τ -function and, upon the
shift of times, this model is equivalent to a Hermitian one-matrix model with a general potential
whose coefficients are related to the KP times by a Miwa-type transformation. The original
model therefore enjoys a topological recursion and can be solved in terms of shifted moments
of the standard Hermitian one-matrix model at all genera of the topological expansion. We
also derive the matrix model for clean Belyi morphisms, which turns out to be the Kontsevich–
Penner model introduced by the authors and Yu. Makeenko. Its partition function is also a KP
hierarchy tau function, and this model is in turn equivalent to a Hermitian one-matrix model
with a general potential. Finally we prove that the generating function for general two-profile
Belyi morphisms is a GKM thus proving that it is also a KP hierarchy tau function in proper
times.

1. Introduction

In a nice recent paper [23] Zograf provided recursion relations for the generating function
of Grothendieck’s dessins d’enfants enumerating the Belyi pairs (C, f), where C is a smooth
algebraic curve and f a meromorphic function f : C → CP 1 ramified only over the points
0, 1,∞ ∈ CP 1.
We recall some mathematical results relating Belyi pairs to Galois groups and begin with

Theorem 1.1. (Belyi, [5]) A smooth complex algebraic curve C is defined over the field of
algebraic numbers Q if and only if it exists a nonconstant meromorphic function f on C (f :
C → CP 1) ramified only over the points 0, 1,∞ ∈ CP 1.

For a Belyi pair (C, f) let g be the genus of C and d the degree of f . If we take the inverse
image f−1([0, 1]) ⊂ C of the real line segment [0, 1] ∈ CP 1 we obtain a connected bipartite fat
graph with d edges with vertices being preimages of 0 and 1 and with the cyclic ordering of
edges entering a vertex coming from the orientation of the curve C. This led Grothendieck to
formulating the following lemma:

Lemma 1.2. (Grothendieck, [18]) There is a one-to-one correspondence between the isomor-
phism classes of Belyi pairs and connected bipartite fat graphs.

We define a Grothendieck dessin d’enfant to be a connected bipartite fat graph representing
a Belyi pair.
It is well known that we can naturally extend the dessin f−1([0, 1]) ⊂ C corresponding to a

Belyi pair (C, f) to a bipartite triangulation of the curve C. For this, we cut the complex plane
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Figure 1. The Belyi graph Γ1 corresponding to the Belyi pair (CP
1, id); ∞± indicate

directions of approaching the infinite point in CP 1. By Λ, Λ we indicate the insertions
of the external field in the matrix-model formalism of Sec. 2. For example, this graph
contributes the term N2βγ tr(ΛΛ).

along the (real) line containing 0, 1,∞ coloring upper half plane white and lower half plane
gray. This defines the partition of C into white and grey triangles such that white triangles has
common edges only with grey triangles. We then consider a dual graph in which edges are of
three types (pre-images of the three edges shown in Fig. 1): the type of an edge depend on which
segment—f−1([0, 1]) ⊂ C, f−1([1,∞+]) ⊂ C, or f−1([∞−, 0]) ⊂ C—it intersects (∞± indicate
the directions of approaching the infinite point in CP 1). Each face of the dual partition then
contains a preimage of exactly one of the points 0, 1,∞, so they are of three sorts (bordered by
solid, dotted, or dashed lines in the figure). We call such a graph a Belyi fat graph.
The type of ramification at infinity is determined by the set of solid-line bounded faces of

a Belyi fat graph: the order of branching is r for a 2r-gon, so we introduce the generating
function that distinguish between different types of branching at infinity. We let n1, n2, n3

be the respective numbers of solid-, dotted-, and dashed-line cycles (faces) and let mr be the
number of solid-line cycles of length 2r in a Belyi fat graph
We are interested in the following counting problem: we are going to calculate the gener-

ating function

(1.1) F
[
{tm}, β, γ;N

]
=
∑

Γ

1

|AutΓ|N
2−2gβn2γn3

n1∏

i=1

tri ,

where N , β, γ, and tr are formal independent parameters and the sum ranges all (connected)
Belyi fat graphs. Often a factor αn1 is also added; it can however be adsorbed into the times
tr by scaling tr → αtr for all r.
The structure of the paper is as follows. In Sec. 2, we show that generating function (1.1)

is the free energy of a special matrix model. We demonstrate that this model is the two-
logarithm matrix model of [14], and it therefore belongs to the class of generalized Kontsevich
models (GKM) [20]. In Sec. 3, we present the solution of this model from paper [14] in which
it was reduced, upon a special transformation of times, to a Hermitian one-matrix model
with a general potential. In Sec. 4, we present the direct solution of the original generating
function in terms of the Hermitian one-matrix model without appealing to the external field
model thus again establishing the equivalence between the two models and describing the
corresponding topological recursion. In Sec. 5, we construct the matrix model for clean Belyi
morphisms (those having ramifications only of type (2, 2, . . . , 2) over 1) and show that the
corresponding generating function is the original Kontsevich–Penner model of [12]. This model
is also equivalent [13] to the Hermitian one-matrix model with a general potential. Finally, in
Sec. 6, we combine the techniques of Secs. 2, 3, and 4 establishing that the generating function
for the two-profile Belyi morphisms (with the given ramifications at two points, ∞ and 1) is
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again given by the GKM integral thus being a tau function of the KP hierarchy (that is, it
satisfies the bilinear Hirota relations). We conclude with the discussion of our results.
Throughout the entire text we disregard all multipliers not depending on external fields; all

equalities in the paper must therefore be understood modulo such factors.

