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Monotone Hurwitz Numbers in Genus
Zero
I. P. Goulden, Mathieu Guay-Paquet, and Jonathan Novak

Abstract. Hurwitz numbers count branched covers of the Riemann sphere with specified ramification
data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle
types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the
expansion of complete symmetric functions in the Jucys–Murphy elements, and have arisen in recent
work on the the asymptotic expansion of the Harish-Chandra–Itzykson–Zuber integral. In this paper
we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent
of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differen-
tial equation with initial conditions that characterizes the generating function for monotone Hurwitz
numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for
monotone Hurwitz numbers in genus zero.

1 Introduction

Hurwitz numbers count branched covers of the Riemann sphere with specified ram-
ification data. They have been the subject of much mathematical interest in recent
years, especially through the ELSV formula, given in [3], which expresses a Hurwitz
number as a Hodge integral over the moduli space of stable curves of a given genus
with a given number of marked points. This has led to a number of new proofs
(see, e.g., Okounkov and Pandharipande [22] and Kazarian and Lando [17]) of Wit-
ten’s conjecture [27] (first proved by Kontsevich [18]), which states that a particular
generating function for intersection numbers satisfies the KdV hierarchy of partial
differential equations. The interest in Hurwitz numbers has much to do with these
rich connections that their study has revealed between mathematical physics and al-
gebraic geometry. There is also a connection with algebraic combinatorics because
of the bijection, due to Hurwitz [14], between branched covers of the sphere and
transitive factorizations in the symmetric group (see, e.g., Goulden, Jackson, and
Vainshtein [11]).

Monotone Hurwitz numbers, introduced in [9], count a restricted subset of the
branched covers counted by the Hurwitz numbers. The topic of [9] is the Harish-
Chandra–Itzykson–Zuber (HCIZ) integral (see, e.g., [13, 15, 29])

IN (z,AN ,BN ) =

∫
U(N)

ezN tr(ANU BNU∗)dU .
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Here the integral is over the group of N × N complex unitary matrices against the
normalized Haar measure, z is a complex parameter, and AN ,BN are N ×N complex
matrices. Since U(N) is compact, IN is an entire function of z ∈ C. Consequently,
the function

FN (z,AN ,BN ) = N−2

∮ z

0

I ′N (ζ,AN ,BN )

IN (ζ,AN ,BN )
dζ

is well defined and holomorphic in a neigbourhood of z = 0, and satisfies

IN (z,AN ,BN ) = eN2FN (z,AN ,BN )

on its domain of definition. In [9], we proved that, for two specified sequences of
normal matrices A = (AN )∞N=1, B = (BN )∞N=1 that grow in a sufficiently regular
fashion, the derivatives F(d)

N (0,AN ,BN ) of FN at z = 0 admit an N → ∞ asymptotic
expansion on the scale N−2 whose g-th coefficient is a generating function for the
monotone double Hurwitz numbers of degree d and genus g. This is analogous to
the well-known genus expansion of Hermitian matrix models, whose coefficients are
generating functions enumerating graphs on surfaces (see, e.g., [30]). In this paper,
we begin a detailed study of monotone Hurwitz numbers.

1.1 Hurwitz Numbers

The single Hurwitz numbers count d-sheeted branched covers of the Riemann sphere
by a Riemann surface where we allow arbitrary, but fixed, branching at one ramifi-
cation point and only simple branching at other ramification points. Using the Hur-
witz [14] encoding of a branched cover as a factorization in the symmetric group, we
obtain the following identification with an enumeration question in the symmetric
group: given a partition α ` d and an integer r ≥ 0, the single Hurwitz number
Hr(α) is the number of factorizations

(1.1) (a1 b1)(a2 b2) · · · (ar br) = σ

in the symmetric group Sd, where

• (a1 b1), (a2 b2), . . . , (ar br) are transpositions;
• σ is in the conjugacy class Cα of permutations with cycle type α;
• the subgroup 〈(a1 b1), (a2 b2), . . . , (ar br)〉 acts transitively on the ground set
{1, 2, . . . , d}.

Each factorization corresponds to a branched cover of the Riemann sphere, and by
the Riemann–Hurwitz formula, the genus g of the cover is given by the relation

(1.2) r = d + `(α) + 2g − 2,

where `(α) denotes the number of parts ofα. Depending on the context, we will write
Hg(α) interchangeably with Hr(α), using the convention that (1.2) always holds.

Remark 1.1 Equation (1.1), when rewritten as (a1 b1)(a2 b2) · · · (ar br)σ−1 = id,
translates into a monodromy condition for the corresponding cover, in which σ−1
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specifies the branching for the point with arbitrary ramification, and (ai bi), i =
1, . . . , r specifies the (simple) branching at the remaining ramification points. The
transitivity condition for the factorization translates to the requirement that the cor-
responding cover is connected.

1.2 Monotone Hurwitz Numbers

The monotone single Hurwitz number ~Hr(α) is the number of factorizations (1.1)
counted by the single Hurwitz number Hr(α), but with the additional restriction
that

(1.3) b1 ≤ b2 ≤ · · · ≤ br,

where ai < bi by convention. As with Hurwitz numbers, depending on the con-
text, we will write ~Hg(α) interchangeably with ~Hr(α), with the understanding that
(1.2) holds. We will refer to a factorization (1.1) with restriction (1.3) as a monotone
factorization of σ.

Remark 1.2 In Hurwitz’s encoding, the ground set {1, 2, . . . , d} corresponds to
the set of sheets of the branched cover, once branch cuts have been chosen and the
sheets have been labelled. In the case of Hurwitz numbers, the labelling of the sheets
is immaterial, so Hurwitz numbers are usually defined to count branched covers with
unlabelled sheets, which differs from our definition above by a factor of d !. However,
for monotone Hurwitz numbers, the monotonicity condition depends on a total or-
dering of the sheets, so the labelling does matter in this case. Thus, for consistency,
our convention is that both kinds of Hurwitz numbers count branched covers with
labelled sheets.

1.3 Main Result

In Section 4, we obtain the following theorem. This is our main result, which gives
an explicit formula for the genus zero monotone Hurwitz numbers.

