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Abstract

We give a combinatorial proof of Harer and Zagier's formula for the disjoint cycle distribution of
a long cycle multiplied by an involution with no fixed points, in the symmetric group on a set of
even cardinality. The main result of this paper is a direct bijection of #set the enumeration of
which is equivalent to the Harer—Zagier formula. The element$,of are of the form(y, ©), where
[ is a pairing on{1, ..., 2p}, m is a partition intok blocks of the same set, and a certain relation
holds betweem andr. (The set partitiong that can appear i3, ;. are called “shift-symmetric”, for
reasons that are explained in the paper.) The direct bijectioB faridentifies it with a set of objects
of the form(p, 1), wherep is a pairing on a @ — k + 1)-subset of 1, ..., 2p} (a “partial pairing”),
andt is an ordered tree witk vertices. If we specialize to the extreme case wpheak — 1, thenp
is empty, and our bijection reduces to a well-known tree bijection.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We begin by reviewing some standard terminology, which will be used throughout the
paper.
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1.1. Notation

(a) Pairings Let [n] = {1, ..., n}, andS, be the set of permutations pf], for n>0.
Foro € S, andx C [n], we write 6(x) for the set{é(i) : i € x}. Let’P, be the set of
pairings on [2p], which are partitions of the s¢2p] into disjoint subsets of size 2, for
p =0 (we refer to the single element B as theemptypairing). Foru € P, we thus have
w = {{my1, ma2}, ..., {mp1, mp2}}, wherem;1 < mjz, i = 1,..., p,andmi1 < --- <
mp1. Where the context is appropriate, we shall also redgyés the conjugacy class of
involutions with no fixed points ib,,, and in this context, we regagdabove as having
disjoint cycle representatiam m12) - - - (mp1mp2), and writeu(m;1) = m;2, u(m;z) =
m;1, i =1,..., p. Of course, the number of pairings#), is 2p — D!! = ]'[le(Zj -1,
with the empty product convention that1)!! = 1.

(b) Partial pairings A partial pairing on[2p] is a pairing on a set C [2p] of even
cardinality. If || = 2k, then we also call it &-partial pairing. For each of these partial
pairingsu, we callx the support and denote this by supp) = o. Forp>k>0, letR , «
be the set ok-partial pairings ori2p]. For eachw of size %, there arg2k — 1)!! pairings
ona, so the number df-partial pairings ori2p] is given by

2
IR pi| = (;) (2k — 1)!! 1)

(c) Ordered treesAn orderedtree is a tree with a root vertex, which is adjacent to an
ordered list of vertices (called thiescendantef the root vertex), each of which is itself,
recursively, the root vertex of an ordered tree. The latter ordered trees are called ordered
subtree®f the ordered tree. L&, denote the set of ordered treeslorertices, fork > 1. It
is well known (see, e.g[9, p. 60), that the number of ordered treeslovertices is given

by
1(2% -2
Tl == 2
|7k k(k—l)’ )

which is aCatalannumber. If we draw an ordered tree, the root vertex is placed at the
bottom, with descendants above, ordered from left to right; thus we shall refer to the order
of descendants as left to right order. Teeelof a vertex in an ordered tree is a nonnegative
integer defined recursively as follows: the root vertex has level 0, and if veriexa
descendant of vertex, then the level ob is one greater than the level of (Equivalently,
the level of a vertex in an ordered tree is the edge-length of the unique path in the tree
from the root vertex t@.) If uandv are descendants of a vertex, witto the left ofv, then
all vertices in the subtree rootedwére to the left of all vertices in the subtree rooted.at
For each > 1, this totally orders the vertices at levdtom left to right.

