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Abstract

We give a combinatorial proof of Harer and Zagier’s formula for the disjoint cycle distribution of
a long cycle multiplied by an involution with no fixed points, in the symmetric group on a set of
even cardinality. The main result of this paper is a direct bijection of a setBp,k , the enumeration of
which is equivalent to the Harer–Zagier formula. The elements ofBp,k are of the form(�,�), where
� is a pairing on{1, . . . ,2p}, � is a partition intok blocks of the same set, and a certain relation
holds between� and�. (The set partitions� that can appear inBp,k are called “shift-symmetric”, for
reasons that are explained in the paper.) The direct bijection forBp,k identifies it with a set of objects
of the form(�, t), where� is a pairing on a 2(p − k + 1)-subset of{1, . . . ,2p} (a “partial pairing”),
andt is an ordered tree withk vertices. If we specialize to the extreme case whenp = k − 1, then�
is empty, and our bijection reduces to a well-known tree bijection.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We begin by reviewing some standard terminology, which will be used throughout the
paper.
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1.1. Notation

(a)Pairings: Let [n] = {1, . . . , n}, andSn be the set of permutations of[n], for n�0.
For � ∈ Sn and� ⊆ [n], we write�(�) for the set{�(i) : i ∈ �}. Let Pp be the set of
pairings on [2p], which are partitions of the set[2p] into disjoint subsets of size 2, for
p�0 (we refer to the single element ofP0 as theemptypairing). For� ∈ Pp, we thus have
� = {{m11, m12}, . . . , {mp1, mp2}}, wheremi1 < mi2, i = 1, . . . , p, andm11 < · · · <

mp1. Where the context is appropriate, we shall also regardPp as the conjugacy class of
involutions with no fixed points inS2p, and in this context, we regard� above as having
disjoint cycle representation(m11m12) · · · (mp1mp2), and write�(mi1) = mi2, �(mi2) =
mi1, i = 1, . . . , p. Of course, the number of pairings inPp is (2p −1)!! = ∏p

j=1(2j −1),
with the empty product convention that(−1)!! = 1.
(b) Partial pairings: A partial pairing on[2p] is a pairing on a set� ⊆ [2p] of even

cardinality. If |�| = 2k, then we also call it ak-partial pairing. For each of these partial
pairings�, we call� thesupport, and denote this by supp(�) = �. Forp�k�0, letRp,k

be the set ofk-partial pairings on[2p]. For each� of size 2k, there are(2k − 1)!! pairings
on�, so the number ofk-partial pairings on[2p] is given by

|Rp,k| =
(
2p

2k

)
(2k − 1)!! (1)

(c) Ordered trees: An orderedtree is a tree with a root vertex, which is adjacent to an
ordered list of vertices (called thedescendantsof the root vertex), each of which is itself,
recursively, the root vertex of an ordered tree. The latter ordered trees are called ordered
subtreesof the ordered tree. LetTk denote the set of ordered trees onk vertices, fork�1. It
is well known (see, e.g.,[9, p. 60]), that the number of ordered trees onk vertices is given
by

|Tk| = 1

k

(
2k − 2

k − 1

)
, (2)

which is aCatalannumber. If we draw an ordered tree, the root vertex is placed at the
bottom, with descendants above, ordered from left to right; thus we shall refer to the order
of descendants as left to right order. Thelevelof a vertex in an ordered tree is a nonnegative
integer defined recursively as follows: the root vertex has level 0, and if vertexv is a
descendant of vertexu, then the level ofv is one greater than the level ofu. (Equivalently,
the level of a vertexv in an ordered tree is the edge-length of the unique path in the tree
from the root vertex tov.) If uandv are descendants of a vertex, withu to the left ofv, then
all vertices in the subtree rooted atu are to the left of all vertices in the subtree rooted atv.
For eachi�1, this totally orders the vertices at leveli from left to right.
(d) Labellings of ordered trees: A labelledordered tree onk vertices is an ordered tree

on k vertices, each of which is assigned a unique label from[k]. Reverse-labellingis the
canonical labelling in which the root vertex is labelledk, then the vertices at level 1 are
labelled in decreasing order from right to left, beginning withk−1, followed by the vertices
at level 2, decreasing from right to left, repeating until the leftmost vertex at the highest
level in the tree is labelled 1. Fort ∈ Tk, we shall uset ′ to denote the tree obtained by
reverse-labellingt.
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Let us now describe the formula in the title of the paper. Forp�1, we consider the
shift permutation� in S2p, which has disjoint cycle representation� = (12. . .2p). Let
Ap = {��−1 : � ∈ Pp}, andap,k be the number of permutations inAp with k cycles in the
disjoint cycle representation, fork�1. Harer and Zagier[2] obtained the following result.