2. The model

In our conventions the indices i, i1, i2, etc. take positive integer values between 1 and αN ,
the indices j, j1, etc. take positive integer values between 1 and βN , and the indices k, k1, etc.
take positive integer values between 1 and γN . We introduce three complex-valued rectangular
matrices Rk,i, Gi,j, and Bj,k and one diagonal matrix (the external field) Λi1,i2 = λi1δi1,i2. The
action is given by the integral

(2.1) F [{tr}, β, γ;N ] :=

∫
DRDRDBDBDGDGeNtr(−BB−RR−GG+RΛGB+BGΛR).

The free energy F [{tr}, β, γ;N ] is given by the sum over all connected bipartite three-valent
fat graphs Γ weighted by

(2.2)
1

|AutΓ|N
2−2gβn2γn3

∏

r

tmr

r

(∑

r

mr = n1

)

where n1,2,3 are the respective numbers of solid-, dotted-, and dashed-line cycles in Γ,

(2.3) tr :=
αN∑

i=1

|λi|2r

are the times of the model, and mr is the number of solid-line cycles of length 2r in Γ. Measures
of integration are the standard Haar measures; for instance,

DRDR :=

γN∏

k=1

αN∏

i=1

dReRk,idImRk,i.

The logarithm of the integral (2.1) is therefore exactly generating function (1.1) for the Belyi
graphs.
Integrating w.r.t. B,B we obtain the integral

(2.4)

∫
DRDRDGDGeNtr(−RR−GG+RΛGGΛR)

in which we can perform the Gaussian integration w.r.t. G,G thus obtaining

(2.5)

∫
DRDRe−Ntr(RR) det

[
δi1,i2 − (ΛRRΛ)i1,i2

]−βN
.

After the change of variables R → RΛ this integral becomes

(2.6)

αN∏

i=1

|λi|−2γN

∫
DRDRe−Ntr

(
RR[ΛΛ]−1

)
det
[
δi1,i2 − (RR)i1,i2

]−βN
.

For definiteness, let γ ≥ α. A general rectangular matrix R can then be reduced to the form
R = U †MV , where U ∈ U(αN), V ∈ U(γN)/U((γ − α)N), and

M =




m1 0 0 0 0

0
. . . 0 0 0

0 0 mαN 0 0


 .
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In the vicinity of the unities of the unitary groups, we can write U = eiǫH and V = eiǫQ with
the Hermitian (αN × αN)-matrix H and Hermitian (γN × γN)-matrix Q of the form

(2.7) Q =

(
H̃ P
P † 0

)
,

in which H̃ is another Hermitian (αN ×αN)-matrix and P is the general complex (αN × (γ−
α)N)-matrix. The Jacobian of the transformation

(2.8) DRDR = JacDU DV
∏

i

dmidmi

can then be easily calculated (see Appendix A) to be

(2.9) Jac =
∏

1≤i1<i2≤αN

(|mi2 |2 − |mi1 |2)2
αN∏

i=1

|mi|2(γ−α)N ,

Introducing the new variables xi = |mi|2 ranging from zero to infinity, we reduce the integral
in (2.6) to the αN -fold integral w.r.t. xi and to the integration w.r.t. the unitary group:

αN∏

i=1

|λi|−2γN

∫ ∞

0

dx1 . . . dxαN

[∫
DUe−N

∑
i1,i2

xi1
Ui1,i2

|λi2
|−2U†

i2,i1

]
×

×
[
∆(x)

]2 αN∏

i=1

[
x
(γ−α)N
i (1− xi)

−βN
]
.(2.10)

The integral over DU is given by the Itzykson–Zuber–Mehta formula (we write it having in
mind that we subsequently integrate it over variables xi with a totally symmetric measure),

∫
DU e−N

∑
i1,i2

xi1
Ui1,i2

|λi2
|−2U†

i2,i1 =
e−N

∑
i xi|λi|−2

∆(xi)∆(|λi|−2)
,

so the final formula for the generating function reads

(2.11)

∏αN
i=1 |λi|−2γN

∆(|λ|−2)

∫ ∞

0

dx1 . . . dxαN∆(x)eN
∑

i[−xi|λi|
−2+(γ−α) logxi−β log(1−xi)].

The integral (2.11) is equivalent to the matrix-model integral

(2.12)

αN∏

i=1

|λi|−2γN

∫

αN×αN

DH≥0e
N tr[−HΛ−2+(γ−α) logH−β log(1−H)],

where the integration goes over Hermitian (αN × αN)-matrices with positive eigenvalues. We
thus obtain the following statement.

Lemma 2.1. The generating function for Grothendieck dessins d’enfants (Belyi fat graphs
(1.1)) is the matrix-model integral (2.12).

The integral (2.12) belongs to the class of generalized Kontsevich models (GKM) [20]; in terms
of variables ξi = 1/|λi|2 it can be calculated as the ratio of determinants of (αN×αN)-matrices,

∥∥∥
∂i1−1f(ξi2)

∂ξi1−1
i2

∥∥∥/∆(ξ),

where

f(ξ) =

∫ ∞

0

dxe−Nxξx(γ−α)N (1− x)−βN ,
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and as such is a tau-function of the Kadomtsev–Petviashvili (KP) hierarchy in times tn =∑
i ξ

−n
i =

∑
i |λi|2n (cf. (2.3)) i.e., we come to the following theorem proved by Zograf [23] by

purely combinatorial means with the using of the cut-and-joint operator.

Theorem 2.2. The generating function for Belyi fat graphs (1.1) is the tau-function of the KP
hierarchy in times (2.3).

Integral (2.12) was studied by one of the authors and Palamarchuk [14] in relation to exploring
possible explicit solutions of matrix models with external fields. It was called the two-logarithm
model there and it was proved that this integral admits Virasoro constraints that, upon a
proper change of times, become the Virasoro constraints of the matrix model introduced in [12]
(the term Kontsevich–Penner model was coined there), which, in turn, is equivalent [13] to a
Hermitian one-matrix model with the potential related to the external-field variables ξi via the
Miwa transformation. As such, this integral must also satisfy the equations of the Toda chain
hierarchy.