(d) Labellings of ordered tree#\ labelledordered tree ok vertices is an ordered tree
on k vertices, each of which is assigned a unique label ffbmReverse-labellings the
canonical labelling in which the root vertex is labelledthen the vertices at level 1 are
labelled in decreasing order from right to left, beginning with1, followed by the vertices
at level 2, decreasing from right to left, repeating until the leftmost vertex at the highest
level in the tree is labelled 1. Fore 7;, we shall use’ to denote the tree obtained by
reverse-labelling.
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Let us now describe the formula in the title of the paper. par1, we consider the
shift permutationy in Sz, which has disjoint cycle representatipn= (12...2p). Let
Ay = {wyt:ue Pp}, anda, i be the number of permutations.iy, with k cycles in the
disjoint cycle representation, fér> 1. Harer and ZagidR] obtained the following result.

Theorem 1.1(Harer and Zagief2]). For p>1,

> apxt=@p -1l Y 2k_l<k ! 1) @

k>1 k>1

Other proofs of Theorerh.1 have been given by Itzykson and Zul§8t, Jacksor{4],
Kerov [5], Kontsevich[6], Lass[7], Pennel8] and Zagief10] (see also the survey by
Zvonkin [11], and the discussion in Section 4 of the paper by Haagerup and Thorb-
jornsen[1]). Despite the elementary statement of the theorem, the proofs are not easy,
and as a rule, they move out of the realm of enumerative combinatorics. A notable excep-
tion to this rule is the paper of La§g]. The method of Lass is purely combinatorial, and
relies on an ingenious application of the BEST Theorem, which enumerates Eulerian tours
in a multigraph as the product of two factors, one explicit, and the other giving the number
of spanning arborescences of the multigraph. He then uses Cayley’s result for counting
labelled trees by degree to obtain the result, overcounting by a factdr @hile this
combinatorial proof implies a bijection, it does not specify a direct bijection.

In this paper, we present a direct bijection for a set of objects, the enumeration of which is
equivalent to the Harer—Zagier formula. These objects are introduced in the next definition.

Definition 1.2. Let3, ; be the set of ordered paifg, ), whereu e P, andr is a partition
of [2p] into k nonempty, unordered sets (called tilecksof the partition), satisfying the
condition

u(i), y(@@) areinthe same block of for all i € [2p]. (©)

Let b, « be the number of elements By, . We call a partitionz for which there existg
with (u, m) € B, x ashift-symmetrigartition, for reasons that are explained in Secion

It is immediate to see that the numbeéxs, of Definition 1.2 give an alternative way
of looking at the left-hand side of the Harer—Zagier formula, as specified in the following
result.

Proposition 1.3. For p >1,

Z ap,kxk = Z bp,k(x)ka

k=1 k=1

where(x) := ]_[’;.;é (x — j), k>=1is the falling factorial.

Proof. If (u, n) € B, «, then condition ) is equivalent tquy~1(j) andj belonging to the
same block ofz for all j € [2p] (by replacing above byy~1()). But this means that, for



I.P. Goulden, A. Nica / Journal of Combinatorial Theory, Series A 111 (2005) 224-238 227

eachy, the blocks ofr are unions of disjoint cycles gfy~1. Thus

bpi= Y Stm.k)apm. 4)

m=k

whereS(m, k), the Stirling number of the second kind, gives the number of partitions of
an m-set into k nonempty, unordered subsets. Bl ; S(m, k)(x)ry = x™, from,

e.g. Stanton and Whif®, p. 78] so multiplying @) by (x); and summing ovet > 1 gives

the result. O

Now, comparing the expressions given in Theotedand Propositiorl.3, we obtain

1
byr=@p—pu2-if P )=
pk=@p =1 <k—1 k!

(2 1(2% -2
_<2p_2k+2>(2p—2k+l)!!k<k_1>, (5)

where, for the second equality, we have simply manipulated the factors in the quotient. But,
considering ) and @), we find that the latter expression fby . is equivalent to

|Bp,k| = |Rp,p7k+l| : |7;<| (6)

for p>k—1>0. Inthis paper, we shall give a combinatorial proof of Theofeindirectly
proving @) by giving a direct bijection betweef, , andR , ,_r+1 % 7.