Theorem 1.1(Harer and Zagier[2] ). For p�1,∑
k �1

ap,kx
k = (2p − 1)!!

∑
k �1

2k−1
(

p

k − 1

)(
x

k

)
.

Other proofs of Theorem1.1 have been given by Itzykson and Zuber[3], Jackson[4],
Kerov [5], Kontsevich[6], Lass[7], Penner[8] and Zagier[10] (see also the survey by
Zvonkin [11], and the discussion in Section 4 of the paper by Haagerup and Thorb-
jornsen[1]). Despite the elementary statement of the theorem, the proofs are not easy,
and as a rule, they move out of the realm of enumerative combinatorics. A notable excep-
tion to this rule is the paper of Lass[7]. The method of Lass is purely combinatorial, and
relies on an ingenious application of the BEST Theorem, which enumerates Eulerian tours
in a multigraph as the product of two factors, one explicit, and the other giving the number
of spanning arborescences of the multigraph. He then uses Cayley’s result for counting
labelled trees by degree to obtain the result, overcounting by a factor ofk!. While this
combinatorial proof implies a bijection, it does not specify a direct bijection.
In this paper, we present a direct bijection for a set of objects, the enumeration of which is

equivalent to the Harer–Zagier formula. These objects are introduced in the next definition.

Definition 1.2. LetBp,k be the set of ordered pairs(�,�), where� ∈ Pp and� is a partition
of [2p] into k nonempty, unordered sets (called theblocksof the partition), satisfying the
condition

�(i), �(i) are in the same block of� for all i ∈ [2p]. (3)

Let bp,k be the number of elements inBp,k. We call a partition� for which there exists�
with (�,�) ∈ Bp,k ashift-symmetricpartition, for reasons that are explained in Section4.

It is immediate to see that the numbersbp,k of Definition 1.2 give an alternative way
of looking at the left-hand side of the Harer–Zagier formula, as specified in the following
result.

Proposition 1.3. For p�1,∑
k �1

ap,kx
k =

∑
k �1

bp,k(x)k,

where(x)k := ∏k−1
j=0 (x − j), k�1 is the falling factorial.

Proof. If (�,�) ∈ Bp,k, then condition (3) is equivalent to��−1(j) andj belonging to the
same block of� for all j ∈ [2p] (by replacingi above by�−1(j)). But this means that, for
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each�, the blocks of� are unions of disjoint cycles of��−1. Thus

bp,k =
∑
m�k

S(m, k)ap,m, (4)

whereS(m, k), the Stirling number of the second kind, gives the number of partitions of
an m-set into k nonempty, unordered subsets. But

∑m
k=1 S(m, k)(x)k = xm, from,

e.g. Stanton andWhite[9, p. 78], so multiplying (4) by (x)k and summing overk�1 gives
the result. �

Now, comparing the expressions given in Theorem1.1and Proposition1.3, we obtain

bp,k = (2p − 1)!!2k−1
(

p

k − 1

)
1

k!
=
(

2p

2p − 2k + 2

)
(2p − 2k + 1)!! 1

k

(
2k − 2

k − 1

)
, (5)

where, for the second equality, we have simply manipulated the factors in the quotient. But,
considering (1) and (2), we find that the latter expression forbp,k is equivalent to

|Bp,k| = |Rp,p−k+1| · |Tk| (6)

for p�k−1�0. In this paper, we shall give a combinatorial proof of Theorem1.1, directly
proving (6) by giving a direct bijection betweenBp,k andRp,p−k+1 × Tk.

Theorem 1.4. For p�k − 1�0, there exists a direct bijection

�p,k : Bp,k → Rp,p−k+1 × Tk.

Theorem1.4is ourmain result.Theconstructionof thebijection�p,k is given inSection2.
Described very succinctly, the ideas behind the construction of�p,k are as follows. Given
(�,�) ∈ Bp,k, let the blocks of� be denoted by�1, . . . ,�k, where�k is the block containing
thenumber 1.We letm1, . . . , mk−1 be themaximumelements in�1, . . . ,�k−1, respectively,
indexed so thatm1 < · · · < mk−1. Then, by considering the blocks in which the “mates”,
�(m1), . . . ,�(mk−1) occur, we determine a treet ∈ Tk—see Proposition2.1, and the
Notation following it. Also, from these maximum elements and their mates, we determine
two partial pairings:�2 = {{m1,�(m1)}, . . . , {mk−1,�(mk−1)}}, and�1 = � \ �2, where
�1 ∈ Rp,p−k+1.
It would be toomuch to hope that(�,�) �→ (�1, t) is our desired bijection, but it turns out

thatweareonlyonecanonical relabellingaway from thebijection�p,k inTheorem1.4.More
precisely, in the Notation following Proposition2.1, we create a relabelling permutation
	 ∈ S2p from (�,�), so that�p,k is described by the map(�,�) �→ (	(�1), t). The proof
that this is bijective is given in Section3.
The paper concludes in Section4 with some remarks about related results.
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2. A mapping for shift-symmetric paired partitions

