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Transitive Factorizations in the
Hyperoctahedral Group

G. Bini, I. P. Goulden, and D. M. Jackson

Abstract. The classical Hurwitz enumeration problem has a presentation in terms of transitive factor-
izations in the symmetric group. This presentation suggests a generalization from type A to other finite
reflection groups and, in particular, to type B. We study this generalization both from a combinatorial
and a geometric point of view, with the prospect of providing a means of understanding more of the
structure of the moduli spaces of maps with an S2-symmetry. The type A case has been well studied
and connects Hurwitz numbers to the moduli space of curves. We conjecture an analogous setting for
the type B case that is studied here.

1 Introduction

Transitive factorizations of permutations into transpositions occur in Hurwitz’s ap-
proach to determining the Hurwitz number hg(θ), the number of genus g ramified
covers of the sphere with elementary branching at a prescribed number of points and
arbitrary ramification over infinity specified by the partition θ. This problem, which
is called Hurwitz’s enumeration problem, and its generalizations have attracted con-
siderable attention in recent years and have been shown to have deep connections
through geometry to the moduli space of maps. The presentation of Hurwitz’s prob-
lem in terms of factorizations of permutations makes it susceptible to approaches
from algebraic combinatorics, and these approaches have assisted our understanding
of the problem. The type A setting of the problem strongly suggests another direction
of generalization, namely to other finite reflection groups. In this paper we study the
Hurwitz problem for type B, the hyperoctahedral group, with the purpose of under-
standing both the combinatorics and the geometry of this generalization. We derive
the main result by combinatorial means and then provide a geometrical explanation
of the result so that the connection between the two approaches may be better under-
stood. We surmise that the S2-action that is present in the type B Hurwitz problem
might yield new moduli spaces of maps with a specific S2-symmetry.

The organization of the paper is as follows (the few undefined terms appearing in
this paragraph are defined later). In Section 2, we give the axiomatization of admis-
sible and near-admissible factorizations for the hyperoctahedral Hurwitz numbers in
terms of permutation factorizations, and give combinatorial properties of the hyper-
octahedral group. In Section 3, we solve the hyperoctahedral analogue of the Hurwitz
problem by enumerating an auxiliary set of factorizations called admissible factoriza-
tions. This is our main combinatorial result, stated in Theorem 3.4, which expresses
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the number of such factorizations (denoted by sg, j(λ, µ) where λ, µ are partitions) as
an explicit multiple of the number of transitive factorizations (denoted by cg(λ∪µ)).
By Hurwitz encoding cg(λ ∪ µ) is equal to the Hurwitz number hg(λ ∪ µ). In Sec-
tion 4, we consider the geometric interpretation of the hyperoctahedral transitive
factorization problem. We begin with the geometric problem equivalent to Hurwitz
factorizations that motivated Hurwitz’s [H] work. Then we consider an associated
geometric problem that is equivalent to admissible factorizations in the hyperocta-
hedral group, thus translating our main combinatorial result to a geometric result,
given as Theorem 4.1. In Section 5, we use geometric means to prove Theorem 4.1,
and formulate a conjecture for moduli spaces based on this proof.

We conclude this Section with some remarks about why we have included both
a combinatorial and geometric proof of the main result. Approaches from algebraic
combinatorics associated with factorizations of permutations have been successful in
complementing work in algebraic geometry in the past. For example, it is known
that a map (a two-cell embedding of a graph in an orientable or non-orientable sur-
face) can be expressed in terms of the double coset algebra of the hyperoctahedral
group, starting from Tutte’s [T] permutation axiomatization, in which the product
of the vertex permutation and the edge permutation gives the face permutation. An
argument in algebraic combinatorics leads to an expression for the generating series
for these embeddings in terms of Jack symmetric functions, and thence to a conjec-
ture [GHJ] that there exists an invariant for a line bundle on the moduli space of
curves that permits a smooth interpolation between the virtual Euler characteristics
of the moduli spaces of complex and real curves. The interpolation is smooth in
the sense that the conjectured invariant is associated with a conjectured invariant of
maps whose existence has been demonstrated for certain infinite classes of maps.

As a second example, recent progress on the double Hurwitz numbers through
Hurwitz’s construction has led to a conjectured analogue of the Ekedahl–Lando–
Shapiro–Vainshtein formula for the moduli space of curves. Strong evidence was
given from algebraic combinatorics [GJV] that these numbers are top intersections
on the moduli space of complex curves with a line bundle (a universal Picard vari-
ety). Further evidence supporting this conjecture has been provided by Shadrin and
Zvonkine [SZ], who showed that a modified form of the generating series satisfies
the Hirota equation, thereby establishing a connection with integrable systems.

In this paper, it has been necessary to develop further combinatorial properties
of the double coset algebra of the hyperoctahedral group. Our intent is that, in ad-
dressing a natural question about a generalization of the Hurwitz problem both from
a combinatorial and geometric standpoint, this paper will lead to further useful in-
sights into the interaction between these two approaches.

2 Preliminaries

We begin by considering factorizations in the symmetric group and then in the hy-
peroctahedral group.
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2.1 The Hurwitz Problem

Let Sd be the symmetric group acting on the set Nd = {1, . . . , d}. A partition is a
weakly ordered list of positive integers α = (α1, . . . , αk), where α1 ≥ · · · ≥ αk. The
integers α1, . . . , αk are called the parts of the partition α, and we denote the number
of parts by l(α) = k. If α1 + · · · + αk = d, then α is a partition of d, and we define
|α| by |α| = d. If λ, µ are partitions, then λ ∪ µ denotes the multiset union of λ and
µ. Let Cα be the conjugacy class of Sd consisting of all permutations whose disjoint
cycle lengths are specified by the parts of α. If σ1, . . . , σr are elements of a group, let
⟨σ1, . . . , σr⟩ denote the subgroup generated by σ1, . . . , σr.