Theorem 1.4. For p >k — 1>0, there exists a direct bijection

lvbp,k : Bp,k - Rp,p—k+l x Tg.

Theorent.4is our main result. The construction of the bijectipp, is givenin Sectior2.
Described very succinctly, the ideas behind the constructign,gfare as follows. Given
(u, m) € Bp . letthe blocks of: be denoted by, . . ., mi, wherer, is the block containing
the number 1.Welet1, ..., m;_1 be the maximum elementsin, . .., n;_1, respectively,
indexed so thati; < --- < my_1. Then, by considering the blocks in which the “mates”,
w(ima), ..., u(mr_1) occur, we determine a tree € 7,—see Propositior2.1, and the
Notation following it. Also, from these maximum elements and their mates, we determine
two partial pairingsy, = {{m1, u(m)}. ..., {mr-1, p(my—1)}}, anduy = u\ up, where
Hy € Rp, p—k+1-

Itwould be too much to hope thét, ©) — (p4, 1) is our desired bijection, but it turns out
thatwe are only one canonical relabelling away from the bijeakippin Theorent.4. More
precisely, in the Notation following Propositicghl, we create a relabelling permutation
o € &pp from (u, m), so thah,bp’k is described by the ma, ) — (a(u4), t). The proof
that this is bijective is given in Sectidh

The paper concludes in Sectidiwith some remarks about related results.
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2. A mapping for shift-symmetric paired partitions

We considelyu, m) € B, x, and construct various objects associated yithn). First, let
the blocks ofr be given byry, .. ., i, indexed as followsr, is the block containing the
element 1, and the remaining blocks are indexed according to the order of their maximum
elements, by

max(my) < --- < maxX(mg—_1)

and we letm; = max(w;) fori = 1,...,k — 1. Define¢ : [k — 1] — [k] by ¢(i) = j
whenu(m;) € mj,fori =1,...,k—1.

Proposition 2.1. For (i, m) € B, , and in the notation above

(i) fori =1,...,k—1,we have < ¢(i),
(i) fori =1,...,k—1,we haveu(m;) #m;foranyj=1,...,k— 1.

Proof. (i) Fori =1,...,k — 1, we consider two cases for;:

e if m; = 2p (this can only happen wheh = k — 1), theny(m;) = 1 € m, and
condition @) implies thatu(m;) € nx. Thus¢(i) = k, and the result is true in this case;

o if m; < 2p,theny(m;) =m; +1 € n; where maxn;) =m;>m; +1 > m;, and so
from the indexing convention for the blocks of we havei < j (for both the possible
choicesj = k andj < k). But again theu, = condition implies thagu(m;) € n;, so
¢(@i) = j, and the result is true in this case also.

(ii) If pu(m;) = m; € nj, theng(i) = j, so from part (i) we have < ;. But we also
haveu(m;) = m; € m;, so¢(j) = i, and from part (i) we haveg < i, a contradiction, and
the result follows. [J

For the saméu, n) considered at the beginning of the section, we now construct three
objects, which willappear in our direct bijection. The tree in Notation (b) below is analogous
to the tree used in Lagg], with the difference that here we have an ordered tree.

2.1. Notation

(a) Partial pairings Split the pairingu into two partial pairinggt; andp,, where we let
U = {{m1, u(ma)}, ..., {mr—1, p(mr—_1)}}, anduy = p\ . Note thatu, is well-defined
as a(k — 1)-partial pairing, from PropositioB.1(ii), and thusy, is a(p — k + 1)-partial
pairing.

(b) Ordered tree From ¢, create a labelled ordered tré®n vertex-sefk], as follows:
the root isk, and for everyi = 1,...,k — 1,i is a descendant af(i); if verticesi, j are
both descendants of vertextheni is to the left off whenu(m;) < u(m ;) (otherwisej is
to the left ofi andu(m ;) < u(m;)). The fact that this is well-defined follows immediately
from Propositior?2.1(i), which implies that for every = 1, ..., k, the increasing sequence
i, o), p(¢p(i)), ... willuniquely terminate &k, thus specifying the unique path from vertex
i to the root verteXin T.
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2 1

T t t

Fig. 1. Three treeg, ¢, ¢'.