We consider(�,�) ∈ Bp,k, and construct various objects associated with(�,�). First, let
the blocks of� be given by�1, . . . ,�k, indexed as follows:�k is the block containing the
element 1, and the remaining blocks are indexed according to the order of their maximum
elements, by

max(�1) < · · · < max(�k−1)

and we letmi = max(�i ) for i = 1, . . . , k − 1. Define
 : [k − 1] → [k] by 
(i) = j

when�(mi) ∈ �j , for i = 1, . . . , k − 1.

Proposition 2.1. For (�,�) ∈ Bp,k, and in the notation above,

(i) for i = 1, . . . , k − 1,we havei < 
(i),
(ii) for i = 1, . . . , k − 1,we have�(mi) �= mj for anyj = 1, . . . , k − 1.

Proof. (i) For i = 1, . . . , k − 1, we consider two cases formi :

• if mi = 2p (this can only happen wheni = k − 1), then�(mi) = 1 ∈ �k, and
condition (3) implies that�(mi) ∈ �k. Thus
(i) = k, and the result is true in this case;

• if mi < 2p, then�(mi) = mi + 1 ∈ �j where max(�j ) = mj �mi + 1 > mi , and so
from the indexing convention for the blocks of�, we havei < j (for both the possible
choicesj = k andj < k). But again the�,� condition implies that�(mi) ∈ �j , so

(i) = j , and the result is true in this case also.

(ii) If �(mi) = mj ∈ �j , then
(i) = j , so from part (i) we havei < j . But we also
have�(mj ) = mi ∈ �i , so
(j) = i, and from part (i) we havej < i, a contradiction, and
the result follows. �

For the same(�,�) considered at the beginning of the section, we now construct three
objects, whichwill appear in our direct bijection.The tree inNotation (b) below is analogous
to the tree used in Lass[7], with the difference that here we have an ordered tree.

2.1. Notation

(a)Partial pairings: Split the pairing� into two partial pairings�1 and�2, where we let
�2 = {{m1,�(m1)}, . . . , {mk−1,�(mk−1)}}, and�1 = � \ �2. Note that�2 is well-defined
as a(k − 1)-partial pairing, from Proposition2.1(ii), and thus�1 is a (p − k + 1)-partial
pairing.
(b)Ordered tree: From
, create a labelled ordered treeT on vertex-set[k], as follows:

the root isk, and for everyi = 1, . . . , k − 1, i is a descendant of
(i); if verticesi, j are
both descendants of vertexv, theni is to the left ofj when�(mi) < �(mj ) (otherwise,j is
to the left ofi and�(mj ) < �(mi)). The fact that this is well-defined follows immediately
from Proposition2.1(i), which implies that for everyi = 1, . . . , k, the increasing sequence
i,
(i),
(
(i)), . . .will uniquely terminateatk, thus specifying theuniquepath fromvertex
i to the root vertexk in T.
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Fig. 1. Three treesT , t, t ′.

Then we remove the labels fromT to obtain the ordered treet ∈ Tk, and consider the
reverse-labelled treet ′. Thus,T andt ′ give two, possibly different, labellings oft. Suppose
that the vertex oft labelledi inT is labelledj in t ′. Then define�(j) = �i , and repeat for each
i = 1, . . . , k. Now �(1), . . . ,�(k) gives a different indexing of the blocks of�, in which
�(k) = �k, and we definem(i) to be the maximum element of�(i) for i = 1, . . . , k − 1.
(c) Relabelling permutation: Let �(i) be the string obtained by writing the elements

of �(i) in increasing order, fori = 1, . . . , k, and let� = �(1) · · ·�(k), the concatenta-
tion of �(1), . . . ,�(k). Then� contains elementj exactly once for eachj ∈ [2p], since
�(1), . . . ,�(k) are the blocks of�, a set partition of[2p]. Thus we define	 ∈ S2p by spec-
ifying that� is the second line in the two-line representation of	−1. Finally, we consider
	(�1), to mean that each pair{i, j} in �1 becomes pair{	(i),	(j)} in 	(�1). Since�1 is a
(p − k + 1)-partial pairing, then	(�1) is also a(p − k + 1)-partial pairing.