In the (classical) Hurwitz problem, we consider k-tuples σ = (σ1, . . . , σk), subject
to the conditions:

HF1 σ1, . . . , σk are transpositions in Sd;
HF2 σ1 · · ·σk = ρ where ρ ∈ Cα;
HF3 ⟨σ1, . . . , σk⟩ acts transitively on Nd;
HF4 2g + d + l(α) − 2 = k.

We call a factorization σ of ρ satisfying these conditions a Hurwitz factorization. Let
cg(α) be the number of Hurwitz factorizations of each ρ ∈ Cα. Note that condition
HF4 is not a restriction; instead, it defines a non-negative integer parameter g.

The Hurwitz problem has been the subject of substantial study in the last decade.
Goulden and Jackson [GJ1] have obtained an explicit formula for cg(α) in the case
g = 0, and also in the case g = 1 (for the latter, see [GJ2], and Vakil [V2]). Ekedahl,
Lando, Shapiro and Vainshtein [ELSV] have given an expression for cg(α) as a Hodge
integral, for arbitrary g.

2.2 The Hyperoctahedral Group CHd

In this paper, we consider an analogue of the Hurwitz problem for the hyperoctahe-

dral group. Let Ŝd be the symmetric group acting on the set N̂d = {1, 1̂, . . . , d, d̂ }

and let ε = (1 1̂) · · · (d d̂ ), in cycle notation. We regard the hyperoctahedral group

Hd as being embedded in Ŝd as the centralizer of ε. Now, for σ ∈ Ŝd, let σε denote
conjugation of σ by ε, so σε = εσε. Then for π ∈ Hd, we have π = πε. It is useful
combinatorially to observe that conjugation of π by ε interchanges the hatted and

unhatted symbols of N̂d. Let c be a cycle in the disjoint cycle representation of π.
Then either cε = c, in which case we call c an ε-invariant cycle, or there is another cy-
cle of π that is equal to cε, in which case we call (c, cε) an ε-conjugate pair of cycles. If

c is an ε-invariant cycle, then i lies on c if and only if î lies on c, for each i = 1, . . . , d.
Thus the length of c is even. If (c, cε) is an ε-conjugate pair of cycles then i lies on c if

and only if î lies on cε, and î lies on c if and only if i lies on cε, for each i = 1, . . . , d.
Thus the lengths of c and cε are equal.

Let Aλ,µ be the set of all π ∈ Hd such that the parts of 2λ specify the lengths of the
ε-invariant cycles of π, and the parts of µ ∪ µ specify the lengths of the cycles in the
ε-conjugate pairs of cycles of π. Clearly, if π ∈ Aλ,µ, then π ∈ Cα, where Cα is the

conjugacy class of Ŝd specified by α = 2λ ∪ µ ∪ µ. Thus, l(λ) + 2l(µ) = l(α), and
|λ| + |µ| = d, since α is a partition of 2d.
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With each π ∈ Hd, we associate a unique bπ ∈ Sd, called the source of π, which is
obtained as follows. For each ε-conjugate pair of cycles (c, cε) in π, if we remove the

hats from each occurrence of 1̂, . . . , d̂, then c and cε give the same cycle c ′ of elements
in Nd. For each ε-invariant cycle c, if we remove the hats from each occurrence of

1̂, . . . , d̂, then c gives a cycle that consists of two concatenated copies of a cycle c ′ of
elements in Nd. Then the disjoint cycles of bπ consist of all the c ′ obtained from the
cycles of π as above. For example, if π = (1 5̂ 4)(1̂ 5 4̂)(2 3̂ 2̂ 3), then bπ = (1 5 4)(2 3).

There are 2d different elements π ∈ Hd with the same source ρ = bπ, which can
be seen as follows. If a cycle in ρ has m elements, then there are 2 choices, ε-invariant
cycle or ε-conjugate pair of cycles, for the corresponding cycles in π. This fixes the

location of the smallest element i of the cycle and its mate î. Then there are 2 choices

for the locations of each of the other m − 1 elements j and their mates ĵ. Thus there
are 2m choices for π arising from a cycle of length m in ρ, and the product of choices
over all the cycles gives the total of 2d choices of π. Moreover, if ρ ∈ Cα, then for each
such π, we have π ∈ Aλ,µ, where λ ∪ µ = α. Of course, it immediately follows that
|Hd| = 2d d! .

2.3 Admissible and Near-Admissible Factorizations

For the hyperoctahedral analogue of the Hurwitz problem, let

Fd = {(i j)(î ĵ) ∪ (i ĵ)(î j) | 1 ≤ i < j ≤ d} and Gd = {( j ĵ) | 1 ≤ j ≤ d};

these sets, for different reasons, are both analogues in Hd for transpositions in Sd.
Consider (k + j)-tuples a = (a1, . . . , ak+ j), subject to the conditions:

AF1 a1, . . . , ak+ j ∈ Fd ∪ Gd, with k of them chosen from Fd, and j of them from
Gd;

AF2 a1 · · · ak+ j = π, where π ∈ Aλ,µ, for some λ, µ with |λ| + |µ| = d;

AF3 ⟨a1, . . . , ak+ j⟩ acts transitively on N̂d;
AF4 2g + 2d + l(λ) + 2l(µ) − 2 = 2k + j.