Remark 2.3. An important remark concerning integral (2.12) is that its asymptotic behavior
as N → ∞ is different depending on whether γ − α ≃ O(1) or γ − α ≃ O(1/N). In the
first case, we have an infinite repulsive potential at the origin and an eigenvalue distribution
is confined within an interval [x′

−, x
′
+] (see below) with 0 < x′

− < x′
+. The 1/N -expansion

then is “insensitive” to the hard edge at the origin, and we can assume that we integrate over
the whole real axis (the difference between the restricted and nonrestricted integrations is then
exponentially small in N). If γ = α or γ − α ∼ O(1/N), representation (2.12) still remains
valid, but in this case the eigenvalue support is [0, x′

+], so it reaches the hard edge x = 0 at the
origin. We then again have a topological expansion (about 1/N -expansion in matrix models
with hard edges, see, e.g., review [8]) but with the differential ydx finite at x = 0 (y ∼ 1/

√
x

as x → 0 and y ∼
√

x− x′
+ as x → x′

+). The asymptotic expansions of integral (2.12) are
therefore different in the corresponding regimes and do not admit an analytical transition as
γ → α.

Remark 2.4. In Sec. 4, we present a simpler, straightforward way of proving that generating
function (1.1) for general Belyi morphisms is indeed a Hermitian one-matrix model free energy.
However, the external field technique of this and next sections will be instrumental when proving
a general correspondence between the generating functions for clean (Sec. 5) and two-profile
(Sec. 6) Belyi morphisms and free energies of the corresponding generalized Kontsevich models.

3. The two-logarithm matrix model

In this section, we present the results of [14] adapted to the notation of integral (2.12).

3.1. Constraint equations for integral (2.12). We first perform the variable changing

(3.1)
Ñ = αN, Λ̃ = Λ−2/(2α), H̃ = 2H − 1

α̃ = β/α, β̃ = 1− γ/α.

in (2.12). Disregarding here and hereafter factors not depending on λ’s, the integral then takes
the form

(3.2)

Ñ∏

i=1

[
|λ̃i|γNe−Ñ |λ̃i|

] ∫

Ñ×Ñ

DH̃≥0e
−Ñ tr[H̃Λ̃+α̃ log(1−H̃)+β̃ log(1+H̃)] :=

Ñ∏

i=1

[
|λ̃i|γNe−Ñ |λ̃i|

]
Z[λ̃],

where we let Z[λ̃] denote the integral (2.12) without the normalization factor.
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The Schwinger–Dyson equations for integral (3.2) follow from the identity (here all the indices
range from 1 to αN)

(3.3)

(
1

Ñ3

∂

∂Λ̃jk

∂

∂Λ̃li

− 1

Ñ

)∫

Ñ×Ñ

DH̃
∂

∂H̃ij

e−Ñ tr[H̃Λ̃+α̃ log(1−H̃)+β̃ log(1+H̃)] = 0.

In terms of the eigenvalues λ̃i of the matrix Λ̃, the corresponding Ñ equations read
(3.4)[

− 1

Ñ2
λ̃i1

∂2

∂λ̃2
i1

− 1

Ñ2

∑

i2 6=i1

λ̃i2

λ̃i2 − λ̃i1

( ∂

∂λ̃i2

− ∂

∂λ̃i1

)
+

α̃ + β̃ − 2

Ñ

∂

∂λ̃i1

+ β̃ − α̃ + λ̃i1

]
Z[λ̃] = 0,

We can equivalently write the constraint equations (3.4) in terms of the times

(3.5) tn =
1

n

∑

i

1

λ̃n
i

, n ≥ 1.

They then becomes the set of Virasoro constraints1

(3.6) VkZ
(
{tn}

)
= 0, k ≥ 0,

where

Vk[t] := −
∞∑

m=1

mtm
∂

∂tm+k
−

k∑

m=1

∂

∂tm

∂

∂tk−m
− Ñ(α̃− β̃ + 1)(1− δk,0 − δk,−1)

∂

∂tk

+
[
2Ñ(1− δk,−1) + δk,−1t1

] ∂

∂tk+1

+ Ñ2α̃(β̃ − 1)δk,0, k = −1, 0, 1, . . . .(3.7)

(Here, for the future use, we have also introduced the operator V−1.)
The operators Vk enjoy the Virasoro algebra

(3.8) [Vk, Vl] = (l − k)Vk+l, k, l ≥ −1.

3.2. Equivalence to the Hermitian one-matrix model. In [14] it was shown that the
two-logarithm model is equivalent to the Kontsevich–Penner model [12], which in turn was
known [13], [20] to be equivalent to a Hermitian one-matrix model. In this paper, we skip the
intermediate step and demonstrate the equivalence between (2.12) and a Hermitian one-matrix
model defined as an integral

(3.9) Z1MM

[
{ξm},M

]
:=

∫

M×M

DY e−V (Y ), V (Y ) =
∞∑

m=1

ξm trY m.

It is well-known that this integral satisfies the set of Virasoro constraints uniformly written in
the form
(3.10)

LnZ1MM

[
{ξm},M

]
=
{ n∑

m=0

∂2

∂ξm∂ξn−m
+

∞∑

m=1

mξm
∂

∂ξn+m

}
Z1MM

[
{ξm},M

]
= 0, n ≥ −1,

where we have used a convenient notation ∂
∂ξ0

Z1MM

[
{ξm},M

]
= −MZ1MM

[
{ξm},M

]
.