Theorem 1.1 The genus zero monotone single Hurwitz number ~H0(α), α ` d is given
by

(1.4) ~H0(α) =
d !

|Autα|
(2d + 1)`(α)−3

`(α)∏
j=1

(
2α j

α j

)
,

where
(2d + 1)k = (2d + 1)(2d + 2) · · · (2d + k)

denotes a rising product with k factors, and by convention

(2d + 1)k =
1

(2d + k + 1)−k

for k < 0.
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In the special case that α = (d), the partition with a single part equal to d, Theo-
rem 1.1 becomes

~H0((d)) =
(2d− 2)!

d !
= (d− 1)! Cd−1,

where Cd−1 = 1
d

(2d−2
d−1

)
is a Catalan number. This case was previously obtained by

Gewurz and Merola [7], who used the term primitive for these factorizations. In
the special case that α = (1d), the partition with all parts equal to 1, Theorem 1.1
becomes

~H0((1d)) =
(3d− 3)!

(2d)!
2d.

Via the connection between monotone Hurwitz numbers and the HCIZ integral
established in [9], this case is equivalent to a result previously obtained by Zinn-
Justin [28] for the HCIZ integral.

Theorem 1.1 is strikingly similar to the well-known explicit formula for the genus
zero Hurwitz numbers

(1.5) H0(α) =
d !

|Autα|
(d + `(α)− 2)! d `(α)−3

`(α)∏
j=1

α
α j

j

α j !
,

published without proof by Hurwitz [14] in 1891 (see also Strehl [26]) and indepen-
dently rediscovered and proved a century later by Goulden and Jackson [10].

There is another case in which an explicit formula similar to Theorem 1.1 is
known. This is the case where we allow arbitrary, but fixed, branching at a specified
ramification point and arbitrary branching at all other ramification points, which
has been studied by Bousquet-Mélou and Schaeffer [2]. Given a partition α ` d and
integers r, g ≥ 0, let Gr

g(α) be the number of factorizations ρ1ρ2 · · · ρr = σ in the
symmetric group Sd that satisfy the conditions

• ρ1, ρ2, . . . , ρr ∈ Sd,
• σ ∈ Cα,
• 〈ρ1, ρ2, . . . , ρr〉 acts transitively on {1, 2, . . . , d},
and

(1.6)
r∑

j=1

rank(ρ j) = d + `(α) + 2g − 2,

where rank(ρ j) is d minus the number of cycles of ρ j . Each such factorization cor-
responds to a branched cover of the Riemann sphere, and (1.6), by the Riemann-
Hurwitz formula, specifies the genus g of the cover.

Remark 1.3 Note that in this case there is more freedom for the parameters α, r, g
than for the Hurwitz and monotone Hurwitz cases above. In particular, given α and
r, the choice for g is not unique in (1.6) above. This explains why we have used both
parameters r and g in the notation Gr

g(α).
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Bousquet-Mélou and Schaeffer [2] solved this problem in full generality for genus
zero, using a bijective correspondence to constellations and thence to a family of
bicoloured trees. (For more on constellations, see Lando and Zvonkin [19].) They
proved that

(1.7) Gr
0(α) =

d !

|Autα|
r
(

(r − 1)d− `(α) + 2
) `(α)−2

`(α)∏
j=1

(
rα j − 1

α j

)
,

an explicit form that is again strikingly similar to both (1.4) and (1.5).

The explicit formulas (1.4), (1.5) and (1.7) feature remarkably simple combinato-
rial functions, but we know of no uniform bijective method to explain these formulas.

1.4 Join-cut Equations

The proof that we give for Theorem 1.1, our main result, involves the generating
function for monotone single Hurwitz numbers

(1.8) ~H(z, t, p) =
∑
d≥1

zd

d !

∑
r≥0

t r
∑
α`d

~Hr(α)pα,

which is a formal power series in the indeterminates z, t and the countable set of
indeterminates p = (p1, p2, . . . ), and where pα denotes the product

∏`(α)
j=1 pα j . From

a combinatorial point of view,

• z is an exponential marker for the size d of the ground set;
• t is an ordinary marker for the number r of transpositions;
• p1, p2, . . . are ordinary markers for the cycle lengths of σ.

In Section 2, we obtain the following theorem, which gives a partial differential equa-
tion with initial condition that uniquely specifies the generating function ~H. The
proof that we give is a combinatorial join-cut analysis, and we refer to the partial
differential equation in Theorem 1.2 as the monotone join-cut equation.

Theorem 1.2 The generating function ~H is the unique formal power series solution of
the partial differential equation

1

2t

(
z
∂~H

∂z
− zp1

)
=

1

2

∑
i, j≥1

(
(i + j)pi p j

∂~H

∂pi+ j
+ i j pi+ j

∂2~H

∂pi∂p j
+ i j pi+ j

∂~H

∂pi

∂~H

∂p j

)

with the initial condition [z0]~H = 0.

Theorem 1.2 is again strikingly similar to the situation for the classical single Hur-
witz numbers. To make this precise, consider the generating function for the classical
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single Hurwitz numbers

H(z, t, p) =
∑
d≥1

zd

d !

∑
r≥0

t r

r!

∑
α`d

Hr(α)pα.

It is well known (see [10, 11]) that H is the unique formal power series solution of
the partial differential equation

(1.9)
∂H

∂t
=

1

2

∑
i, j≥1

(
(i + j)pi p j

∂H

∂pi+ j
+ i j pi+ j

∂2H

∂pi∂p j
+ i j pi+ j

∂H

∂pi

∂H

∂p j

)
with the initial condition [t0]H = zp1. Equation (1.9) is called the (classical) join-
cut equation, and has exactly the same differential forms on the right-hand side as the
monotone join-cut equation given in Theorem 1.2. There are, however, significant
differences on the left-hand side between these two versions of the join-cut equation.
In the classical case (1.9), the left-hand side is a first derivative in t ; in the monotone
case (Theorem 1.2), the left-hand side is a first divided difference in t and also involves
differentiation in z.