For brevity, we call a factorization a that satisfies these four conditions an admissible
factorization of π, and let sg, j(λ, µ) be the number of admissible factorizations of
each π ∈ Aλ,µ, with d, j, g fixed as above. Again, note that condition AF4 is not a
restriction, but defines a non-negative integer g.

To enumerate admissible factorizations, our strategy is to introduce an associated
set of factorizations, called near-admissible factorizations. It is convenient to consider
the mapping R : Fd ∪ Gd → Sd, defined by R((i j)(î ĵ )) = R((i ĵ )(î j)) = (i j) for

1 ≤ i < j ≤ d, and R(( j ĵ )) = ι (the identity in Sd) for 1 ≤ j ≤ d. A factorization
that satisfies the conditions for admissibility, with condition AF3 replaced by

NAF3 ⟨R(a1), . . . , R(ak+ j)⟩ acts transitively on Nd,

is called a near-admissible factorization. Note that condition AF3 implies condition
NAF3, but not conversely. For example, ⟨R((1 2̂ )(1̂ 2)), R((1 3)(1̂ 3̂ ))⟩, which is equal
to ⟨(1 2)(1 3)⟩, acts transitively on N3. However, ⟨(1 2̂ )(1̂ 2), (1 3)(1̂ 3̂ )⟩ does not act

transitively on N̂3, although it does act transitively on the subsets R and Rε of N̂3
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where R = {1, 2̂, 3}. Let tg, j (λ, µ) be the number of near-admissible factorizations
of each π ∈ Aλ,µ, with g, j satisfying the four conditions. In particular, we have
2g + 2d + l(λ) + 2l(µ) − 2 = 2k + j. When j = 0 and l(λ) = 0, it is possible
to have g = −1. The choice of g = −1 should be viewed formally, with g defined
by the above equation; the relaxation of condition AF3 to condition NAF3 allows
factorizations with fewer factors (smaller choices of k) to occur, as in the example
(1 2̂ )(1̂ 2)(1 3)(1̂ 3̂ ) above. From a geometrical point of view, later we shall see that
admissible factorizations correspond to connected curves with an involution, while
nearly admissible factorizations allow the curve to be composed of two isomorphic
components. The total Euler characteristic of the curve equals 2−2g, so in particular
g = −1 means that the curve is a union of two spheres.

3 Enumerating Factorizations in the Hyperoctahedral Group

In this section, we enumerate admissible factorizations, by obtaining two relation-
ships between the numbers of admissible, near-admissible and Hurwitz factoriza-
tions.

3.1 The First Relationship

The first construction, which follows, is a “doubling” construction applied to Hur-
witz factorizations, that creates uniquely the near-admissible factorizations that are
not admissible. It includes the explanation of how near-admissible factorizations
with g = −1 arise. In the proof of this result, some terminology for transitivity is
useful. If an element θ of a subgroup of the symmetric group acting on a set M maps
i to j, for i, j ∈ M (so θ−1 maps j to i), then we say (symmetrically) that i and j are
in the same orbit of M. If the subgroup acts transitively on M, then the elements of
M are in a single orbit of M.

Theorem 3.1 For g ≥ 0,

t2g−1, j(λ, µ) − s2g−1, j(λ, µ) =

{
2l(µ)−1cg(µ) j = 0 and λ = ∅,

0 otherwise.

Proof We characterize the near-admissible factorizations that are not admissible.
Consider an arbitrary near-admissible factorization. From the form of the factors in
Fd, condition NAF3 implies that for each 1 ≤ i < j ≤ d, either i, j are in the same

orbit and î, ĵ are in the same orbit, or i, ĵ are in the same orbit and î, j are in the same
orbit, or both. Thus, for a near-admissible factorization that is not admissible, there
must be some set R = {r1, . . . , rd}, with r1 = 1, and ri = i or î for i = 2, . . . , d, such
that {r1, . . . , rd} are all in one orbit and Rε = {r1, . . . , rd}ε are all in another orbit.

In particular, this means that i and î are in different orbits for all i = 1, . . . , d. But
each factor (i î) in Gd puts i and î in the same orbit, so this is only possible for near-
admissible factorizations with j = 0. Similarly, each ε-invariant cycle contains both i

and î, for some i = 1, . . . , d, so this is only possible for near-admissible factorizations
with λ = ∅ (the empty partition).
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Now consider a near-admissible factorization that is not admissible, correspond-
ing to R as above. Then this is a factorization a = (a1, . . . , ak) of π ∈ A∅,µ, where
ai = σi σε

i , for i = 1, . . . , k, and σi is a transposition on R. Moreover, π = ρ ρε,
where ρ ∈ Cµ is a permutation on R, since π contains only ε-conjugate pairs of
cycles (c, cε), where either c or cε contains only elements from R, for each such con-
jugate pair of cycles. Thus each such factorization corresponds to a unique Hurwitz
factorization of ρ ∈ Cµ, in the symmetric group acting on R. But there are 2l(µ)−1

choices of R that are consistent with each such π ∈ A∅,µ, since for each ε-conjugate

pair of cycles (c, cε) not containing elements 1, 1̂, we have two choices: either the el-
ements of c are placed in R (and the elements of cε are thus in Rε), or the elements
of cε are placed in R (and the elements of c are thus in Rε). This gives the factor of
2l(µ)−1 on the right-hand side of the result.