In order to establish the correspondence it is necessary to shift the original variable λ̃,

(3.11) µi = λ̃i − ρ, ρ ∈ C,

1The authors were informed by M. Kazarian that the same constraints can be derived by pure combinatorial
means [M. Kazarian, P. Zograf, paper in preparation].
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introducing an auxiliary parameter ρ. We also introduce the new times

(3.12) τn :=
1

n

Ñ∑

i=1

1

µn
i

, n ≥ 1,

and the new normalizing factor

(3.13) N [µ] :=
Ñ∏

i=1

[
µ
Ñ(β̃−1)
i eÑµi

]

The following set of constraints was found in [14]:

Lemma 3.1. (see [14]) The normalized integral Z[λ̃]/N [µ] where λ̃i = µi + ρ satisfies the set
of Virasoro constraints

Lk

[
Z[λ̃]/N [µ]

]
= 0, k = −1, 0, 1, . . . ,

in times (3.12) with

Lk = −
∞∑

m=1+δk,−1

m(τm − 2Ñδm,1)
∂

∂τm+k
−

k−1∑

m=1

∂2

∂τm∂τk−m
+ 2ÑαKP(1− δk,0 − δk,1)

∂

∂τk

−2ϕÑ
∑

m=1+δk,−1

1

(−ρ)m
∂

∂τk+m
− (ÑαKP)

2δk,0 + ÑαKP

(
τ1 − 2Ñ − 2ϕÑ

ρ

)
δk,−1,(3.14)

where αKP = β̃ − 1 and ϕ = −(α̃ + β̃ − 1)/2.

Remark 3.2. In order to derive constraints (3.14) the following trick was used in [14]: con-
straint equations (3.4) after shift (3.11) were written in the form

∞∑

k=1

µ−k
i LkZ[λ̃] = 0,

where

Lk = Vk+1[τ ] + ρVk[τ ] + ρÑ(α̃ + β̃ − 1)
(
(1− δk,0 − δk,−1)

∂

∂τk
− (β̃ − 1)Ñδk,0

)

+ρ(β̃ − 1)Ñ(τ1 − 2Ñ)δk,−1, k ≥ −1,

were differential operators in (shifted) times τs and where we let Vs[τ ] denote operators (3.7)
upon the substitution t → τ . The “proper” Virasoro operators Lk (3.14) were finally obtained
upon the upper-triangular transformation

Lk =
∞∑

s=0

(−1)s

ρs+1
Lk+s, k ≥ −1.

We see that in order to perform all these replacements we have to keep ρ nonzero and finite.

Lemma 3.3. (see [14]) Upon the substitution

(3.15) ξn = τn +
1

n

2ϕÑ

(−ρ)n
− 2Ñδn,1, M = ÑαKP

Virasoro constraints (3.14) become Virasoro constraints (3.10) of the Hermitian one-matrix
model. Because these conditions determine the corresponding integrals unambiguously, these
two models are equivalent.

In terms of the original variables, we have the following lemma.
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Lemma 3.4. The generating function F [{tr}, β, γ;N ] (1.1) for the Belyi fat graphs is given by
the exact formula

eF [{tr},β,γ;N ] =

αN∏

i=1

[( 1

2α
− ρ|λi|2

)−γN

e
αN

(
1

2α|λi|
2 −ρ

)]
×

×Z1MM

[
ξm = τm +

1

m

(γ − β)N

(−ρ)m
− 2αNδn,1, M = −γN

]
(3.16)

with τm = 1
m

∑αN
j=1

1
µm
j

where µi + ρ = 1/(2α|λi|2). Here Z1MM

[
{ξm},M

]
is matrix integral

(3.9).

In the next section we demonstrate that this statement enables us to write explicit formulas
for terms of the genus expansion of F provided we know the answer for the free energy of
matrix model (3.9) either in terms of momentums [2] or in terms of the topological recursion
technique of [17], [10], [11], [1].

Remark 3.5. The shift of variables (3.11) is a convenient technical tool that was used in [14]
for passing to the full half-Virasoro constraint algebra that includes also the operator L−1. As
we demonstrate in the next section, the final answers for genus expansion terms do not depend
on this auxiliary parameter ρ.

3.3. The genus expansion. An extensive literature is devoted to solving the one-matrix
model (3.9) in the topological (genus) expansion; its free energy F admits a topological ex-
pansion F =

∑∞
h=0M

2−2hFh, which can be interpreted as a semiclassical expansion of a
(quasi)stationary statistical theory. As such, in the large-M limit, we observe a stationary
distribution of eigenvalues described by a spectral curve of the model. In the present paper,
as in [14], we assume that this stationary distribution spans a single interval, and we therefore
have a one-cut solution based on a spectral curve that is just a double cover of the complex
plane with two branching points, x+ and x− (a sphere). These two points are determined by
the constraint equations for the so-called master loop equation [21]

(3.17)

∮

CD

dw

2πi

V ′(w)√
(w − x+)(w − x−)

= 0,

∮

CD

dw

2πi

wV ′(w)√
(w − x+)(w − x−)

= 2M,

where the integration contour encircles the eigenvalue domain (the interval [x−, x+] in this case)
and not other singularities (including possible singularities of V ′(w)).
After the Miwa time transformation (3.15) we obtain for V ′(w) the expression

(3.18) V ′(w) = −2αN −
αN∑

i=1

1

w − µi
− (γ − β)N

1

w + ρ

and we assume that all µi and −ρ are situated outside the integration contour. We can then
take the integrals in (3.17) by residues at µi, −ρ, and infinity. For the first equation we obtain

−2αN +

αN∑

i=1

1√
(µi − x+)(µi − x−)