Remark 1.4 The difference in the left-hand sides between the two join-cut equa-
tions is related to the fact that the generating functions H and ~H differ in the combi-
natorial role played by the indeterminate t . In the case of H, t is an exponential marker
for the number r of transpositions, while in the case of ~H, t is an ordinary marker.
This difference is due to technical combinatorial reasons, explained in Section 1.5.

Our proof of the explicit formula in Theorem 1.1 for genus zero monotone Hur-
wiz numbers proceeds by verification using a variant of the monotone join-cut equa-
tion given in Theorem 1.2. In general terms, this is how we obtained the explicit
formula (1.4) for genus zero classical Hurwitz numbers in [10], using the classical
join-cut equation (1.9). However, the technical details of this verification are quite
different in this paper, because of the change in the left-hand side between these two
different versions of the join-cut equation.

1.5 The Group Algebra of the Symmetric Group

In this section we express the generating functions H and ~H in terms of elements of
the centre of the group algebra Q[Sd]. This is not an essential part of our proof of the
main result, but it will help explain why the indeterminate t for transposition factors
is an exponential marker in H, whereas it is an ordinary marker in ~H. In addition, it
gives a convenient proof of the fact that the number of monotone factorizations of a
permutation σ depends only on its conjugacy class, which we will need in Section 2
to prove the monotone join-cut equation.

First we consider the single Hurwitz numbers. For any α ` d, let Cα be the formal
sum of all elements of the conjugacy class Cα, which consists of all permutations of
cycle type α, considered as an element of Q[Sd]. It is well known that the centre of
Q[Sd] consists precisely of linear combinations of the Cα. If we drop the transitivity
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condition for single Hurwitz numbers, the generating function for the resulting not-
necessarily-transitive factorizations becomes

τ (z, t, p) =
∑
d≥0

zd

d !

∑
r≥0

t r

r!

∑
α`d

pα
∑
σ∈Cα

[σ]Cr
2,1d−2

=
∑
d≥0

zd

d !

∑
r≥0

t r

r!

∑
α`d

pα |Cα| [Cα]Cr
2,1d−2 ,

where we have used the notation [A]B for the coefficient of A in the expansion of
B. The constant term 1 corresponding to d = 0 has been added to the generating
function τ for combinatorial reasons, described as follows. When we drop the transi-
tivity condition for single Hurwitz numbers, each resulting not-necessarily-transitive
factorization can be split into disjoint transitive factorizations by restricting it to the
orbits of the group 〈(a1 b1), . . . , (ar br)〉 on the ground set. Each of these orbits is a
subset of the ground set {1, . . . , d}, and the set of transpositions that act on pairs
of elements in a given orbit is a subset of the positions {1, . . . , r} in the factoriza-
tion. Conversely, transitive factorizations on disjoint ground sets can be combined
by shuffling their transpositions in any way that preserves the order of transpositions
acting on the same component of the ground set. Thus, each factorization counted
by τ is an unordered collection of the transitive factorizations counted by H, in which
the variables z (marking d) and t (marking r) are both exponential. From the Expo-
nential Formula for exponential generating functions (see, e.g., [12]), this situation
is captured by the equation

H(z, t, p) = log τ (z, t, p).

Remark 1.5 The coefficient of zdt r/r! in τ (z, t, p) is in fact the image of Cr
2,1d−2

under the characteristic map, ch, of Macdonald [21, p. 113], if one interprets the
indeterminates p1, p2, . . . as power sum symmetric functions. This can be expressed
in the basis of Schur symmetric functions using irreducible characters of Sd, and
then the tools of representation theory become available. While this is an interesting
approach, we will not be using it here.

Now we turn to monotone single Hurwitz numbers. While the monotonicity con-
dition may seem artificial, it arises naturally in the group algebra Q[Sd] via the Jucys–
Murphy elements Ji , defined by

Ji = (1 i) + (2 i) + · · · + (i − 1 i), i = 1, . . . , d.

If we drop the transitivity condition for monotone single Hurwitz numbers, the gen-
erating function for the resulting not-necessarily-transitive factorizations becomes

~τ (z, t, p) =
∑
d≥0

zd

d !

∑
r≥0

t r
∑
α`d

pα
∑
σ∈Cα

[σ]
∑

1≤b1≤···≤br≤d

Jb1 · · · Jbr

=
∑
d≥0

zd

d !

∑
r≥0

t r
∑
α`d

pα
∑
σ∈Cα

[σ]hr(J1, . . . , Jd),
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where hr is the r-th complete symmetric polynomial. Jucys [16] showed that the set of
symmetric polynomials in the Jucys–Murphy elements is exactly the centre of Q[Sd],
so we obtain immediately that

~τ (z, t, p) =
∑
d≥0

zd

d !

∑
r≥0

t r
∑
α`d

pα |Cα| [Cα]hr(J1, . . . , Jd).

This time, when we drop the transitivity condition for single monotone Hurwitz
numbers, each resulting not-necessarily-transitive factorization can again be split
into disjoint transitive factorizations by restricting it to the orbits of the group
〈(a1 b1), . . . , (ar br)〉 on the ground set. Each of these orbits is a subset of the ground
set {1, . . . , d}, and the set of transpositions that act on pairs of elements in a given
orbit is a subset of the positions {1, . . . , r} in the factorization. However, this time, to
preserve monotonicity, transitive factorizations on disjoint ground sets can be com-
bined by shuffling their transpositions in only one way. Thus, each factorization
counted by~τ is an unordered collection of the transitive factorizations counted by ~H,
in which only the variable z (marking d) is exponential. The Exponential Formula for
exponential generating functions then gives

~H(z, t, p) = log~τ (z, t, p).

Remark 1.6 As with τ (z, t, p), the coefficients of~τ (z, t, p) can be expressed in terms
of MacDonald’s characteristic map, ch, to provide a link with representation theory.
This is particularly interesting in view of Okounkov and Vershik’s approach to the
representation theory of the symmetric group [23], which features the Jucys–Murphy
elements prominently. However, we will not be exploring this connection further in
this paper.

Remark 1.7 Related results on complete symmetric functions of the Jucys–Murphy
elements have been obtained by Lassalle [20] and Féray [6]. The recurrences they
obtain seem to be of a completely different nature than those we obtain in this paper.