Example 2.2. In the casep = 9 andk = 4, consider(�,�) ∈ B9,4, with
� = {{1,18}, {2,7}, {3,6}, {4,5}, {8,13}, {9,12}, {10,11}, {14,17}, {15,16}},
� = {�1,�2,�3,�4},

where�4 = {1,2,8,14,18}, and�1 = {3,4,6,7}, �2 = {5,11,16}, �3 = {9,10,12,
13,15,17}. Note that the indexing has already been assigned, and indeed 1∈ �4, m1 <

m2 < m3, wherem1 = max(�1) = 7,m2 = max(�2) = 16,m3 = max(�3) = 17. (The
condition that�(i) and�(i) are in the same block of� for all i ∈ [18] requiresmore detailed
checking: e.g.,�(1) = 2, �(1) = 18, and 2,18 ∈ �4; �(2) = 3, �(2) = 7, and 3,7 ∈ �1;
�(4) = 5,�(4) = 5, and nothing to check here, etc.)
From thesemi ’s we now determine
, by 
(1) = 
(3) = 4, 
(2) = 3. Thus�2 =

{{2,7}, {15,16}, {14,17}}, so�1 = {{1,18}, {3,6}, {4,5}, {8,13}, {9,12}, {10,11}}. Next
we determine the treesT , t, t ′, given in Fig.1 (in T, vertices 1 and 3 are both descendants
of 4, with 1 to the left of 3 because�(m1) = 2 < 14 = �(m3)). Therefore, we have
�(1) = �2, �(2) = �1, �(3) = �3, �(4) = �4, andm(1) = 16,m(2) = 7, m(3) = 17,
so�(1) = 51116,�(2) = 3 4 6 7,�(3) = 9 10 12 13 15 17,�(4) = 12 814 18, and� =
5 11 16 3 4 6 7 9 10 12 13 15 17 1 2 8 14 18, so the two-line representation of	−1 is given by
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The placement of the vertical lines in this two-line representation will be referred to again
in Section3. (Alternatively, 	 = (1 14 17 13 11 2 1512 10 9 8 16 3 4 5)(6)(7) in disjoint
cycle notation.) Thus, we have	(�1) = {{1,5}, {2,9}, {4,6}, {8,10}, {11,16}, {14,18}}.
Also note that	(�2) = {{3,12}, {7,15}, {13,17}}, and	(�(1)) = {1,2,3}, 	(�(2)) =
{4,5,6,7}, 	(�(3)) = {8,9,10,11,12,13}, 	(�(4)) = {14,15,16,17,18}.

Now, among the objects that we have constructed from(�,�) are the(p − k + 1)-partial
pairing	(�1) and the ordered treet, so the following mapping�p,k is well defined.

Definition 2.3. Forp�k − 1�0, let

�p,k : Bp,k → Rp,p−k+1 × Tk : (�,�) �→ (	(�1), t)

We claim that�p,k is actually a bijection, and prove this in Section3.

3. Proof that the mapping is bijective

We begin with an observation about the relationship between�2 andt in the construction
of�p,k(�,�) (where(�,�) is a given element ofBp,k and where we use notation consistent
with Section2). Let us denote

� := supp(�2) =
k−1⋃
i=1

{m(i),�(m(i))}

and�(i) := �∩�(i), for i = 1, . . . , k. On the other hand, recall thatt ′ is the reverse-labelling
of the ordered treet, and let us denote byd(i) the number of descendants of the vertexi of
t ′, for i = 1, . . . , k. Our observation is that we have|�(i)| = d(i) + 1 for i = 1, . . . , k − 1,
and|�(k)| = d(k). In the casei < k, for instance, this is because�(i) consists ofm(i) and of
d(i) elements of the form�(m(j)) with j a descendant ofi in t ′. Moreover, we observe that
the ordering of thed(i) +1 elements of�(i) can be read from the treet ′—the largest element
of �(i) ism(i), and the remaining elements of the form�(m(j)) are ordered exactly in the
same way as the correspondingj’s are ordered as descendants ofi in t ′. (This is fori < k.
The ordering of thed(k) elements of�(k) is, of course, read fromt ′ in a similar manner.)
Theaboveobservationabout the�(i)’s andd(i)’s has the following consequence:Consider

the sequence� (defined as in the part (c) of the Notation in Section2). If we know� (as
a set) andt, and if we also know in what order the elements of� appear in the sequence
�, then we can deduce the precise structure of�—i.e. whatm(i) is and what�(m(i)) is, for
every 1� i�k − 1.
Let us illustrate theobservation (and its consequence) in the concrete situationofExample