+ (γ − β)N
1√

(p+ x+)(p+ x−)
= 0

and shifting the branching points

x+ + ρ = x′
+, x− + ρ = x′

−
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and recalling that µi + ρ = λ̃i we obtain the constraint equation solely in terms of λ̃i:

(3.19) − 2αN +
αN∑

i=1

1√
(λ̃i − x′

+)(λ̃i − x′
−)

+ (γ − β)N
1√
x′
+x

′
−

= 0

For the second constraint equation we obtain

−αN(x′
++x′

−−2ρ)+
αN∑

i=1

λ̃i − ρ√
(λ̃i − x′

+)(λ̃i − x′
−)

−αN − (γ−β)N +(γ−β)N
−ρ√
x′
+x

′
−

= −2γN

and the term linear in ρ is just the first constraint equation and thus vanishes. So, the second
constraint equation becomes

(3.20) (γ + β − α)N − αN(x′
+ + x′

−) +
αN∑

i=1

λ̃i√
(λ̃i − x′

+)(λ̃i − x′
−)

= 0.

We see that, as expected, all the dependence on ρ disappears from constraint equations (3.19)
and (3.20).

Remark 3.6. Equations (3.19) and (3.20) exactly coincide with the respective first and second
constraint equations in Eq. (2.14) of [14] upon the substitution

(3.21)
λ → λ̃, N → αN β − α → 1− γ/α− β/α,
c → (β − γ)2/4α2, b/a → −x′

+ − x′
−, c/a → x′

−x
′
+.

The answer for F0 (formula (2.16) in [14]) obtained on the base of these constraint equations

therefore coincide (up to the normalization factor
∏αN

i=1

[
|λ̃i|γNe−αN |λ̃i|

]
) with the genus zero

contribution to generating function (1.1).

3.3.1. Genus-zero term. It follows from Remark 3.6 that the genus-zero term F0 of our gen-
erating function (1.1) upon the substitutions (3.21) and (3.1) coincides with F0 found in [14]

with added normalization term
∑αN

i=1

[
γN log λ̃i −αNλ̃i

]
. In terms of variables x′

±, λ̃ the corre-
sponding expression reads

F0 =
1

4
(β2N2 + γ2N2) log

[
(x′

+ − x′
−)

2
]

+N2(α− β − γ)

[
|β − γ| log

(
x′
+ + x′

− − 2
√
x′
+x

′
−

x′
+ + x′

− + 2
√
x′
+x

′
−

)
+

x′
+ + x′

−

2

]

+N2
[α2

8
(x′

+ + x′
−)

2 + α|β − γ|
√
x′
+x

′
− − (β − γ)2

4
log[x′

+x
′
−]
]

+N
αN∑

i=1

{
β + γ

2
log |λ̃i|+ g(λ̃i)− λ̃i +

α− β − γ

2
log
(
λ̃i −

x′
+ + x′

−

2
+ g(λ̃i)

)

−|β − γ|
4

log
g(λ̃i)− λ̃i(x′

++x′
−)

2
√

x′
+x′

−

+
√

x′
+x

′
−

g(λ̃i) +
λ̃i(x′

++x′
−)

2
√

x′
+x′

−

−
√

x′
+x

′
−

}

−1

4

αN∑

i1,i2=1

log
[
g(λ̃i1)g(λ̃i2) + λ̃i1 λ̃i2 −

λ̃i1 + λ̃i2

2
(x′

+ + x′
−) + x′

+x
′
−

]
(3.22)
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where we have introduced the notation g(λ̃i) :=
√

(λ̃i − x′
+)(λ̃i − x′

−).

It is easy to see that in the domain of large λ̃i, the expansion in (3.22) contains only negative

powers of λ̃: the linear and the logarithmic in λ̃i terms vanish in this domain.

3.3.2. Higher genus expressions. All higher genus corrections to the Hermitian one-matrix
model can be written in terms of moments [2] Mr, Jr of the potential:
(3.23)

Mr =

∮

CD

dw

2πi

V ′(w)

(w − x+)r+1/2(w − x−)1/2
, Jr =

∮

CD

dw

2πi

V ′(w)

(w − x+)1/2(w − x−)r+1/2
, r ≥ 1.

Using representation (3.18), we obtain for the moments the following expressions

(3.24)

Mr =
αN∑
i=1

1

(λ̃i − x′
+)

r+1/2(λ̃i − x′
−)

1/2
+ (γ − β)N

(−1)r

(x′
+)

r+1/2(x′
−)

1/2

Jr =
αN∑
i=1

1

(λ̃i − x′
+)

1/2(λ̃i − x′
−)

r+1/2
+ (γ − β)N

(−1)r

(x′
+)

1/2(x′
−)

r+1/2

r ≥ 1.

After substitution (3.24), the answer for Fh for generating function (1.1) is given by that of the
standard Hermitian one-matrix model. We have thus proved the following lemma

Lemma 3.7. In terms of moments (3.24), every term Fh corresponding to the genus h > 0
has a polynomial form for higher h [2],

(3.25) Fh =
∑

rs>1,qs>1

〈
r1 . . . rm; q1 . . . ql|r q p

〉
h

Mr1 · · ·MrmJq1 · · ·Jql

M r
1J

q
1 |x′

+ − x′
−|p

, h > 1,

and [3]

(3.26) F1 = − 1

24
log
[
M1J1|x′

+ − x′
−|4
]
.

Here
〈
r1 . . . rm; q1 . . . ql|r q p

〉
h
are finite (for a fixed h) sets of rational numbers given by the

topological recursion technique for the standard Hermitian one-matrix model (see [10]). They

are subject to restrictions: m+ l− r − q = 2− 2h,
∑m

s=1(r1 − 1) +
∑l

s=1(qs − 1) + p = 4h− 4,
p ≥ h− 1.