1.6 Outline

In Section 2, we prove the monotone join-cut equation of Theorem 1.2. This is based
on a combinatorial join-cut analyis for monotone Hurwitz numbers that appears in
Section 2.1. The monotone join-cut equation itself is then deduced in Section 2.2.
The join-cut analysis also yields another system of equations that appears in Sec-
tion 2.3, and is referred to there as a topological recursion.

In Section 3, we recast the monotone join-cut equation, breaking it up into a sep-
arate join-cut equation for each genus, and expressing these equations in an algebraic
form that is more convenient to solve. This is based on some algebraic operators that
are introduced in Section 3.1, and the transformed system of equations appears in
Section 3.2.

In Section 4, we prove the main result of this paper, Theorem 1.1, which gives
an explicit formula for monotone Hurwitz numbers in genus zero. Our method is
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to repackage the formula as a generating function F and to show that it satisfies the
genus zero monotone join-cut equation that characterizes the generating function
~H0 for genus zero monotone Hurwitz numbers. In Section 4.1, we introduce trans-
formed variables and use Lagrange’s Implicit Function Theorem to give a closed form
for a differential form applied to the series F. In Section 4.2, we invert this differential
form. In Section 4.3, we describe the action of the algebraic operators of Section 3 on
the transformed variables and deduce the main result.

2 Join-cut Analysis

In this section, we analyze the effect of removing the last factor in a transitive mono-
tone factorization, which leads to a recurrence relation for monotone single Hurwitz
numbers. From this we obtain the monotone join-cut equation of Theorem 1.2,
which uniquely characterizes the generating function ~H(z, t, p), and a system of
equations for a different generating function that we refer to as a topological recur-
sion.

2.1 Recurrence Relation

For a partition α ` d, let Mr(α) be the number of transitive monotone factorizations
of a fixed but arbitrary permutation σ ∈ Sd of cycle type α into r transpositions. By
the discussion in Section 1.5, this number only depends on the cycle type of σ, so it
is well defined, and we immediately have

(2.1) ~Hr(α) = |Cα|Mr(α).

Theorem 2.1 The numbers Mr(α) are uniquely determined by the initial condition

M0(α) =

{
1 if α = (1),

0 otherwise,

and the recurrence

Mr+1
(
α ∪ {k}

)
=
∑
k ′≥1

k ′mk ′(α)Mr
(
α \ {k ′} ∪ {k + k ′}

)

+
k−1∑
k ′=1

Mr
(
α ∪ {k ′, k− k ′}

)

+
k−1∑
k ′=1

r∑
r ′=0

∑
α ′⊆α

Mr ′
(
α ′ ∪ {k ′}

)
Mr−r ′

(
α \ α ′ ∪ {k− k ′}

)

(2.2)

for α ` d, d, r ≥ 0, k ≥ 1. In this recurrence, mk ′(α) is the number of parts of α of size
k ′, and the last sum is over the 2`(α) subpartitions α ′ of α.
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Proof As long as the initial condition and the recurrence relation hold, uniqueness
follows by induction on r. The initial condition follows from the fact that for r = 0
we must have σ = id, and the identity permutation is only transitive in S1.

To show the recurrence, fix a permutation σ ∈ Sd of cycle type α∪{k}, where the
element d is in a cycle of length k, and consider a transitive monotone factorization

(2.3) (a1 b1)(a2 b2) · · · (ar br)(ar+1 br+1) = σ.

The transitivity condition forces the element d to appear in some transposition, and
the monotonicity condition forces it to appear in the last transposition, so it must be
that br+1 = d. If we move this transposition to the other side of the equation and set
σ ′ = σ(ar+1 br+1), we get the shorter monotone factorization

(2.4) (a1 b1)(a2 b2) · · · (ar br) = σ ′.

Depending on whether ar+1 is in the same cycle of σ ′ as br+1 and whether (2.4) is still
transitive, the shorter factorization falls into exactly one of the following three cases,
corresponding to the three terms on the right-hand side of the recurrence.

Cut Suppose ar+1 and br+1 are in the same cycle of σ ′. Then σ is obtained from σ ′

by cutting the cycle containing ar+1 and br+1 in two parts, one containing ar+1 and the
other containing br+1, so (ar+1 br+1) is called a cut for σ ′ and also for the factorization
(2.3). Conversely, ar+1 and br+1 are in different cycles of σ, and σ ′ is obtained from σ
by joining these two cycles, so the transposition (ar+1 br+1) is called a join for σ. Note
that in the case of a cut, (2.4) is transitive if and only if (2.3) is transitive.

For k ′ ≥ 1, there are k ′mk ′(α) possible choices for ar+1 in a cycle of σ of length
k ′ other than the one containing br+1. For each of these choices, (ar+1 br+1) is a cut
and σ ′ has cycle type α \ {k ′} ∪ {k + k ′}. Thus, the number of transitive monotone
factorizations of σ where the last factor is a cut is∑

k ′≥1

k ′mk ′(α)Mr
(
α \ {k ′} ∪ {k + k ′}

)
,

which is the first term in the recurrence.

Redundant join Now suppose that (ar+1 br+1) is a join for σ ′ and that (2.4) is tran-
sitive. Then we say that (ar+1 br+1) is a redundant join for (2.3).

The transposition (ar+1 br+1) is a join for σ ′ if and only if it is a cut for σ, and
there are k− 1 ways of cutting the k-cycle of σ containing br+1. Thus, the number of
transitive monotone factorizations of σ where the last factor is a redundant join is

k−1∑
k ′=1

Mr
(
α ∪ {k ′, k− k ′}

)
,

which is the second term in the recurrence.
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Essential join Finally, suppose that (ar+1 br+1) is a join for σ ′ and that (2.4) is not
transitive. Then we say that (ar+1 br+1) is an essential join for (2.3). In this case, the ac-
tion of the subgroup 〈(a1 b1), . . . , (ar br)〉must have exactly two orbits on the ground
set, one containing ar+1 and the other containing br+1. Since transpositions acting on
different orbits commute, (2.4) can be rearranged into a product of two transitive
monotone factorizations on these orbits. Conversely, given a transitive monotone
factorization for each orbit, this process can be reversed, and the monotonicity con-
dition guarantees uniqueness of the result.