Now, if the Hurwitz factorization of ρ has genus g and the near-admissible factor-
ization of π has genus g ′, then 2g + d + l(µ) − 2 = k, from condition HF4 for the
Hurwitz factorization. But for the near-admissible factorization, condition AF4 gives
2g ′ + 2d + 2l(µ) − 2 = 2k, so, by eliminating k, we conclude that g ′ = 2g − 1. The
result follows.

Clearly, g ′ = −1 when g = 0, and thus near-admissible factorizations with
g ′ = −1 arise. Of course, none of these is admissible.

3.2 Some Enumerative Properties of CHd

We now turn to the second relationship directly relating near-admissible and Hurwitz
factorizations. The proof depends on the following results concerning the group

algebra CHd of the hyperoctahedral group. Let x j = ( j ĵ ), for j = 1, . . . , d, and

Ed =

∑

α⊆Nd

|α| even

∏

j∈α

x j , Od =

∑

α⊆Nd

|α| odd

∏

j∈α

x j , Ld =

d∑

j=1

x j ,

where it is noted that x1, . . . , xd commute.

Proposition 3.2

(i) Ed, Od, Ld commute, and Ld Ed = d Od, Ld Od = d Ed.
(ii) Let σi = (ui vi), for i = 1, . . . , k, be transpositions in Sd, where ⟨σ1, . . . , σk⟩ acts

transitively on Nd. Then
∏k

i=1(1 + xui xvi ) = 2k−d+1Ed.
(iii) If ρ ∈ Sd, then

(Ed + Od) ρ ρε
=

∑

π∈Hd
bπ=ρ

π.

Proof (i) Let x = (x1, . . . , xd), i = (i1, . . . , id), and xi = xi1
1 · · · xid

d . Let 1 denote the
(row) vector of d 1’s and let Vd = ker(1) ≤ GF(2)d. Since x2

1 = · · · = x2
d = ι, then xi

is a term of Ed if and only if i ∈ Vd, so

(3.1) Ed =

∑

i∈Vd

xi.
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We first prove the result for k = d − 1. Let ei j , for i ̸= j, be the vector with 1’s in
positions i and j, and 0’s elsewhere. Then ei j ∈ Vd for all i ̸= j and

(3.2)
d−1∏

i=1

(1 + xui xvi ) =

∑
xi,

where the summation is over i in span{eu1v1 , . . . , eud−1vd−1
}.

We now prove that {eu1v1 , . . . , eud−1vd−1
} is linearly independent. Suppose the con-

trary. Since the group ⟨σ1, . . . , σd−1⟩ acts transitively on Nd, then the graph on
vertex-set Nd, with edges given by {u1, v1}, . . . , {ud−1, vd−1} is connected, and is
therefore a tree T on d vertices. Then from the supposition, T has a non-trivial con-
nected subgraph T ′, each of whose vertices has even degree. But T ′ is a tree, and it
therefore has at least two vertices of degree one, which is a contradiction. It follows
that {eu1v1 , . . . , eud−1vd−1

} is linearly independent. But these are vectors in Vd, and
dim Vd = d − 1. Thus span{eu1v1 , . . . , eud−1vd−1

} = Vd, and the result follows in the
case k = d − 1 from (3.1) and (3.2).

To prove the result for all k, note that the transitivity of the action of ⟨σ1, . . . , σk⟩

on N̂d implies that the graph on vertex-set Nd, with edges given by {u1, v1}, . . . ,
{uk, vk} is connected, and therefore contains a spanning tree (so k ≥ d − 1). Now
the terms in the product on the left-hand side of the result commute, so the product
of the terms corresponding to the d − 1 edges of any spanning tree is equal to Ed,
from above. But x jEd = Od for j = 1, . . . , d, so xix jEd = Ed for 1 ≤ i, j ≤ d.
Thus (1 + xix j)Ed = 2Ed so each of the remaining k − (d − 1) terms contributes an
additional factor of 2. The result follows immediately.

(ii) The x j ’s commute, and x2
j = ι, so x jEd = Od and x jOd = Ed for any j =

1, . . . , d, and the result follows.
(iii) Consider the cycle c = (c1, . . . , cm) in ρ (with the convention that c1 is the

smallest element on the cycle), and an arbitrary subset {α1, . . . , αi} of {1, . . . , m},
where 1 ≤ α1 < · · · < αi ≤ m. Then if i is even, we obtain

xcα1
· · · xcαi

c cε
= (c1 · · · cα1−1ĉα1 · · · ĉα2−1cα2 · · · ĉαi−1cαi · · · cm)

(ĉ1 · · · ĉα1−1cα1 · · · cα2−1ĉα2 · · · cαi−1ĉαi · · · ĉm),

which is an ε-conjugate pair of cycles. However, if i is odd, we obtain

xcα1
· · · xcαi

c cε
= (c1 · · · cα1−1ĉα1 · · · ĉα2−1cα2 · · · cαi−1ĉαi · · · ĉm

ĉ1 · · · ĉα1−1cα1 · · · cα2−1ĉα2 · · · ĉαi−1cαi · · · cm),

which is an ε-invariant cycle. Note that these two cases, together, create uniquely all
2m choices of cycles in π that have c as a source. The result follows, since when each
term in Od + Ed is multiplied by ρ ρε, we obtain a product of factors of the type

xcα1
· · · xcαi

c cε,

one for each cycle c of ρ.
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3.3 The Second Relationship

The second result, stated below, expresses the number of near-admissible factoriza-
tions in the general case directly in terms of the classical Hurwitz numbers.

Theorem 3.3 For g ≥ 0, with j ≡ l(λ) (mod 2), then

t2g−1+ j+l(λ)
2 , j

(λ, µ) =

(
k + j

j

)
2k−d+1d jcg(λ ∪ µ),

where 2g + d + l(λ) + l(µ) − 2 = k.