2.2. There� = {2,7,14,15,16,17}. Suppose we know� but we do not remember which
elements of� werem(1), m(2), m(3) and�(m(1)),�(m(2)),�(m(3)). Suppose on the other
hand that we also remembert (hence we knowt ′) and the fact that the elements of� appear
in � in the following order:

(∗) · · ·16· · ·7 · · ·15· · ·17· · ·2 · · ·14· · ·
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By looking att ′ we see that�(m(1)) ∈ �(3) and that�(m(2)),�(m(3)) ∈ �(4); hence the 6
elements of� have to be distributed between the blocks of� as follows:

m(1) ∈ �(1); m(2) ∈ �(2); �(m(1)), m(3) ∈ �(3); �(m(2)),�(m(3)) ∈ �(4).

But then the order in which the elements of� appear in� must be:

(∗∗) · · · m(1) · · · m(2) · · ·�(m(1)) · · · m(3) · · ·�(m(2)) · · ·�(m(3)) · · ·
(The fact that�(m(2)) precedes�(m(3)) in (∗∗) is inferred from the fact that 2 is to the left
of 3, as descendants of 4 int ′.) By comparing(∗) against(∗∗) we can thus determine what
m(i) is and what�(m(i)) is, for every 1� i�3.

Proposition 3.1. For p�k − 1�0, �p,k : Bp,k → Rp,p−k+1 × Tk is an injection.

Proof. Suppose we are given(	(�1), t) arising as�p,k(�,�) for some(�,�) ∈ Bp,k. Our
goal is to prove that(�,�) can be uniquely recovered from(	(�1), t).
The given data determines in particular the set� := [2p] \supp(	(�1)). Clearly, we have

� = 	(�) where� is as in the discussion which preceded the statement of the proposition.
At this stage of the proof we do not know what� is; but observe that the knowledge of
� tells us in what positions the elements of� appear when we form the (also unknown
at the moment) sequence�—this is just because� is the second line in the two-line
representation of	−1. Since we know the ordered treet, the discussion which preceded the
proposition can then be put to work: while we still would not knowm(1), . . . , m(k−1) and
�(m(1)), . . . ,�(m(k−1)), we will nevertheless deduce in what order these numbers appear
in the sequence�, and hence under which elements of� they appear. In other words:
the upshot of the discussion presented before the proposition will determine explicitly
	(m(1)), . . . ,	(m(k−1)) and	(�(m(1)) ), . . . ,	(�(m(k−1)) ).
Now, the numbers	(m(1)), . . . ,	(m(k−1))mark the placement of the vertical bars in the

two-line representation of	−1. So if we know them, then we know where the vertical bars
are, and consequently we know the partition	(�) := {	(�(1)), . . . ,	(�(k))}. (The blocks
of the latter partition are intervals,	(�(1)) = [	(m(1))], 	(�(i)) = [	(m(i))] \ [	(m(i−1))]
for 2� i�k−1, and	(�(k)) = [2p]\ [	(m(k−1))].)Also, note that at this stage of the proof
we know how to complete the given partial pairing	(�1) to the pairing	(�) of [2p] (since
the missing pairs in	(�) were{	(m(i)),	(�(m(i)) )}, for 1� i�k − 1).
To this stage, we have proved that(	(�),	(�)) can be uniquely recovered from the given

data(	(�1), t). In order to finish the proof that�p,k is injective, we now prove that	
−1

can be uniquely recovered from(	(�),	(�)), when one considers the relationship between
�,�, �. Applying (the unknown relabelling permutation)	 to the�,� condition (3) gives
the following condition: fori = 1, . . . ,2p−1, then if	(i) = c and	(�(i)) = d ∈ 	(�(j)),
we have	(i + 1) = 	(�(i)) ∈ 	(�(j)). But, applying	 to our indexing convention for the
blocks of�, we have	(1) ∈ 	(�(k)). Moreover, since the symbols in�(j) increase from
left to right for eachj = 1, . . . , k, we know that 1 is the left-most element of�(k), and that
if i + 1 ∈ �(j), then to the left ofi + 1 in�(j) are precisely the elements of[i] ∩ �(j). We
claim that this gives enough information to uniquely determine� (equivalently,	 or 	−1).
We describe exactly how to do so below, using the following terminology for the two-line
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Fig. 2. A tree inT5.

representation of	−1: we regard this two-line representation as a table with 2 rows and
2p columns, and note that the entry in the first row of columnc is equal toc, for each
c = 1, . . . ,2p. We place vertical bars in the table to separate the�(j)’s in the second row,
as displayed here:

Our task is to uniquely reconstruct this table from(	(�),	(�)). Begin with entryc in the
first row of columnc, for eachc = 1, . . .2p, and the second row empty. Note that since we
are given	(�), then we know the	(m(j))’s, so we can place the vertical bars in the table,
and we now translate the information above into an iterative process that uniquely places
eachi in the second row of the table, fori = 1, . . . ,2p.