Then we remove the labels fromto obtain the ordered treee 7;, and consider the
reverse-labelled tre®. Thus,T andt’ give two, possibly different, labellings of Suppose
that the vertex oflabelledi in Tis labelled in . Then definer’) = 7;, and repeat for each
i=1...,k.Nown®, .. 7% gives a different indexing of the blocks af in which
1™ = 7, and we definen® to be the maximum element af’ fori = 1,...,k — 1.

(c) Relabelling permutationLet w® be the string obtained by writing the elements
of ) in increasing order, for = 1,...,k, and leto = o® ... »® the concatenta-
tion of @, ..., ®. Thenw contains elemerjtexactly once for eachi e [2p], since
nD, ..., n® are the blocks of;, a set partition of2p]. Thus we define € S,, by spec-
ifying that w is the second line in the two-line representatiowot. Finally, we consider
a(11), to mean that each pdit, j} in u; becomes paifa(i), a(j)} in a(uyq). Sincep, is a
(p — k + 1)-partial pairing, thers(p4) is also a(p — k + 1)-partial pairing.

Example 2.2. In the casep = 9 andk = 4, consideru, ) € Bg 4, With
p={{1,18},{2, 7}, {3, 6}. {4, 5}, {8, 13}, {9, 12}, {10, 11}, {14, 17}, {15, 16}},

7 = {71, M2, T3, T4},

wherens = {1,2,8,14,18}, andn; = {3,4,6, 7}, mp = {5,11, 16}, n3 = {9, 10, 12,
13,15, 17}. Note that the indexing has already been assigned, and indeedslm1 <
myp < m3, wheremi = max(ny) = 7,my = max(nz) = 16,m3 = max(nz) = 17. (The
condition thafu(i) andy(i) are in the same block affor all i € [18] requires more detailed
checking: e.g.y(1) = 2, u(1) = 18, and 218 € n4; y(2) = 3, u(2) = 7, and 37 € my;
7(4) =5, u(4) = 5, and nothing to check here, etc.)

From thesen;’s we now determinep, by ¢(1) = ¢(3) = 4, ¢p(2) = 3. Thusyu, =
({2, 7}, {15, 16}, {14, 17}}, sou; = {{1, 18}, {3, 6}, {4, 5}, {8, 13}, {9, 12}, {10, 11}}. Next
we determine the trees, ¢, ¢/, given in Fig.1 (in T, vertices 1 and 3 are both descendants
of 4, with 1 to the left of 3 becausg(mi) = 2 < 14 = u(m3)). Therefore, we have
D = 2, 7@ = 1, 7® = 3, @ = 4, andm® = 16, m® = 7, m® = 17,
soo® =51116,0? = 3467,0® = 910121315170 = 1281418, and» =
51116346791012131517 1281418, so the-time representation af 1 is given by

1 2 3

4 5 8 9 10 11 12 13|14 15 16 17 18
5 11 16 |3 4

9 10 12 13 15 17| 1 2 8 14 18

6 7
6 7
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The placement of the vertical lines in this two-line representation will be referred to again
in Section3. (Alternatively,c = (114171311215121098163%6)(7) in disjoint

cycle notation.) Thus, we have) = {{1, 5}, {2, 9}, {4, 6}, {8, 10}, {11, 16}, {14, 18}}.

Also note thato(u,) = {{3,12}, {7, 15}, {13,17}}, ando(z?P) = {1,2,3}, a(zn@®) =
{4,5,6,7}), o(n®) = {8,9, 10,11, 12, 13}, 6(z'¥Y) = {14, 15, 16, 17, 18}.

Now, among the objects that we have constructed ftoym) are the(p — k + 1)-partial
pairingo(uq) and the ordered treigso the following mapping/, . is well defined.