Proof Suppose that σ = (σ1, . . . , σk) is a Hurwitz factorization of ρ, where σ j =

(p j q j), for j = 1, . . . , k. Let NF j(σ) be the set of all near-admissible factorizations
a = (a1, . . . , ak+ j), with k factors from Fd, with the restriction that the k transposi-
tions in the list R(a1), . . . , R(ak+ j) are, in left to right order, σ1, . . . , σk. Let

NF j(σ) =

∑

a∈NF j (σ)

a1 · · · ak+ j ∈ CHd.

In this proof we adopt the convention that
∏k

j=1 is an iterated non commutative
product, with the terms multiplied from left to right and indexed by j in increasing
order. Let the k transpositions from Gd occur in positions m1, . . . , mk, where 1 ≤
m1 < · · · < mk ≤ k + j, with the convention that mk+1 = k + j + 1. Then, lifting
from the Hurwitz factorizations, we have

NF j(σ) =

∑

m1,...,mk

Lm1−1
d

k∏

j=1

((p j q j)(p̂ j q̂ j) + (p j q̂ j)(p̂ j q j))L
m j+1−m j

d

= L
j
d

∑

m1,...,mk

k∏

j=1

((p j q j)(p̂ j q̂ j) + (p j q̂ j)(p̂ j q j))

=

(
k + j

j

)
L

j
d

k∏

j=1

((p j q j)(p̂ j q̂ j) + (p j q̂ j)(p̂ j q j)),

since Ld commutes with all elements of the hyperoctahedral group, and there are(
k+ j

j

)
choices of m1, . . . , mk. But for i ̸= j, we have (i ĵ )(î j) = xix j(i j)(î ĵ ) and

(î ĵ ) = (i j)ε, so (i j)(î ĵ ) + (i ĵ )(î j) = (1 + xix j)(i j)(i j)ε. Applying this equation
to rewrite the terms in the above product, we obtain

(3.3) NF j(σ) =

(
k + j

j

)
L

j
d

k∏

j=1

(1 + xp j xq j )σ jσ
ε
j .

To simplify this, note that for i ̸= j, we have

(i j)(î ĵ )xi = x j(i j)(î ĵ ), (i j)(î ĵ )xm = xm(i j)(î ĵ ),
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where m ̸= i, j. Thus, for i ̸= j and all m, we have (i j)(î ĵ )xm = xm ′(i j)(î ĵ ),
where the permutation (i j) on Nd maps m to m ′. Applying this equation to move
the factors 1 + xp j xq j in (3.3) to the left, we obtain

NF j(σ) =

(
k + j

j

)
L

j
d

( k∏

j=1

(1 + xu j xv j )
) k∏

j=1

σ jσ
ε
j

=

(
k + j

j

)
L

j
d

( k∏

j=1

(1 + xu j xv j )
)

ρ ρε,

where σ1 · · ·σ j−1 maps p j to u j and maps q j to v j , for j = 1, . . . , k.
We now prove that ⟨(u1 v1), . . . , (uk vk)⟩ acts transitively on Nd. For j = 0, . . . , k,

let G j be the graph on vertex-set Nd with edges {p1, q1}, . . . , {p j , q j}, and let H j be
the graph on vertex-set Nd with edges {u1, v1}, . . . , {u j , v j}. In this notation, condi-
tion HF3 implies that Gk is connected, and we must establish that Hk is connected.
To do so, we prove by induction on j, that the (connected) components of H j have
the same vertex-sets as the components of G j , for each j = 0, . . . , k. The result is
clearly true for j = 0, since neither G0 nor H0 has any edges, so they both have d
components, with the individual elements of Nd as the vertex-sets. For the induction
step, clearly u j+1 is in the same component of G j as p j+1, and v j+1 is in the same com-
ponent of G j as q j+1, for each j = 0, . . . , k − 1, and the result follows immediately.

It follows from Proposition 3.2(ii) that

NF j(σ) =

(
k + j

j

)
2k−d+1L

j
dEdρ ρε,

and then from Proposition 3.2(i) that

NF j(σ) =

(
k + j

j

)
2k−d+1d jEdρ ρε,

if j is even, and

NF j(σ) =

(
k + j

j

)
2k−d+1d jOdρ ρε,

if j is odd.
Now note that +σNF j(σ), where the disjoint union is over the set of all Hurwitz

factorizations σ, is the set of all near-admissible factorizations with j factors from
Fd. Moreover, if ρ ∈ Cα and bπ ∈ ρ, recall that ρ ∈ Aλ,µ where λ ∪ µ = α.
The result follows from Proposition 3.2(iii), since every π ∈ Hd has a unique source
bπ = ρ ∈ Sd. If the Hurwitz factorization σ of ρ has genus g, and the near-admissible
factorizations a in NF j(σ) of π have genus g ′, then from conditions HF4 and AF4

2g + d + l(λ) + l(µ) − 2 = k, 2g ′ + 2d + l(λ) + 2l(µ) − 2 = 2k + j,

and eliminating k between these equations gives 2g ′ = 4g − 2 + j + l(λ).
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3.4 The Enumeration of Admissible Factorizations

By eliminating the number of near-admissible factorizations between the two rela-
tionships obtained in this section above, we are now able to enumerate admissible
factorizations.