• First, place 1 in the second row of the table, in the left-most position of�(k) (so 1 is
located in column	(m(k−1)) + 1 of the second row in the table);

• Repeat fori = 1, . . . ,2p − 1: Suppose thati has been placed in columnc of the second
row in the table, thatc is paired withd in 	(�), and thatd ∈ 	(�(j)). Then placei + 1 in
the second row of the table, in the left-most unoccupied position of�(j).

This process is simply a translation, into the terminology of the table, of the informa-
tion deduced from the relationship between�,�, � above, and thus uniquely determines
	−1. Applying this permutation to(	(�),	(�)), we uniquely recover(�,�), and the result
follows. �

The description of�−1
p,k given in the above proof can be checked by applying it to the pair

(	(�1), t) that was created in Example2.2. Indeed, the pair(�,�) is uniquely recovered if
we do so. We now give a second example, in which we apply�−1

p,k to an arbitrary element
ofRp,p−k+1 × Tk.

Example 3.2. In the casep = 7 andk = 5, consider{{2,13}, {3,6}, {9,12}} ∈ R7,3 and
the tree inT5 given in Fig.2.
After reverse-labelling the tree we find that (in notation similar to that used above)

�(m(1)) ∈ �(3) and that�(m(2)) < �(m(3)) < �(m(4)) are all elements of�(5). As a
consequence, the order of appearance of the elements of� in the sequence� must be
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as follows:

· · · m(1) · · · m(2) · · ·�(m(1)) · · · m(3) · · · m(4) · · ·�(m(2)) · · ·�(m(3)) · · ·�(m(4)) · · ·
The set of positions where these elements appear (in the sequence�) is � = {1,4,5,7,
8,10,11,14}. This implies that we have

	(m(1)) = 1, 	(m(2)) = 4, 	(m(3)) = 7, 	(m(4)) = 8

and hence that	(�) = {	(�(1)), . . . ,	(�(5))} is described as follows:	(�(1)) = {1},
	(�(2)) = {2,3,4}, 	(�(3)) = {5,6,7}, 	(�(4)) = {8}, 	(�(5)) = {9,10,11,12,13,14}.
Moreover, the given partial pairing{ {2,13}, {3,6}, {9,12} } is completed to the pairing	(�)

= { {1,5}, {2,13}, {3,6}, {4,10}, {7,11}, {8,14}, {9,12} }. In order to finish the process
of finding � and� such that�7,5(�,�) equals the given data, we need to place elements
i + 1= 2, . . . ,14 in the second row of the following table.

This is straightforward, as described above. The reader willing to practice implementing
the algorithm should have no difficulty checking that after two iterations, for instance, the
table becomes:

The next entry to be placed in this partial table is 4, which appears in the second row under
11; this is because 3 appears below 2, which is paired in	(�) with 13 ∈ 	(�(5)), and the
left-most unoccupied position in�(5) appears under 11. Completing the table, we obtain
the two-line representation of	−1 below.

Now we have obtained(�,�) ∈ Bp,k, where� = {{1,10}, {2,12}, {3,11}, {4,9}, {5,6},
{7,8}, {13,14}}, and�(1) = {6}, �(2) = {3,8,12}, �(3) = {5,7,9}, �(4) = {14} and
�(5) = {1,2,4,10,11,13}. (Note that�i = �(i) for i = 1,4,5, but that�2 = �(3) and
�3 = �(2).)

In the next result, we prove that, as in the example above,�−1
p,k can be applied toany

element ofRp,p−k+1× Tk to yield an element ofBp,k, and thus deduce that�p,k is also a
surjection.

Proposition 3.3. For p�k − 1�0, �p,k : Bp,k → Rp,p−k+1 × Tk is a surjection.