Definition 2.3. Forp>k — 1>0, let
Vi Bpk = Rpp—it1 X Tg : (, @) = (0(pg), 1)

We claim that, , is actually a bijection, and prove this in Secti@n

3. Proof that the mapping is bijective

We begin with an observation about the relationship betvwgemdt in the construction
of ¥, (i, m) (Where(u, ) is a given element af, , and where we use notation consistent
with Section2). Let us denote

k-1

B = suppipp) = | tm®, u(m®))

i=1

andp”) := pnz, fori =1, ..., k. Onthe other hand, recall thats the reverse-labelling
of the ordered treg and let us denote hy‘® the number of descendants of the veiitex
¢/, fori =1,..., k. Our observation is that we hayg”)| = d) + 1fori =1,... k —1,
and|®| = d® . Inthe caseé < k, for instance, this is becaug&’ consists ofn) and of
d) elements of the formu(m/)) with j a descendant ofin . Moreover, we observe that
the ordering of thé”) + 1 elements oﬁ(i) can be read from the tree—the largest element
of ¥ is m®, and the remaining elements of the foyran (")) are ordered exactly in the
same way as the correspondijfgjare ordered as descendants iof /. (This is fori < k.
The ordering of the/® elements o™* is, of course, read front in a similar manner.)

The above observation about {#{€’s andd)’s has the following consequence: Consider
the sequence (defined as in the part (c) of the Notation in Sect®)nlf we know f (as
a set) and, and if we also know in what order the elementsicdppear in the sequence
o, then we can deduce the precise structurg-ei.e. whatm?) is and wha(m?) is, for
every 1<i <k — 1.

Letusillustrate the observation (and its consequence) in the concrete situation of Example
2.2. Theref = {2,7, 14, 15, 16, 17}. Suppose we knoy but we do not remember which
elements off werem™, m@, m® and u(m®), u(m®@), u(m®). Suppose on the other
hand that we also remembtghence we know’) and the fact that the elementsféppear
in w in the following order:

(%) ...16...7...15...17...2...14. ..
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By looking at:’ we see thau(m?) € 7n® and thatu(m®@), u(m®) e n¥; hence the 6
elements ofp have to be distributed between the blocksi@fs follows:

m® e 1D m® e 1@ ym®), m® e 71®; um?y, um®) e 7.

But then the order in which the elementsfbfppear inw must be:

@ ..

(%%) cem m@ . um®y - m@ ey m @y (@) -

(The fact thapu(m@) precedegu(m®) in (xx) is inferred from the fact that 2 is to the left
of 3, as descendants of 4ih) By comparing(x) against(x*) we can thus determine what
m is and whatu(m®) is, for every 1<i < 3.

Proposition 3.1. For p>k — 1>0, ‘pp»k :Bpk = Rp p—it1 x T is aninjection.

Proof. Suppose we are giveia (), t) arising aspp,k(u, n) for some(y, m) € B, . Our
goal is to prove thatu, m) can be uniquely recovered fro(a(pq), t).

The given data determines in particular thesset [2p]\ supfa(uy)). Clearly, we have
o = o(f) wheref is as in the discussion which preceded the statement of the proposition.
At this stage of the proof we do not know whats; but observe that the knowledge of
o tells us in what positions the elements fpappear when we form the (also unknown
at the moment) sequenee—this is just because» is the second line in the two-line
representation of 1. Since we know the ordered trgghe discussion which preceded the
proposition can then be put to work: while we still would not knef, ..., m*~b and
wm@®)y, ... um* D), we will nevertheless deduce in what order these numbers appear
in the sequence), and hence under which elementsoothey appear. In other words:
the upshot of the discussion presented before the proposition will determine explicitly
omD), ..., om*Dyanda(um®)), ..., o( u(m*D)).