Theorem 3.4

(i) For g ≥ 0, with j ̸= 0 or λ ̸= ∅, and j ≡ l(λ) (mod 2), then

s2g−1+ 1
2 ( j+l(λ)), j(λ, µ) =

(
k + j

j

)
2k−d+1d jcg(λ ∪ µ),

where 2g + d + l(λ) + l(µ) − 2 = k.
(ii) For g ≥ 0, s2g−1,0(∅, µ) = 2l(µ)−1(4g − 1)cg(µ).

Proof (i) This follows immediately from Theorems 3.1 and 3.3.
(ii) From Theorems 3.1 and 3.3, in the case j = 0 and λ = ∅, we obtain the

equations

t2g−1,0(∅, µ) − s2g−1,0(∅, µ) = 2l(µ)−1cg(µ), t2g−1,0(∅, µ) = 2k−d+1cg(µ),

with the restriction 2g + d + l(µ) − 2 = k. Eliminating t2g−1,0(∅, µ) between these
equations, we obtain

s2g−1,0(∅, µ) = (2k−d+1 − 2l(µ)−1)cg(µ),

and the result follows, since k − d + 1 = l(µ) − 1 + 2g.

4 Geometric Interpretations of Factorizations

We now turn to the geometric aspects of the hyperoctahedral analogue of Hurwitz’s
problem by briefly recalling some basic facts about ramified coverings. Let X be a
connected Riemann surface of genus g and take f : X → P1C as a degree d covering.
A point of ramification q is called simple for the map f : X → P1C if there are two
analytic charts U ⊂ X and V ⊂ f (U ) ⊂ P1C, q ∈ U , such that in local coordinates
f can be represented as the map z -→ z2, where z = 0 corresponds to the point q.

We say that two pairs (X1 ; f1) and (X2 ; f2) are equivalent (here “∼” denotes this
equivalence relation) if and only if there exists an analytic isomorphism ϕ : X1 → X2

such that f2ϕ = f1. Let hg(α) be the number of equivalence classes of ∼ such that
the following hold:

(i) the ramification at infinity has poles of orders α1, . . . (where α1, . . . are the
parts of α, with |α| = d),

(ii) all the other ramification points are simple,
(iii) for a point q in (ii) we have | f −1( f (q))| = d − 1.
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Notice that each covering is weighted 1/|Aut( f )|, where |Aut( f )| is the order of
the automorphism group of the covering map f : X → P1C. Hurwitz [H] proved
that

(4.1) hg(α) = cg(α),

by giving a combinatorial encoding of the inequivalent coverings as a transitive fac-
torization in the symmetric group acting on labels for the d sheets.

For admissible factorizations, we consider a generalization of Hurwitz’s setting.
Let τ be a nontrivial involution on X and consider only those maps f : X → P1C of
even degree 2d such that f τ = f . Moreover, we say that two triples (X1, τ1 ; f1) and
(X2, τ1 ; f2) are equivalent (∼1 denotes this equivalence relation) if and only if there
exists an analytic isomorphism ϕ : X1 → X2 such that f2ϕ = f1, so the fibres are pre-
served, and τ2ϕ = ϕτ1. This information can be summarized in the commutativity
of the following diagram:

X1

ϕ
!!

τ1

""

X2

τ2

""

X1

ϕ
!!

f1

##!
!!

!!
!!

!
X2

f2

$$""
""

""
""

P1C

Let H(S2)2d,g be the set of equivalence classes [(X, τ ; f )] (of ∼1), where X is a
connected Riemann surface of genus g, τ is an involution and f is a covering of
degree 2d such that: (i) f τ = f ; (ii) f has arbitrary τ -invariant ramification over
infinity, and the other branch points are simple points, either fixed by τ , or exchanged
in pairs by τ ; (iii) if p and q are simple ramification points exchanged by τ , then
| f −1( f (p))| = | f −1( f (q))| = d − 2. We call the latter branch points doubled. Now
consider partitions λ = (λ1, . . . ) and µ = (µ1, . . . ), with |λ|+ |µ| = d. Let dg, j(λ, µ)
be the number of elements of H(S2)2d,g such that the ramification over infinity has
poles of orders 2λ1, . . . that are fixed by τ , poles of orders µ1, . . . that are exchanged
by τ , with j of the simple branch points fixed by τ , and k of the simple branch points
exchanged in pairs by τ . As is customary, the enumeration is made by taking into
account the weight 1/|Aut( f )|, where |Aut( f )| is the order of the automorphism
group of the covering map f .

We now give a particular presentation of H(S2)2d,g that leads naturally to admis-
sible factorizations in the hyperoctahedral group. Let B be the finite set of ordered
branch points for f (i.e., B is the branch locus of f ), and let π1(P1C\B ; b) be the fun-
damental group of P1C\B with respect to a generic point b as base point. We say that

two homomorphisms β, β ′ : π1(P1C \ B ; b) → Ŝd are equivalent (∼2 denotes this
equivalence relation) if there exists an element h ∈ Hd such that β(γ) = hβ ′(γ)h−1

for every γ ∈ π1(P1C \ B ; b). With these basic assumptions, it is now possible to



308 G. Bini, I. P. Goulden, and D. M. Jackson

translate the information contained in [(X, τ ; f )] from geometry to combinatorics.

Indeed, let [(X, τ ; f )] ∈ H(S2)2d,g and construct β : π1(P1C \ B ; b) → Ŝd as de-

scribed in [F], where B is the branch locus of f . The image in Ŝd of π1(P1C \ B ; b)
under β is called the monodromy group of f . In this case, (X ′, τ ′ ; f ′) ∼1 (X, τ ; f )
if and only if β ∼2 β ′, because of the commutativity of the above diagram.