As with redundant joins, there are k − 1 choices for ar+1 to split the k-cycle of σ
containing br+1. Each of the other cycles of σ must be in one of the two orbits, so
there are 2`(α) choices for the orbit containing ar+1. Thus, the number of transitive
monotone factorizations of σ where the last factor is an essential join is

k−1∑
k ′=1

r∑
r ′=0

∑
α ′⊆α

Mr ′
(
α ′ ∪ {k ′}

)
Mr−r ′

(
α \ α ′ ∪ {k− k ′}

)
,

which is the third term in the recurrence.

2.2 Monotone Join-cut Equation

Since the numbers Mr(α) are rescaled versions of the monotone single Hurwitz num-
bers Hr(α), we can rewrite the recurrence relation for Mr(α) from Theorem 2.1 as a
partial differential equation for the generating function ~H. The result is the mono-
tone join-cut equation of Theorem 1.2, which we restate here for convenience.

Theorem 1.2 The generating function ~H is the unique formal power series solution of
the partial differential equation

1

2t

(
z
∂~H

∂z
− zp1

)
=

1

2

∑
i, j≥1

(
(i + j)pi p j

∂~H

∂pi+ j
+ i j pi+ j

∂2~H

∂pi∂p j
+ i j pi+ j

∂~H

∂pi

∂~H

∂p j

)
with the initial condition [z0]~H = 0.

Proof This equation can be obtained by multiplying the recurrence relation (2.2) by
the weight

|Cα| zd+kt r pαpk

2 d !

and summing over all choices of d, α, k, r with d ≥ 0, α ` d, k ≥ 1, and r ≥ 0.
The resulting sum can then be rewritten in terms of the generating function ~H via
the defining equations (2.1) and (1.8), together with the fact that

|Cα| =
d !∏

j≥1 jm j (α) m j(α)!
.

This shows that ~H is indeed a solution of the partial differential equation. To see
that the solution is unique, note that apart from d = 0, comparing the coefficient of
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zdt−1 of each side of the partial differential equation uniquely determines [zdt0]~H,
and comparing the coefficient of zdt r of each side for r ≥ 0 uniquely determines
[zdt r+1]~H in terms of [zdt r]~H.

2.3 Topological Recursion

In this section, we define a different type of generating function for monotone Hur-
witz numbers that is similar to the type of generating function for classical Hurwitz
numbers that has previously arisen in the physics literature. Specifically, by analogy
with the generating function Hg(x1, x2, . . . , x`) for Hurwitz numbers considered by
Bouchard and Mariño [1, (2.11) and (2.12)], consider the generating function

(2.5) Mg(x1, x2, . . . , x`) =
∑

α1,α2,...,α`≥1

~Hg(α)

|Cα|
xα1−1

1 xα2−1
2 · · · xα`−1

` ,

where we take α = (α1, α2, . . . , α`) to be a composition, that is, an `-tuple of positive
integers. One form of recurrence for Hurwitz numbers, expressed in terms of the
series Hg(x1, x2, . . . , x`), is referred to as topological recursion (see, e.g., [1, Conjec-
ture 2.1], [4, Remark 4.9], and [5, Definition 4.2]).

The following result gives the corresponding recurrence for monotone Hurwitz
numbers, expressed in terms of the series Mg(x1, x2, . . . , x`).

Theorem 2.2 For g ≥ 0 and ` ≥ 1, we have

Mg(x1, x2, . . . , x`) =

δg,0δ`,1 + x1Mg−1(x1, x1, x2, . . . , x`)

+
∑̀
j=2

∂

∂x j

( x1Mg(x1, . . . , x̂ j , . . . x`)− x jMg(x2, . . . , x`)

x1 − x j

)

+

g∑
g ′=0

∑
S⊆{2,...,k}

x1Mg ′(x1, xS)Mg−g ′(x1, xS),

(2.6)

where x1, . . . , x̂ j , . . . x` is the list of all variables x1, . . . , x` except x j ; xS is the product of
all variables x j with j ∈ S; and S = {2, . . . , k} \ S.

Proof Like the monotone join-cut equation of Theorem 1.2, this equation can be
obtained by multiplying the recurrence (2.2) by a suitable weight and summing over
an appropriate set of choices. In this case, the appropriate weight is

xk−1
1 xα1−1

2 xα2−1
3 · · · xα`−1−1

` ,

and the sum is over all positive integer choices of k, α1, α2, . . . , α`−1. In view of the
Riemann–Hurwitz formula (1.2), the appropriate choice of r is

r = k + ` + 2g − 3 +
`−1∑
j=1

α j .
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The resulting summations can then be rewritten in terms of the appropriate generat-
ing functions by using the defining equations (2.1) and (2.5).

Remark 2.1 Note that there is an asymmetry between the variable x1 and the vari-
ables x2, . . . , x` in (2.6), even though Mg(x1, x2, . . . , x`) itself is symmetric in all vari-
ables.

For small values of g and `, the recurrence (2.6) can be solved directly. In partic-
ular, we obtain

M0(x1) =
1−
√

1− 4x1

2x1
,

M0(x1, x2) =
4√

1− 4x1
√

1− 4x2(
√

1− 4x1 +
√

1− 4x2)2
.

If we define yi by yi = 1 + xi y2
i for i ≥ 1, then these can be rewritten as

M0(x1) = y1,

M0(x1, x2) =
x1

∂y1

∂x1
x2

∂y2

∂x2
(x2 y2 − x1 y1)2

(y1 − 1)(y2 − 1)(x2 − x1)2
.

In the terminology of Eynard and Orantin [5], this seems to mean that we have the
spectral curve y = 1+xy2, but it is unclear to us what the correct notion of Bergmann
kernel should be in our case.

3 Intermediate Forms

In this section, we introduce some algebraic methodology that will allow us to solve
the monotone join-cut equation. This methodology consists of a set of generating
functions for monotone Hurwitz numbers of fixed genus together with families of
operators. These allow us to transform the monotone join-cut equation into an alge-
braic operator equation for these genus-specific generating functions.