Now, the numbers(mD), ..., a(m%*~D) mark the placement of the vertical bars in the
two-line representation af 1. So if we know them, then we know where the vertical bars
are, and consequently we know the partitir) := {o(z), ..., a(n®)}. (The blocks
of the latter partition are intervals(n®) = [e(m™D)], () = [6(m )]\ [e(m~D)]
for 2<i <k —1, ande(n®) = [2p]\ [6(m*~D)].) Also, note that at this stage of the proof
we know how to complete the given partial pairing:,) to the pairings(w) of [2p] (since
the missing pairs im (1) were{ac(m?), a( u(m®))}, for 1<i <k — 1).

To this stage, we have proved thiat 1), o()) can be uniquely recovered from the given
data(a(py), t). In order to finish the proof that , , is injective, we now prove that—1
can be uniquely recovered frofa(u), a(n)), when one considers the relationship between
u, 7, y. Applying (the unknown relabelling permutatiom}o the u, = condition @) gives
the following condition: foi = 1, ..., 2p — 1, thenifo(i) = c ando(u(i)) = d € o(n))),
we haves(i + 1) = a(y(i)) € a(x')). But, applyings to our indexing convention for the
blocks of, we haves(1) € a(z®). Moreover, since the symbols in"/) increase from
left to right for eachj = 1, ..., k, we know that 1 is the left-most elementof, and that
if i +1 e =/, then to the left of + 1 in w/) are precisely the elementsof N 7). We
claim that this gives enough information to uniquely determin@quivalently,s or 6~ 1).

We describe exactly how to do so below, using the following terminology for the two-line
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Fig. 2. A tree in7s.

representation of—1: we regard this two-line representation as a table with 2 rows and
2p columns, and note that the entry in the first row of colueis equal toc, for each
c=1,...,2p. We place vertical bars in the table to separateiifie’s in the second row,

as displayed here:

1 ... om®D)]emM+1 ... om) ... [em®ED)y+1 ... 2
w@® w® L w®)

Our task is to uniquely reconstruct this table freoqu), o(n)). Begin with entryc in the

first row of columnc, for eache = 1, ... 2p, and the second row empty. Note that since we
are givens(m), then we know thes(m(/))’s, so we can place the vertical bars in the table,
and we now translate the information above into an iterative process that uniquely places
eachi in the second row of the table, fo=1, ..., 2p.

e First, place 1 in the second row of the table, in the left-most position'®f (so 1 is
located in columrr(m*—D) 4 1 of the second row in the table);

e Repeatfoi =1,...,2p — 1: Suppose thathas been placed in colunwof the second
row in the table, that is paired withd in ¢(u), and thatl € o(z'")). Then place + 1 in
the second row of the table, in the left-most unoccupied positien(-bf

This process is simply a translation, into the terminology of the table, of the informa-
tion deduced from the relationship betwegnz, y above, and thus uniquely determines
o~1. Applying this permutation tés (1), (1)), we uniquely recovetu, 7), and the result
follows. [

The description oiup « given in the above proof can be checked by applying it to the pair
(a(uy), 1) that was created in Examp22 Indeed, the paiu, ) is uniquely recovered if
we do so. We now give a second example, in which we amgﬁ[ to an arbitrary element
of Rp’p_k_f_l x T.

Example 3.2. In the casep = 7 andk = 5, consider{{2, 13}, {3, 6}, {9, 12}} € R7 3 and
the tree inZs given in Fig.2.

After reverse-labelling the tree we find that (in notation similar to that used above)
um®y e 1@ and thatu(m®@®) < um®) < um®) are all elements of®. As a
consequence, the order of appearance of the elemerftsrothe sequence» must be
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as follows:
cm® e m @ um Py m@ @ um @y @) - um @) -

The set of positions where these elements appear (in the sequeice = {1,4,5, 7,
8, 10, 11, 14}. This implies that we have

omP) =1, omP) =4, sm®) =7, om®)=8

and hence that(n) = {o(z), ..., o(n®)} is described as followss(zV) = {1},
o(n@) = {2,3,4}, c(n®) = {5,6, 7}, a(n?P) = {8}, a(n®) = {9, 10, 11, 12, 13, 14)}.
Moreover, the given partial pairifd2, 13}, {3, 6}, {9, 12} } is completed to the pairing(u)

={ {1,5}, {2, 13}, {3, 6}, {4, 10}, {7, 11}, {8, 14}, {9, 12} }. In order to finish the process
of finding x andr such that); s(u, n) equals the given data, we need to place elements
i+1=2,...,14 in the second row of the following table.