Since f τ = f , then the preimage of each point in P1C \ B is decomposed into
d orbits under the action of τ . In constructing the homomorphism β, we label the
2d points in f −1(b) with respect to this decomposition, i.e., we mark the points in

the i-th orbit with labels i and î with the ordering 1 ≺ 1̂ ≺ · · · ≺ d ≺ d̂ along a
fibre, thereby labelling the 2d sheets. Then for each loop around a doubled branch
point different from ∞, we associate an element ai ∈ Fd. For each loop around the
remaining branch points different from infinity, we associate an element ai ∈ Gd.
On the other hand, let us denote the permutation associated with the loop around
infinity by π. In this way we can uniquely identify a triple in H(S2)2d,g with an
admissible factorization a = (a1, . . . , ak+ j) of π, and hence conclude that

(4.2) dg, j(λ, µ) = sg, j(λ, µ).

The geometrical content of the combinatorial conditions AF1–AF4 is as follows.
Condition AF1 ensures that the branch points are simple, with k that are doubled,
and j that are fixed by τ ; condition AF2 ensures that the ramification over infinity
has type (λ, µ); condition AF3 ensures that the covering has only one component;
condition AF4 ensures, by the Riemann–Hurwitz formula, that the covering curve
has genus g.

We can now translate Theorem 3.4, a combinatorial result about factorizations,
into the following geometric result, by applying equations (4.1) and (4.2).

Theorem 4.1

(i) For g ≥ 0, with j ̸= 0 or λ ̸= ∅, and j ≡ l(λ) (mod 2), then

d2g−1+ 1
2 ( j+l(λ)), j(λ, µ) =

(
k + j

j

)
2k−d+1d jhg(λ ∪ µ),

where 2g + d + l(λ) + l(µ) − 2 = k.
(ii) For g ≥ 0, d2g−1,0(∅, µ) = 2l(µ)−1(4g − 1)hg(µ).

5 A Geometric Proof of the Main Result and Related Speculations

As shown in [OP], the Hurwitz number hg(λ∪µ) can be computed in terms of Hodge
integrals on moduli spaces of stable maps. As proved in Theorem 4.1, the Hurwitz
number dg, j(λ, µ) is related to hg(λ∪µ). Arguably, this suggests that dg, j(λ, µ) might
be computed in the setting of moduli spaces of maps. We formulate a conjecture that
originates from a proof of Theorem 4.1 in geometrical terms.

Proof Let f : X → P1C be a degree 2d covering of the Riemann sphere as in Sec-
tion 4. The action of τ induces a degree two covering map from X to a Riemann
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surface Y. If τ is fixed-point free, then the map φ : X → Y is a topological (un-
branched) covering; otherwise, the fixed points of τ are the ramification points of φ.
The relationship between the genus of X, g(X), and that of Y, g(Y), is given by the
Riemann–Hurwitz formula, and is

(5.1) 2 − 2g(X) = 2(2 − 2g(Y)) − j − l(λ).

In addition to φ, the covering f induces a degree d covering f ′ : Y → P1C. The
ramification points of f ′ are the images (under φ) of the l(λ) points fixed by τ , as
well as the images (under φ) of the 2k ramification points lying over the doubled
branch points of f . Applying the Riemann–Hurwitz formula to f ′, we have:

(5.2) 2 − 2g(Y) = d − k + l(λ) + l(µ).

Note that combining (5.1) and (5.2) results in applying the Riemann–Hurwitz for-
mula to the covering f . Moreover, the following diagram is commutative:

(5.3) X

φ

""

f
!! P1(C)

Y

f ′

%%
#

#
##

#
##

#

Furthermore, ∼1-equivalent coverings to f yield coverings of the Riemann sphere
which are equivalent to f ′ with respect to the usual equivalence of coverings. There-
fore, it is possible to enumerate equivalence classes of S2-invariant coverings through
the Hurwitz numbers hg(Y). There are two cases.

First, let us consider the case when τ is fixed-point free, i.e., j = 0 and λ = ∅.
By standard facts in algebraic topology (see [Hat, p. 71 ff.]), the fundamental group
π1(X) is an index two subgroup of the fundamental group π1(Y). Thus, enumerating
all degree two (unbranched) coverings from X to Y is tantamount to enumerating
all index two subgroups of π1(Y). These correspond to homomorphisms from π1(Y)
to the cyclic group of order two. As a result, there are 22g(Y) coverings of a Riemann
surface of genus g(Y), all but one of which are connected. Note that in this case (5.1)
gives g(X) = 2g(Y)− 1. Therefore, there are (4g(Y) − 1)hg(Y)(µ) degree 2d maps from
a Riemann surface X of genus g(X) = 2g − 1 with S2-invariant ramification over
∞ given by the partition 2µ. Any such map is actually taken into account by our
enumeration process if we also assign “hats” to all labels that appear in the cycles of
µ. This can be done in 1

2 2l(µ) ways. Indeed, hatted and unhatted symbols are inter-
changed via conjugation by ε, which yields pairs of equivalent coverings of degree 2d.
Thus Theorem 4.1(ii) follows.