3.1 Algebraic Methodology

As the first part of our algebraic methodology, we define three families of operators
that use a new countable set of indeterminates x = (x1, x2, . . . ), algebraically inde-
pendent of p = (p1, p2, . . . ). We begin with lifting operators.

Definition 3.1 Let x = (x1, x2, . . . ) and p = (p1, p2, . . . ) be countable sets of
indeterminates. The i-th lifting operator ∆i is the Q[[x]]-linear differential operator
on the ring Q[[x, p]] defined by

∆i =
∑
k≥1

kxk
i
∂

∂pk
, i ≥ 1.
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The combinatorial effect of ∆i , when applied to a generating function, is to pick a
cycle marked by pk in all possible ways and mark it by kxk

i instead, that is, by xk
i once

for each element of the cycle. Note that ∆ix j = 0 for all j, so that

∆2
i =

∑
j,k≥1

jk x j+k
i

∂2

∂p j∂pk
.

Accompanying these lifting operators, we also have projection operators.

Definition 3.2 Let x = (x1, x2, . . . ) and p = (p1, p2, . . . ) be countable sets of inde-
terminates. The i-th projection operator Πi is the Q[[p]]-linear idempotent operator
on the ring Q[[x, p]] defined by

Πi = [x0
i ] +

∑
k≥1

pk[xk
i ], i ≥ 1.

The combinatorial effect of Πi , when applied to a generating function, is to take
any cycle marked by xk

i and mark it by pk instead. The combined effect of a lift and a
projection when applied to a generating function in Q[[p]] is given by

Πi∆i =
∑
k≥1

kpk
∂

∂pk
.

Finally, we introduce splitting operators.

Definition 3.3 Let F(xi) be an element of Q[[x, p]], considered as a power series in
xi , and let j ≥ 1 be an index other than i ≥ 1. Then the i-to- j splitting operator is
defined by

Split
i→ j

F(xi) =
x jF(xi)− xiF(x j)

xi − x j
+ F(0),

so that
Split
i→ j

xk
i = xk−1

i x j + xk−2
i x2

j + · · · + xix
k−1
j , k ≥ 2.

Combinatorially, the effect of Spliti→ j on a generating function is to take the cycle
marked by xi and split it in two cycles, marked by xi and x j respectively, in all possible
ways. The combined effect of a lift, a split and a projection on a generating function
in Q[[p]] is

Π1Π2 Split
1→2

∆1 =
∑
i, j≥1

(i + j)pi p j
∂

∂pi+ j
.

As the second part of our algebraic methodology, we define the generating func-
tions

(3.1) ~Hg =
∑
d≥1

∑
α`d

~Hg(α)pα
d !

, g ≥ 0.

Thus, ~Hg is the generating function for genus g monotone single Hurwitz numbers
where, combinatorially, p1, p2, . . . are ordinary markers for the parts of α and there
is an implicit exponential marker for the size d of the ground set.
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3.2 Recasting the Monotone Join-cut Equation

We are now able to recast the monotone join-cut equation as an algebraic operator
equation involving our genus-specific generating series ~Hg and the three operators
that we have introduced above.

Theorem 3.4

(i) The generating function ∆1~H0 is the unique formal power series solution of the
partial differential equation

(3.2) ∆1~H0 = Π2 Split
1→2

∆1~H0 + (∆1~H0)2 + x1

with the initial condition [p0x0
1]∆1~H0 = 0.

(ii) For g ≥ 1, the generating function ∆1~Hg is uniquely determined in terms of

∆1~H0,∆1~H1, . . . ,∆1~Hg−1 by the equation(
1− 2∆1~H0 −Π2 Split

1→2

)
∆1~Hg = ∆2

1
~Hg−1 +

g−1∑
g ′=1

∆1~Hg ′ ∆1~Hg−g ′ .

(iii) For g ≥ 0, the generating function ~Hg is uniquely determined by the generating

function ∆1~Hg and the fact that [p0]~Hg = 0.

Proof As with Theorems 1.2 and 2.2, this result is obtained by multiplying the re-
currence from Theorem 2.1 by a suitable weight and summing over a set of possible
choices. Consider the generating function

F =
∑
g≥0

ug~Hg =
∑
g≥0

ug
∑
d≥1

∑
α`d

~Hg(α)pα
d !

,

where u is an ordinary for the genus g. In view of (1.2) and (2.1), we have

F =
∑
g≥0

ug
∑
d≥1

∑
α`d

Md+`(α)+2g−2(α) pα∏
j≥1 jm j (α) m j(α)!

,

∆1F =
∑
g≥0

ug
∑
d≥0

∑
α`d

∑
k≥1

Md+k+`(α)+2g−1(α ∪ {k}) pαxk
1∏

j≥1 jm j (α) m j(α)!
.

Thus, by multiplying the recurrence (2.2) by the weight

ug pαxk
1∏

j≥1 jm j (α) m j(α)!

and summing over all choices of g, d, α, k with g ≥ 0, d ≥ 0, α ` d, k ≥ 1, and
r = d + k + `(α) + 2g − 2, we obtain the partial differential equation

(3.3) ∆1F − x1 = Π2 Split
1→2

∆1F + u∆2
1F + (∆1F)2.
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To show that ∆1F is the unique solution of this partial differential equation with
[u0 p0x0

1]∆1F = 0, note that (3.3) exactly captures the recurrence of Theorem 2.1, so
each non-constant coefficient of ∆1F is uniquely determined.

Extracting the coefficient of ug from (3.3) and rearranging terms gives the mono-
tone join-cut equations of the theorem statement for g = 0 and g ≥ 1.

Finally, note that given ∆1~Hg , we can compute

Π1∆1~Hg =
∑
d≥1

∑
α`d

~Hg(α)pα
(d− 1)!

,

which uniquely determines every coefficient of ~Hg except for the constant term.

Remark 3.1 This form of the monotone join-cut equation is technically slightly
stronger than the one given in Theorem 1.2, since it is obtained from the recurrence
relation in Theorem 2.1 by using a less symmetric weight.

Remark 3.2 The monotone join-cut equation for higher genera will be the subject
of a further paper [8], and we will not discuss it any more here.