112 3 4|5 6 7|89 10 11 12 13 14
1

This is straightforward, as described above. The reader willing to practice implementing
the algorithm should have no difficulty checking that after two iterations, for instance, the
table becomes:

112 3 4|5 6 7|89 10 11 12 13 14
3 1 2

The next entry to be placed in this partial table is 4, which appears in the second row under
11; this is because 3 appears below 2, which is paired i) with 13 € ¢(n®), and the
left-most unoccupied position in® appears under 11. Completing the table, we obtain
the two-line representation of 1 below.

112 3 4

5 8 19 10 11 12 13 14
3 8 125

7
9|14(1 2 4 10 11 13

6
7

Now we have obtainedu, n) € B, r, wherep = {{1, 10}, {2, 12}, {3, 11}, {4, 9}, {5, 6},

{7.8}, {13 14}}, andn® = {6}, n® = {3,8,12}, n® = {5,7,9}, z¥ = {14} and

n® = {1,2,4,10 11, 13}. (Note thatr; = =n® for i = 1, 4,5, but thatr, = z® and
— (2

3 = n'9.)

In the next result, we prove that, as in the example abwgé;a can be applied tany
element ofR , ,—r+1 x 7 to yield an element oB,, x, and thus deduce thmp,k is also a
surjection.

Proposition 3.3. For p>k — 1>0, upp’k :Bpk = Rp,p—i+1 x I is asurjection.
Proof. Consider the description oﬁ;}( given in the proof of Propositio.1 Clearly,

this can be applied to an arbitrary elementfof , ;1 x 7; up to the stage where the
permutatiorns remains to be determined. Now, we examine the process of deternsining
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first, element 1 is placed im®); then, fori = 1,...,2p — 1, element + 1 is placed in

wP (equivalently, inn!)), wherej satisfies the condition thai(o(i)) € a(n'")). Thus, we

will never try to place more thapx(/)| of the elements + 1 = 2, ..., 2p in o) for any

j =1,..., k. Moreover, because of the initial placement of elementap, the only way

in which the process can terminate prematurely (and unsuccessfully), is if we try to place
|n®| elements fromi +1=2,...,2pin w®.

Now, vertexu is a descendant of vertaxin the reverse-labelled tree implies that the
|7 |th element ino™ cannot be placed before the® |th element ofw™ is placed.
Also, there is a path from the root vertkxo every vertex in the reverse-labelled tree, so
the |7®|th element inw® cannot be placed until aft¢r'/)| elements have been placed
in o] foreveryj = 1, ...,k — 1. Thus, from the fact thau@| + - - - + |z®| = 2p,
we deduce that, of the elemerits- 1 = 2, ..., 2p, exactly|z'/)| are placed inw/|, for
j=1,...,k—1,andz®| — 1 are placed inw™®|. The result follows. O

From Propositions.1 and 3.3, we immediately deduce our main result, recorded as
Theoreml.4.

4. Additional remarks
4.1. Shift-symmetric partitions and the case- 2

We begin with a result that explains the usagstoft-symmetridor partitionsr for which
u exists with(u, m) € B, «.

Proposition 4.1. Let = be a partition of[2p] into k blocks denoted byr;,i = 1, ...k,
with any indexing convention. Then there exists a paiying P, for which (u, n) € B, «
if and only ifz satisfies the following conditions

() |mi Ny @l =In; Ny~ @)l 1<i < j<k,
(i) |m Ny () iseven 1<i<k.