Using topological recursion we can effectively calculate the numbers
〈
r1 . . . rm; q1 . . . ql|r q p

〉
h
.

The quantity |x′
+ − x′

−|, which is often denoted by d, is the length of the interval of eigenvalue
support. Formulas (3.25), (3.26), and (3.24) thus describe generating function (1.1) in all orders
of the genus expansion.

4. Spectral curve and topological recursion

In this section, we directly derive the spectral curve without appealing to a matrix model
with external fields. For this, we shrink all solid-line cycles assigning just the original times
tr to the obtained 2r-valent vertices of the field B, B. The generating function (1.1) is then
described by the matrix-model integral over rectangular (γN × βN)-matrices B:

(4.1) Z[t] =

∫

γN×βN

DBDB e−N tr[BB]+N
∑∞

r=1
1
r
tr tr[(BB)r ],
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which, using the Jacobian from Appendix A under assumption that β > γ, can be reduced to
the γN -fold integral over positive xk:

(4.2) Z[t] =

∫ ∞

0

dx1 . . . dxγN [∆(x)]2
γN∏

k=1

x
(β−γ)N
k e

−N
∞∑

r=1

γN∑

k=1

1
r
(δr,1−tr)xr

k

.

This integral is again a Hermitian one-matrix model with a logarithmic term in the potential:

(4.3) Z[t] =

∫

γN×γN

DX≥0e
−N tr

[
∞∑

r=1

1
r
(δr,1−tr)Xr−(β−γ) logX

]

,

We have thus obtained another representation of generating function (1.1).

Lemma 4.1. Generating function (1.1) can be presented as a Hermitian one-matrix model
integral (4.3) with a logarithmic term in the potential.

Because we have reduced the original problem to a mere Hermitian one-matrix model integral,
we can directly apply a standard topological recursion procedure [10] (see [7] where it was
generalized to the case of rational functions V ′(x)). We let

(4.4) U ′(x) := N

∞∑

r=1

(δr,1 − tr)x
r−1

denote the polynomial part of the potential with times tr with the shifted first time. The
hyperelliptic spectral curve is a sphere with two branching points x′

+ and x′
− whose positions

are determined by the standard constraints (3.17) in which

(4.5) V ′(x) = U ′(x)− N(β − γ)

x
, M = γN.

Constraints (3.17) then become

(4.6)

∮

CD

dw

2πi

U ′(w)√
(w − x′

+)(w − x′
−)

=
N(β − γ)√

x′
+x

′
−

,

∮

CD

dw

2πi

wU ′(w)√
(w − x′

+)(w − x′
−)

= N(β + γ),

i.e., precisely constraints (3.19) and (3.20) after the inverse Miwa transformation.2

The y-variable of the topological recursion is given by the integral over the contour that
encircles the eigenvalue support and the point x,

(4.7) y(x) :=

∮

C[x′−,x′+]∪{x}

dw

2πi

V ′(w)
√
(x− x′

+)(x− x′
−)

(w − x)
√

(w − x′
+)(w − x′

−)
,

which can be evaluated by residues at infinity and at w = 0 (due to the presence of a pole term
in V ′(w)) The result reads

(4.8) y(x) =

(
res∞

[ U ′(w)

(w − x)
√

(w − x′
+)(w − x′

−)

]
+

N(β − γ)√
x′
+x

′
−

)√
(x− x′

+)(x− x′
−)

2The term (β + γ) in the r.h.s. of the second equation is not a misprint.
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The genus expansion for h ≥ 1 has the same form as in Lemma (3.7) with the moments
given by the standard integrals taken by residues at infinity and at w = 0:

(4.9)

Mr = res w=∞

[ U ′(w)

(w − x′
+)

r+1/2(w − x′
−)

1/2

]
+ (γ − β)N

(−1)r

(x′
+)

r+1/2(x′
−)

1/2

Jr = res w=∞

[ U ′(w)

(w − x′
+)

1/2(w − x′
−)

r+1/2

]
+ (γ − β)N

(−1)r

(x′
+)

1/2(x′
−)

r+1/2

r ≥ 1.

The term F0 has the general form [6] (for the number of eigenvalues equal t0N)

(4.10) F0 = −1

2

∫

C[x′−,x′+]

y(x)V (x)− ζt0,

where ζ is the Lagrange multiplier most conveniently obtained as the limit of the integral

(4.11) ζ = lim
Λ→+∞

(∫ Λ

x′
+

y(x)dx− V (Λ)− t0 log Λ
)
.

5. Generating functional for clean Belyi morphisms

5.1. The model. A clean Belyi morphism is a special class of Belyi pairs (C, f) that have
profile (2, 2, . . . , 2, 1, 1, . . . , 1) over the branch point 1 ∈ CP 1. This means that all dotted cycles
(in Fig. 1) have either lengths 2 (no ramification) or 4 (simple ramification). In [16] the authors
demonstrated that the generating function for ramifications of sort (2, 2, . . . , 2) satisfies the
topological recursion relations with the spectral curve (x = z + z−1; y = z).
In this section, we demonstrate that the matrix model corresponding to clean Belyi mor-

phisms is just the Kontsevich–Penner model [12], which is in turn equivalent [13] to the Her-
mitian one-matrix model with a general potential.
We thus have to calculate generating function (1.1) in which the sum ranges over only clean

Belyi morphisms. In terms of the diagrammatic technique of Sec. 2 this means that we count
only dotted cycles of lengths 2 and 4. Counting cycles of length 2 reduces to a mere changing
of the normalization of the 〈RR〉-propagators:

Λ Λ
β

Λ Λ
β

Λ Λ
β+ + + · · ·

R R RR R R

so that the propagator becomes

〈RR〉 ∼ 1

N

δi1,i2δk1,k2
1− β|λi1|2

and the corresponding quadratic form gets an external field addition:

(5.1) −N tr[RR(1− β|Λ|2)].