Second, let us assume τ is not a fixed-point free involution. Let f ′ : Y → P1C be a
degree d covering with k simple ramification points and 2d − l(λ) − l(µ) points over
∞. For a branched degree two covering of Y we need to choose j extra points such
that j ≡ l(λ) mod 2 (see (5.1)). Clearly, they can be chosen in d j ways. Moreover,
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such points are chosen so that j among the j +k points are not doubled branch points
of f . Analogously to the previous case, there are 22g(Y) branched coverings of degree
two with ( j + l(λ))/2 ramification points, all of which are connected since j ̸= 0.
In order to enumerate the degree 2d coverings induced by f ′, we still need to assign
“hats” to the labels that appear in the cycles of λ ∪ µ. As above, this can be done in
2l(λ)+l(µ)−1 ways. Therefore, we have:

dg(X), j(λ, µ) =

(
k + j

j

)
d j22g(Y)+l(λ)+l(µ)−1hg(Y)(λ ∪ µ).

If we set g(Y) = g, then (5.1) yields g(X) = 2g − 1 + 1
2 ( j + l(λ)). Thus, Theorem

4.1(i) follows; indeed, by (5.2) 2g + l(λ) + l(µ) − 1 = k − d + 1.

To state our conjecture, we need to introduce some conventional notation.
Let Mg be the moduli space of smooth genus g curves g ≥ 2 over C. We recall that

Mg has an orbifold structure which is given by the action of the mapping class group
Γg on the Teichmüller space Tg . The reader is referred to [Har] for the definitions of
Γg and Tg .

Fix an order two subgroup G ∼= S2 with an embedding in Γg . Assume G is gen-
erated by an involution τ with at least l(λ) fixed points. Note that τ may have j
additional fixed points, j ≥ 0. Let g ′ be a non-negative integer such that 2 − 2g =

2(2−2g ′)− j− l(λ). Set, further, w ′ = 2g ′ +2d + l(λ)+ l(µ)−2. As in [OP, §7.3], let
Mg ′(λ∪µ) be the closure in Mg ′(P1C, d) of Mg ′(λ∪µ), which parametrizes degree
d stable maps with ramification given by λ ∪ µ over ∞.

Conjecture 5.1

(i) There exists a (coarse) moduli space M
G

g (λ, µ) that contains a (Zariski) open set

MG
g (λ, µ) satisfying

(a) MG
g (λ, µ) parametrizes up to isomorphism pairs (C, f ), where C is a smooth

genus g curve and f : C → P1C is a degree 2d covering map;
(b) f ◦ τ = f ;
(c) f has ramification profile prescribed by λ and µ over ∞.1

(ii) There is a well-defined morphism p : M
G

g (λ, µ) → Mg ′(λ ∪ µ). Denote by Br
the composition br ◦ p, where br : Mg ′(λ ∪ µ) → Pw ′

C is the branch morphism
defined in [OP].

(iii) The moduli space M
G

g (λ, µ) has a virtual fundamental class [M
G

g (λ, µ)]vir.
(iv) Let ξq denote (the Poincaré dual of) the point class of

Lm =
{

D + m[q] : D ∈ Symw ′−m(P
1

C) ⊂ Symw ′

(P
1

C) ∼= P
w ′}

,

where m := d − l(λ) − λ(µ), Symw ′−m(P1C) is the symmetric product of P1C,
and [q] is the class of a point q ∈ P1C. Then the following hold:

1Condition (i)(b) implies that the ramification points of f are either fixed or exchanged by τ . Since τ
has j + l(λ) fixed points, the partition µ describes the pairs of fixed points exchanged by τ .
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(a) for g ≥ 0, with j ̸= 0 or λ ̸= ∅, and j ≡ l(λ)(mod2), we have

∫

[M
G
g (λ,µ)]vir

Br∗(ξq)

=

(
g ′ + l(λ) + l(µ) + j − 1

j

)
2g ′+l(λ)+l(µ)−d+ jd jhg ′(λ ∪ µ);

(b) for g ≥ 0, we have

∫

[M
G
g (∅,µ)]vir

Br∗(ξq) = 2l(µ)−1)(4g ′

− 1)hg ′(µ).

Conjecture 5.1 stems from the following remarks on the geometrical proof of The-
orem 4.1. Any covering f ′ : Y → P1C in diagram (5.3) is enumerated by the classical
Hurwitz number, where g(Y) = g ′. Fixing τ and its topological action (i.e., an em-
bedding of G in Γg) allows one to construct a degree 2 covering φ : X → Y, as well
as a degree 2d covering map f : X → P1C. This suggests the existence of a moduli

space, M
G

g (λ, µ), as in Conjecture 5.1(i). The generic point of such a moduli space is
a covering with simple ramification points. Some of them are fixed by τ ; some others
are exchanged by the involution.

The way of passing from f ′ : Y → P1C to f : X → P1C via φ leads us to the sec-
ond part of Conjecture 5.1. The image under p of a generic point (X, f ) ∈ M

G

g (λ, µ)
should be the element (Y, f ′). Moreover, the morphism Br leads us to conjecture an
intersection theoretic computation of dg, j(λ, µ). This requires that a virtual funda-

mental class of M
G

g (λ, µ) exists.
As shown in [OP], the classical Hurwitz number can be viewed as the degree of the

branch morphism br. In fact, Bertini’s Theorem applied to a generic divisor D+m[q]
in Lm implies that the intersection points in br−1(D + m[q])∩Mg ′(λ∪µ) are exactly
the coverings enumerated via hg ′(λ ∪ µ). In other words,

hg ′(λ ∪ µ) =

∫

[Mg ′ (λ∪µ)]vir

br∗(ξq).

Similar arguments applied to Br give evidence to Conjecture 5.1, (iv)(a), (b).
Note that Conjecture 5.1(iv)(a), (b) compute the degree of the morphism Br. Fur-

thermore, we recall that hg ′(λ ∪ µ) is the degree of br. Thus, our conjecture could
give some information on the degree of the morphism p.
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