4 Transformed Variables and Proof of the Main Result

In this section, we prove the main result, Theorem 1.1. Our strategy is to define the
series F by

(4.1) F =
∑
d≥1

∑
α`d

pα
|Autα|

(2d + 1)`(α)−3
`(α)∏
j=1

(
2α j

α j

)
,

and then to show that the series ∆1F satisfies the genus zero monotone join-cut equa-
tion (3.2).

Remark 4.1 We initially conjectured this formula for genus zero monotone Hur-
witz numbers after generating extensive numerical data, using the group algebra ap-
proach described in Section 1.5, together with the character theory and generating
series capabilities of Sage [25]. In particular, the case where α has `(α) = 3 parts was
very suggestive, since the formula then breaks down into a product of three terms.
This was also our first indication of the striking similarities between monotone Hur-
witz numbers and classical Hurwitz numbers.

4.1 Transformed Variables and Lagrange Inversion

In working with the series F, it is convenient to make a change of variables from
p = (p1, p2, . . . ) to q = (q1, q2, . . . ), where

(4.2) q j = p j

(
1−

∑
k≥1

(
2k

k

)
qk

)−2 j

, j ≥ 1.
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This change of variables is invertible and can be carried out using the Lagrange Im-
plicit Function Theorem in many variables (see [12]). The first result expressing F in
terms of the new indeterminates q involves the differential operator

D =
∑
k≥1

kpk
∂

∂pk
.

Theorem 4.1 Let γ =
∑

k≥1

(2k
k

)
qk and η =

∑
k≥1(2k + 1)

(2k
k

)
qk. Then

(2D− 2)(2D− 1)(2D)F =
(1− γ)3

1− η
− 1.

Proof From (4.1), for any α ` d with d ≥ 1, we have

[pα](2D− 2)(2D− 1)(2D)F =
1

|Autα|
(2d− 2)`(α)

`(α)∏
j=1

(
2α j

α j

)

=
(−1)``(α)!

|Autα|

(
2− 2d

`(α)

) `(α)∏
j=1

(
2α j

α j

)
,

and we conclude that

(4.3) [pα](2D− 2)(2D− 1)(2D)F = [qα](1− γ)2−2d.

Now let φ j = (1 − γ)−2 j , so that (4.2) becomes q j = p jφ j , j ≥ 1. Then, from
the multivariate Lagrange Implicit Function Theorem [12, Theorem 1.2.9], for any
formal power series Φ ∈ Q[[q]], we obtain

[pα]Φ = [qα]Φφα det

(
δi j − q j

∂

∂q j
logφi

)
i, j≥1

= [qα]Φφα det

(
δi j −

2iq j

1− γ

(
2 j

j

))
i, j≥1

,

where φα =
∏

j≥1 φα j . Then we have φα = (1 − γ)−2d, and using the fact that
det(I + M) = 1 + tr(M) for any matrix M of rank zero or one, we can evaluate the
determinant as

det
(
δi j − q j

∂

∂q j
logφi

)
i, j≥1

= 1−
∑
k≥1

2kqk

1− γ

(
2k

k

)
=

1− η
1− γ

.

Substituting, we obtain

[pα]Φ = [qα]
(1− η)Φ

(1− γ)2d+1
.

Comparing this result with (4.3), obtaining

[pα](2D− 2)(2D− 1)(2D)F = [pα]
(1− γ)3

1− η
for α ` d and d ≥ 1, and computing the constant term separately, the result follows
immediately.
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4.2 Inverting Differential Operators in the Transformed Variables

In order to use Theorem 4.1 to evaluate ∆1F, we need to invert the differential oper-
ators 2D − 2, 2D − 1, and 2D. We will work with the transformed variables q and
thus introduce the additional differential operators

Dk = pk
∂

∂pk
, Ek = qk

∂

∂qk
, E =

∑
k≥1

kqk
∂

∂qk
.

As Q-linear operators, the operators D1,D2, . . . , and D have an eigenbasis given
by the set {pα : α ` d, d ≥ 0}, and consequently they commute with each other.
Similarly, the operators E1,E2, . . . , and E have the set {qα : α ` d, d ≥ 0} as an
eigenbasis and commute with each other. However, these two families of operators
do not commute with each other. By using the relation (4.2) to compute the action
of Ek on p j , we can verify the operator identity

Ek = Dk −
2qk

1− γ

(
2k

k

)
D, k ≥ 1.

It follows that E = 1−η
1−γD, and we can deduce the identity

(4.4) Dk = Ek +
2qk

1− η

(
2k

k

)
E, k ≥ 1.

Thus, we can express these differential operators for p and q in terms of each other.
In the following result, we apply these expressions to invert the differential operators
that appear in Theorem 4.1.

Theorem 4.2 For k ≥ 1, we have

DkF =
1

2k(2k− 1)

(
2k

k

)
qk −

∑
j≥1

2 j + 1

2( j + k)(2k− 1)

(
2 j

j

)(
2k

k

)
q jqk.

Proof As notation local to this proof, let

F ′ ′ ′ = (2D− 2)(2D− 1)(2D)F, F ′ ′ = (2D− 1)(2D)F, F ′ = (2D)F.

To prove the result, we use the operator identity

(4.5) (1− γ)i(2E− i)
(

(1− γ)−iG
)

=
1− η
1− γ

(2D− i)(G),

which holds for any integer i and any formal power series G. This allows us to express
the differential operators 2D− 2, 2D− 1, and 2D in terms of the operators 2E− 2,
2E − 1, and 2E, which we can invert by recalling that they have {qα : α ` d, d ≥ 0}
as an eigenbasis.



1038 I. P. Goulden, M. Guay-Paquet, and J. Novak

We proceed in a number of stages. First we invert 2D − 2 by applying (4.5) with
i = 2 to Theorem 4.1, obtaining

F ′ ′ = (2D− 2)−1(F ′ ′ ′) = 1
2 + (2D− 2)−1

( (1− γ)3

1− η

)
= 1

2 + (1− γ)2(2E− 2)−1(1) = 1
2 −

1
2 (1− γ)2,

after checking separately that [p1]F ′ ′ = 2. (We need to check this since the kernel of
2D− 2 is spanned by p1.)