Proof. Consider the description of�−1
p,k given in the proof of Proposition3.1. Clearly,

this can be applied to an arbitrary element ofRp,p−k+1 × Tk up to the stage where the
permutation	 remains to be determined. Now, we examine the process of determining	:
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first, element 1 is placed in�(k); then, fori = 1, . . . ,2p − 1, elementi + 1 is placed in
�(j) (equivalently, in�(j)), wherej satisfies the condition that�(	(i)) ∈ 	(�(j)). Thus, we
will never try to place more than|�(j)| of the elementsi + 1 = 2, . . . ,2p in �(j) for any
j = 1, . . . , k. Moreover, because of the initial placement of element 1 in�(k), the only way
in which the process can terminate prematurely (and unsuccessfully), is if we try to place
|�(k)| elements fromi + 1= 2, . . . ,2p in �(k).
Now, vertexu is a descendant of vertexv in the reverse-labelled tree implies that the

|�(v)|th element in�(v) cannot be placed before the|�(u)|th element of�(u) is placed.
Also, there is a path from the root vertexk to every vertex in the reverse-labelled tree, so
the |�(k)|th element in�(k) cannot be placed until after|�(j)| elements have been placed
in |�(j)| for everyj = 1, . . . , k − 1. Thus, from the fact that|�(1)| + · · · + |�(k)| = 2p,
we deduce that, of the elementsi + 1 = 2, . . . ,2p, exactly|�(j)| are placed in|�(j)|, for
j = 1, . . . , k − 1, and|�(k)| − 1 are placed in|�(k)|. The result follows. �

From Propositions3.1 and3.3, we immediately deduce our main result, recorded as
Theorem1.4.

4. Additional remarks

4.1. Shift-symmetric partitions and the casek = 2

Webeginwith a result that explains the usage ofshift-symmetricfor partitions� for which
� exists with(�,�) ∈ Bp,k.

Proposition 4.1. Let � be a partition of[2p] into k blocks, denoted by�i , i = 1, . . . , k,
with any indexing convention. Then there exists a pairing� ∈ Pp for which(�,�) ∈ Bp,k

if and only if� satisfies the following conditions:

(i) |�i ∩ �−1(�j )| = |�j ∩ �−1(�i )|, 1� i < j �k,
(ii) |�i ∩ �−1(�i )| is even, 1� i�k.

Proof. First, note that condition (3) for (�,�) ∈ Bp,k can be restated as saying that every
block of� is invariant under the permutation��−1, or, equivalently,

�(�i ) = �−1(�i ), 1� i�k, (7)

since� = �−1. But condition (7) is equivalent to:

�(�i ∩ �−1(�j )) = �j ∩ �−1(�i ), 1� i, j �k, (8)

where the equivalence is proved as follows. For (7)⇒ (8): �(�i ∩ �−1(�j )) = �(�i ) ∩
��−1(�j ) = �−1(�i ) ∩ �j . For (8)⇒ (7): For every block�i of � we have�(�i ) =⋃k

j=1 �(�i ∩ �−1(�j )) =
⋃k

j=1(�j ∩ �−1(�i )) = �−1(�i ).
Thus, the necessity of (i) and (ii) follows immediately from (8), for i < j because� is

a permutation, and fori = j because� is a pairing. For the sufficiency, suppose we are
given� satisfying (i) and (ii). Then it is easy to construct a� satisfying (8); simply pair
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the elements of�i ∩ �−1(�i ) arbitrarily for eachi = 1, . . . , k, and pair the elements of
�i ∩ �−1(�j ) arbitrarily with the elements of�j ∩ �−1(�i ), for each 1� i < j �k. �

The proof of Proposition4.1 also allows us to count the number of pairings� that are
compatible with a shift-symmetric�. To state this, suppose that� is a shift-symmetric
partition of[2p], with

|�i ∩ �−1(�i )| = 2ci, 1� i�k, |�i ∩ �−1(�j )| = qi,j , 1� i < j �k.

Then an immediate counting argument gives us the explicit formula

| {� ∈ Pp | (�,�) ∈ Bp,k} | =
(

k∏
i=1

(2ci − 1)!!
)

·
 ∏
1� i<j �k

qi,j !
 . (9)

Now we consider the special casek = 2. The following result gives an especially simple
necessary and sufficient condition for a partition to be shift-symmetric in this case.

Proposition 4.2. The partition� = {�1,�2} with two blocks is shift-symmetric if and only
if |�1 ∩ �−1(�1)| is even.

Proof. The condition that|�1∩ �−1(�1)| is even is clearly necessary, from Proposition4.1
with k = 2. For sufficiency, suppose that|�1∩ �−1(�1)| = 2c1, that� is a partition of[2p],
and that|�1| = n. Then we immediately determine that

|�1 ∩ �−1(�2)| = |�1| − |�1 ∩ �−1(�1)| = n − 2c1

andsimilarly that|�2∩�−1(�1)| = n−2c1, |�2∩�−1(�2)| = 2(p−n+c1).Thusweconclude
that � is shift-symmetric, since � satisfies conditions (i) and (ii) of
Proposition4.1. �

We can give an elementary expression forbp,k in the casek = 2 by means of (9) and
Proposition4.2, as follows. First, for an arbitrary partition� = {�1,�2} with two blocks,
with the indexing convention that 1∈ �2, we can write�1 uniquely in the form