THE MATRIX MODEL FOR DESSINS D’ENFANTS 13

The new interaction vertex arises from the dotted cycles of length four:

Λ Λ

ΛΛ

β ∼ 1
2
Nβ tr[RRΛΛRRΛΛ]

where the factor 1/2 takes into account the symmetry of the four-cycle.
We therefore have that the generating function F is the logarithm of the integral

(5.2)

∫
DRDReN tr[−RR(1−β|Λ|2)+ 1

2
βRR|Λ|2RR|Λ|2],

where we integrate over rectangular complex (γN × αN)-matrices R. We first rescale the
integration variable R → RΛ, which results in the integral

(5.3)

αN∏

i=1

|λi|−2γN

∫
DRDReN tr[−RR(|Λ|−2−β)+ 1

2
βRRRR].

Performing now the same chain of transformations as in Sec. 2, we obtain eventually that
integral (5.3) is equivalent to the Hermitian one-matrix model integral

(5.4)
αN∏

i=1

|λi|−2γN

∫

αN×αN

DH≥0e
N tr[−H(Λ−2−β)+(γ−α) logH+ 1

2
βH2].

Lemma 5.1. The generating function for clean Belyi fat graphs ((1.1) with ramification profiles
(2, . . . , 2, 1, . . . , 1) at the point 1) is the matrix-model integral (5.4). This matrix-model integral
is the (original) Kontsevich–Penner matrix model [12], [13].

Remark 5.2. If we demand the ramification profile at the point 1 to be just (2, 2, . . . , 2) (no
dotted two-cycles are allowed), then in order to obtain the corresponding generating function
we must merely replace Λ−2 − β by Λ−2 in (5.4).

5.2. Solving integral (5.4). That the Kontsevich–Penner matrix model integral (5.4) is
equivalent to the Hermitian one-matrix model integral (3.9) is well known. This equivalence
was established using the Virasoro constraints in [13] or using explicit determinant relations in
[20]. We recall here the logic of [20].
We begin with the standard eigenvalue representation for integral (3.9),

(5.5)

∫
dy1 . . . dyM [∆(y)]2e−

∑∞
k=1

∑M
i=1 ξky

k
i

in which we again perform the Miwa change of variables with the Gaussian shift,

(5.6) ξk =
1

k

N∑

j=1

1

µk
j

+
1

2
δk,2.

Summing up the terms in the exponential into logarithms, we transform integral (5.5) to the
form ∫

dy1 . . . dyM [∆(y)]2
M∏

i=1

N∏

j=1

(µj − yi)
N∏

j=1

µ−M
j e−

1
2

∑M
i=1 h

2
i .
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We now use that ∆(y)
∏M

i=1

∏N
j=1(µj − yi) = ∆(y, µ)/∆(µ), where ∆(y, µ) is the Vandermonde

determinant of the set of variables yi and µj, write each of the determinants ∆(y, µ) and ∆(y)
as determinants of the Hermitian polynomials Hs(x), where s ranges from 0 to M +N − 1 and
x are either yi or µj in the first determinant and s ranges from 0 to M − 1 and x are yi in
the second determinant. Because the Hermitian polynomials are orthogonal with the measure
e−

1
2
x2
, we can integrate out all the y-variables; the remaining expression will be the determinant

of the (N × N)-matrix ‖HM+j1−1(µj2)‖, j1, j2 = 1, . . . , N , and the original integral (5.5) thus
takes the form

(5.7)

N∏

j=1

µ−M
j

1

∆(µ)

∣∣∣∣∣∣∣∣

HM(µ1) HM(µ2) . . . HM(µN)
HM+1(µ1) HM+1(µ2) . . . HM+1(µN)

...
... . . .

...
HM+N−1(µ1) HM+N−1(µ2) . . . HM+N−1(µN)

∣∣∣∣∣∣∣∣

On the other hand, we obtain the same ratio of determinants multiplied by e−
1
2

∑
j µ

2
j if we

consider the N -fold integral

(5.8)

∫
dx1 . . . dxN

∆(x)

∆(µ)

N∏

j=1

xM
j e

∑N
j=1(xjµj+

1
2
x2
j )

because
∫
dx xsexµ+

1
2
x2

= e−
1
2
µ2
Hs(µ). Expression (5.8) is nothing but the Kontsevich–Penner

integral, so we obtain the relation between two matrix integrals of different sizes:

(5.9)

∫

N×N

DX etr[Xµ+ 1
2
X2+M logX] =

M∏

j=1

[
µM
j e−

1
2
µ2
j

] ∫

M×M

DY e
−

∞∑

k=1

ξk tr Y k

, ξk =
1
k

N∑
j=1

1
µk
j

+ 1
2
δk,2.

After a simple algebra, we come to the following lemma.

Lemma 5.3. The generating function (1.1) for the clean Belyi morphisms with the ramification
profile (2, 2, . . . , 2) at the point 1 is given by the following Hermitian one-matrix model integral
for γ − α ≃ O(1):

(5.10) Z[t; γ, β] =

αN∏

i=1

|λi|−2γN

∫

M×M

DY e
−

∞∑

k=1

tk
k
(−1)k tr Y k− N

2β
tr Y 2

, tk =
αN∑
i=1

λ2k
i , M = (γ − α)N.

Because this integral is also equivalent to Kontsevich–Penner matrix model (5.4) (with the
external field term Λ−2 instead of Λ−2 − β), it also belongs to the GKM class thus being a tau
function of the KP hierarchy.