Next we apply Dk to F ′ ′ via (4.4). This is straightforward, and gives

DkF ′ ′ =
(1− γ)2

1− η

(
2k

k

)
qk.

Now we invert 2D− 1 by applying (4.5) with i = 1, which gives

DkF ′ = (2D− 1)−1(DkF ′ ′) = (1− γ)(2E− 1)−1
((2k

k

)
qk

)
= (1− γ)

1

2k− 1

(
2k

k

)
qk.

Finally, we invert 2D by applying (4.5) with i = 0, giving

DkF = (2D)−1(DkF ′) = (2E)−1
(

(1− η)
1

2k− 1

(
2k

k

)
qk

)
= (2E)−1

( 1

2k− 1

(
2k

k

)
qk −

∑
j≥1

2 j + 1

2k− 1

(
2 j

j

)(
2k

k

)
q jqk

)

=
1

2k(2k− 1)

(
2k

k

)
qk −

∑
j≥1

2 j + 1

2( j + k)(2k− 1)

(
2 j

j

)(
2k

k

)
q jqk.

Again, the constant term needs to be checked separately, since the kernel of (2D)
consists of the constants, but clearly DkF has no constant term.

4.3 The Generating Function for Genus Zero

In order to work consistently in the tranformed variables q, it will be useful to have
descriptions of the projection and splitting operators in terms of q. When consider-
ing these operators, the change of variables from p to q also corresponds to a change
of variables from x to a new countable set of indeterminates y = (y1, y2, . . . ), where
we impose the relations

(4.6) yi = xi(1− γ)−2.

We can express the indeterminates p and q in terms of each other using (4.2), so we
can identify the rings Q[[p]] and Q[[q]]. Since (1 − γ)−2 is an invertible element in



Monotone Hurwitz Numbers in Genus Zero 1039

this ring, we can further identify the rings Q[[p, x]] and Q[[q, y]] using (4.6). In this
bigger ring, we have the operator identities

Πi = [x0
i ] +

∑
k≥1

pk[xk
i ] = [y0

i ] +
∑
k≥1

qk[yk
i ],

Split
i→ j

G(xi) =
x jG(xi)− xiG(x j)

xi − x j
+ G(0) =

y jG(xi)− yiG(x j)

yi − y j
+ G(0),

so the projection and splitting operators are just as easy to use with either set of
indeterminates.

Remark 4.2 For completeness, note that the lifting operators can also be described
in terms of q and y, although the expressions are somewhat more complicated. That
is, using (4.4), we obtain the expression

∆i =
∑
k≥1

kxk
i
∂

∂pk
=
∑
k≥1

(
kyk

i
∂

∂qk

)
+

4yi(1− 4yi)−
3
2

(1− η)

∑
k≥1

(
kqk

∂

∂qk
+ yk

∂

∂yk

)
.

We are now able to evaluate ∆1F in the indeterminates q and y.

Corollary 4.3 We have

∆1F = Π2

(
1−

√
1− 4y1 −

y1

2(y1 − y2)

(
1−

√
1−4y1

1−4y2

))
.

Proof From Theorem 4.2, we have

∆1F =
∑
k≥1

kyk
1

qk
DkF

=
∑
k≥1

1

2(2k− 1)

(
2k

k

)
yk

1 −
∑
j,k≥1

(2 j + 1)k

2( j + k)(2k− 1)

(
2 j

j

)(
2k

k

)
yk

1q j

= Π2

(
2G(y1, 0)− G(y1, y2)

)
,

where the power series G(y1, y2) is defined by

G(y1, y2) =
∑
j≥0

∑
k≥1

(2 j + 1)k

2( j + k)(2k− 1)

(
2 j

j

)(
2k

k

)
yk

1 y j
2.

Then the computation

G(y1, y2) =

∫ 1

0
y1t(1− 4y1t)−

1
2 (1− 4y2t)−

3
2

dt

t

=
[ −y1

2(y1 − y2)
(1− 4y1t)

1
2 (1− 4y2t)−

1
2

] 1

t=0

=
y1

2(y1 − y2)

(
1−

√
1−4y1

1−4y2

)
completes the proof.
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In the following result, using the above explicit expression for ∆1F, we uniquely
identify F as the generating function for monotone single Hurwitz numbers in genus
zero.

Theorem 4.4 The series F satisfies the genus zero monotone join-cut equation

∆1F = Π2 Split
1→2

∆1F + (∆1F)2 + x1.

Thus, F = ~H0 is the generating function for monotone single Hurwitz numbers in genus
zero.

Proof Corollary 4.3 gives ∆1F = Π2A(y1, y2), where

A(y1, y2) = 1−
√

1− 4y1 −
y1

2(y1 − y2)

(
1−

√
1−4y1

1−4y2

)
.

We need to check that the expression

∆1F−Π2 Split
1→2

∆1F− (∆1F)2 − x1

is zero. To do so, we rewrite each of the terms in this expression as

∆1F = Π2Π3

(
A(y1, y2)

)
,

Π2 Split
1→2

∆1F = Π2Π3

( y2A(y1, y3)− y1A(y2, y3)

y1 − y2

)
,

(∆1F)2 = Π2Π3

(
A(y1, y2)A(y1, y3)

)
,

x1 = y1(1− γ)2 = Π2Π3

(
y1

(
2− 1√

1− 4y2

)(
2− 1√

1− 4y3

))
to get an expression of the form Π2Π3 B(y1, y2, y3). The series B(y1, y2, y3) itself is
not zero, but a straightforward computation shows that the series

1
2 B(y1, y2, y3) + 1

2 B(y1, y3, y2),

obtained by symmetrizing with respect to y2 and y3, is zero. Thus we have

Π2Π3 B(y1, y2, y3) = Π2Π3

(
1
2 B(y1, y2, y3) + 1

2 B(y1, y3, y2)
)

= 0,

which completes the verification. The fact that F = ~H0 follows immediately from
Theorem 3.4.

Finally, we are now able to deduce our main result.

Proof of Theorem 1.1 In view of (3.1) with g = 0, applying Theorem 4.4 gives

~H0(α) = d ![pα]F

for any partition α of d ≥ 1. The result follows immediately from (4.1).
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