�1= {i1 + 1, . . . , i1 + j1, i2 + j1 + 1, . . . , i2 + j2, . . . ,

im + jm−1 + 1, . . . , im + jm},
where 1� i1 < · · · < im �2p − n, and 1�j1 < · · · < jm = n. Note that

|�1| = j1 + (j2 − j1) + . . . + (jm − jm−1) = jm = n

and that the elements of�1 that arenot also in�−1(�1) are precisely the elementsi1 +
j1, i2 + j2, . . . , im + jm. Thus we have|�1 ∩ �−1(�1)| = n − m, so bothm andn are
arbitrary positive integers, and for� to be shift-symmetric, we need only require thatn−m
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is even. Then (9) immediately gives

bp,2=
∑
n�1

∑
m �1
2|n−m

(
n − 1

m − 1

)(
2p − n

m

)
(n − m − 1)!! (2p − n − m − 1)!! m!

=
∑
n�1

(2p − n)
∑
m �1
2|n−m

(
n − 1

m − 1

)(
2p − n − 1

m − 1

)
×(n − m − 1)!! (2p − n − m − 1)!! (m − 1)!

But the inner summation overm above is always equal to(2p − 3)!!, since it equals the
number of pairings on[2p − 2] for each fixedn – a pairing on[2p − 2] always pairs a
subset of sizem − 1 from [n − 1] with a subset of sizem − 1 from [2p − 2] \ [n − 1], for
some uniquem�1, and then forms a pairing on the remainingn − m elements of[n − 1],
and a pairing on the remaining 2p − n − m elements of[2p − 2] \ [n − 1]. (Thusn − m is
even, and then 2p − n − m = 2(p − n) + n − m is also even.) This implies that

bp,2 = (2p − 3)!!
2p−1∑
n=1

(2p − n) = (2p − 3)!!
(
2p

2

)
= p(2p − 1)!!

But this is exactly the expression forbp,2 that is given by (5) in the casek = 2, so we have
been able to prove (5) for k = 2 by elementary counting, independently of the bijection
developed in Sections2 and3. We are unable to give an elementary explanation fork�3.

4.2. A tree bijection and the casep = k − 1

We conclude by considering the special casep = k − 1 of our bijection. In this case we
havep − k + 1 = 0, soRp,p−k+1 contains the empty pairing only. Thus�p,k mapsBp,k

to the setTk of trees. First, we give an example of this tree bijection�−1
p,k in this case.

Example 4.3. In the casep = 6 andk = 7, considert ∈ T7, given in Fig.3, and apply
�−1
6,7 to (ε, t), whereε is the empty pairing.
From the reverse-labelled treet ′, given in Fig.3, proceeding as in Example3.2, we obtain

	(�) = {{1,4}, {2,7}, {3,8}, {5,10}, {6,11}, {9,12}}, and	(�(1)) = {1}, 	(�(2)) = {2},
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	(�(3)) = {3}, 	(�(4)) = {4,5}, 	(�(5)) = {6}, 	(�(6)) = {7,8,9}, 	(�(7)) = {10,11,12},
and the two-line representation of	−1 follows, as given in the completed table below.

Thus we obtain�−1
6,7(ε, t) = (�,�) ∈ B6,7, where

� = {{1,4}, {2,3}, {5,6}, {7,12}, {8,9}, {10,11}},
� = {{1,5,7}, {2,4}, {3}, {6}, {8,10,12}, {9}, {11}}.

In general, the mapping�−1
k−1,k has a very simple direct description in terms of the tree

t. Some notation is needed in order to give this description: for a treet ∈ Tk, traverse
the outside of the tree in a clockwise direction, beginning on the left side of the edge
between the root vertex and its leftmost descendant, and ending on the right-hand side of
theedgebetween the root vertex and its rightmost descendant. In this traversal, analternating
sequence of vertices and edges will be encountered, with each edge appearing twice in the
sequence, once for each side. Assign the numbers 1, . . . ,2k − 2 to the sides of the edges,
in the order that they are encountered in the traversal. For example, for the treet considered
in Example4.3above, the numbers assigned in the traversal oft are placed on̂t , as given
in Fig. 3.
In terms of the numbers assigned to the sides of edges, the mapping has the following

direct description: each pair in� is the pair of numbers assigned to the two sides of an
edge oft; each block of� consists of the numbers assigned to the counterclockwise side
of the edges incident with a vertex int. For example, it is straightforward to check that
this description accounts for the action of the mapping in Example4.3. The proof that this
works in general is straightforward, and is omitted.
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