Remark 5.4. Note again that the above correspondence is valid only in the 1/N asymptotic
expansion and only when γ − α ≃ O(1). If γ − α . O(1/N) the above correspondence fails
because in this case we must take into account that we integrate in formula (5.4) over positive
definite matrices, contrary to formula (5.9) in which no restriction on integration domain is
assumed. So, again, the case γ = α is special and must be treated separately.

6. A general case of two-profile Belyi morphisms

Combining the techniques of Secs. 2 and 4 we now address the most general case of Belyi
morphisms with given profiles at two branching points: infinity and 1. We take these profiles
into account in two different ways: at infinity we, as in Sec. 4, introduce the times tm responsible



THE MATRIX MODEL FOR DESSINS D’ENFANTS 15

for the profile whereas the times at 1 will be taken into account by introducing, as in Sec. 2,
the external field Λ with

(6.1) ts = tr
[
(ΛΛ)s

]
=

γN∑

k=1

|λk|2s.

We then have the following statement

Lemma 6.1. The generating function

(6.2) F [{t1, t2, . . . }, {t1, t2, . . . }, β;N ] =
∑

Γ

1

|AutΓ|N
2−2gβn2

n1∏

i=1

tri

n3∏

k=1

tsk

of Belyi morphisms in which we have two sets of ramification profiles: {tr1 , . . . , trn1
} at infinity

and {ts1, . . . , tsn3
} at 1 is given by the integral over complex rectangular (βN × γN)-matrices

B,B:

(6.3) Z[t, t] := eF [{t},{t},β;N ] =

∫

γN×βN

DBDB e−N tr[BB]+N
∑∞

m=1
1
m
tm tr[(BB ΛΛ)m],

where the times ts are given by (6.1).

Performing the same operation as in (4.1)–(4.3), we obtain that integral (6.3) is equal to the
integral over Hermitian positive definite (γN × γN)-matrix X with the external matrix field
Λ̃ = |Λ|−2:

(6.4) Z[t, τ ] =

γN∏

k=1

|λk|−2βN

∫

γN×γN

DX≥0e
N tr

[
−X|Λ|−2+

∞∑

m=1

tm
m

Xm+(β−γ) logX

]

,

Integral (6.4) is again a GKM integral [20]; after integration over eigenvalues xk of the matrix
X it takes the form of the ratio of two determinants,

(6.5) Z[t, τ ] =

γN∏

k=1

|λk|−2βN

∥∥∥ ∂k1−1

∂λ̃
k1−1
k2

f(λ̃k2)
∥∥∥
γN

k1,k2=1

∆(λ̃)
,

where

(6.6) f(λ̃) =

∫ ∞

0

xN(β−γ)e
−Nxλ̃+N

∞∑

m=1

tm
m

xm

.

Because any GKM integral (in the proper normalization) is a τ -function of the KP hierarchy,
we immediately obtain the following theorem.

Theorem 6.2. The exponential eF [{t},{t},γ;N ] of generating function (6.2) modulo the normal-

ization factor
∏γN

k=1 |λk|−2βN is a τ -function of the KP hierarchy (that is, it satisfies the bilinear
Hirota relations) in times ts given by (6.1).

7. Conclusion

We have proved that generating functions for numbers of three different types of Belyi mor-
phisms are free energies of special matrix models all of which are in the GKM class thus being
tau functions of the KP hierarchy. Besides this, it is interesting to establish other relations
between, say, generating function (1.1) for clean Belyi morphisms and the free energy of the
Kontsevich–Penner matrix model, which is known (see [9],[22],[15]) to be related to the numbers
of integer points in moduli spaces Mg,n of curves of genus g with n holes with fixed (integer)
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perimeters; the very same model is also related [9] by a canonical transformation to two copies
of the Kontsevich matrix model expressed in times related to the discretization of the moduli
spaces Mg,n. It is tempting to find possible relations between these discretizations, cut-and-join
operators of [23], and Hodge integrals of [19].
Of course, the possibility of using GKM techniques when studying enumeration problems for

Belyi morphisms deserves more detailed studies; we consider this note a first step in exploring
this perspective field of knowledge.
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Appendix A Deriving the Jacobian of transformation (2.8)

The invariant measure DU DV in the vicinity of the unity becomes DHDH̃ DP DP . For
dRi,k we then obtain

(A.1) dRi,k =
{
dmiδi,k + idHi,kmk + imidH̃i,k, k ≤ αN

∣∣∣ midPi,k−αN , k > αN
}
.

The elements dmi appear only for i = k with the unit factor, so we have to calculate only
“non-diagonal” differentials DRDR. For i < k ≤ αN we have:

(A.2)
dRi,k = idHi,kmk + imidH̃i,k, dRk,i = idH∗

i,kmi + imkdH̃
∗
i,k,

dRk,i = −idHi,kmi − imkdH̃i,k, dRi,k = −idH∗
i,kmk − imidH̃

∗
i,k.

Combining the columns in these relations, we obtain

(A.3)
dRi,k ∧ dRk,i = dHi,k ∧ dH̃i,k[mkmk −mimi],

dRk,i ∧ dRi,k = dH∗
i,k ∧ dH̃∗

i,k[mimi −mkmk],
1 ≤ i < k ≤ αN,

and we obtain that

(A.4)
αN∧
i,k=1

dRi,k ∧ dRk,i = DH ∧DH̃ ∧
αN∏

i=1

dmi ∧ dmi

∏

1≤i<k≤αN

[
|mi|2 − |mk|2

]2
.

For the remaining part we merely obtain from (A.1) that

(A.5) ∧
i=1,...,αN

k=αN+1,...,γN

dRi,k ∧ dRk,i = DP ∧DP
αN∏

i=1

|mi|2(γ−α)N ,

so we finally obtain formula (2.9) for the Jacobian of transformation (2.8).
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