Proof. First, note that condition3] for (1, n) € B, x can be restated as saying that every
block of  is invariant under the permutatiory—2, or, equivalently,

pm) =y Hm),  1<i<k, @)
sinceu = p~ 1. But condition 7) is equivalent to:
pm Ny M) = Ny ), 1<i, j<k, ®)

where the equivalence is proved as follows. FOr=6 (8): u(w; N y’l(nj)) = u(m) N
() = y~Y(m) N . For @)= (7): For every blockm; of n we haveu(m;) =
et 0972 @) = Uy 0y Hm) = 971 m).

Thus, the necessity of (i) and (i) follows immediately froB),(fori < j because:is
a permutation, and far = j becauseu is a pairing. For the sufficiency, suppose we are
given « satisfying (i) and (ii). Then it is easy to construcpuasatisfying @); simply pair
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the elements of; N y~1(x;) arbitrarily for eachi = 1, ..., k, and pair the elements of
n; Ny~ Y(n;) arbitrarily with the elements of; N y~%(r;), for each Ki < j<k. O

The proof of Propositiod.1 also allows us to count the number of pairingthat are
compatible with a shift-symmetrig. To state this, suppose thatis a shift-symmetric
partition of[2p], with

I Ny~ )| = 2¢;,  1<i<k, I Ny Y =g g, 1<i < j<k.

Then an immediate counting argument gives us the explicit formula

k
[{uwe Pyl (un) eBpitl = <l_[(2€i — 1)!!) : 1_[ i | - )

i=1 1<i<j<k

Now we consider the special calse= 2. The following result gives an especially simple
necessary and sufficient condition for a partition to be shift-symmetric in this case.

Proposition 4.2. The partitionnt = {r1, w2} with two blocks is shift-symmetric if and only
if |my N y~L(m)| is even.

Proof. The condition thafry Ny~1(n1)| is even is clearly necessary, from Propositioh
with k = 2. For sufficiency, suppose thiat; N y~%(1)| = 2c1, thatr is a partition of2p],
and thatn1| = n. Then we immediately determine that

In1 Ny Hm2)| = Ima| — [m Ny~ (my)| = n — 21
andsimilarly thatmoNy=1(n1)| = n—2c1, 12Ny~ 1(12)| = 2(p—n+-c1). Thus we conclude

that n is shift-symmetric, since n satisfies conditions (i) and (i) of
Propositiod.1. [

We can give an elementary expression#gy in the casek = 2 by means ofg) and
Propositior4.2, as follows. First, for an arbitrary partition = {71, 7o} with two blocks,
with the indexing convention thatd np, we can writer1 uniquely in the form

m={i1+1,...,i1+ji,i2+j1+1....02+ Jjo,...,
im+jm—1+1a-~-aim+jm},

where I<ip < -+ < ip <2p —n,and 1< j1 < -+ - < j,, = n. Note that
[mil =j1+ Ga—JjO) + ..o+ Um — Jm—1) = jm =n
and that the elements af; that arenot also in y‘l(nl) are precisely the elements +

j1.i2 + j2. .. im + jm. Thus we haven; N y~1(n1)| = n — m, so bothm andn are
arbitrary positive integers, and farto be shift-symmetric, we need only require that m
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1 2 3

t t t

Fig. 3. Three trees 1/, 7.

is even. Thenq) immediately gives

bp2=3 Y (Z:D(Z”m_”)(n—m—1)!!(2p—n—m—1)!!m!

n}l m>=1
2ln—m

e ¥ (T EY

n>1 m>1
2ln—m

xm—m - 2p—n—m—D!"(m—1)!

But the inner summation oven above is always equal t@p — 3)!!, since it equals the
number of pairings ofi2p — 2] for each fixedn — a pairing on[2p — 2] always pairs a
subset of sizen — 1 from [n — 1] with a subset of size: — 1 from[2p — 2] \ [n — 1], for
some uniquen > 1, and then forms a pairing on the remaining m elements ofn — 1],
and a pairing on the remainingp2- n — m elements of2p — 2]\ [n — 1]. (Thusn —m is
even, andthen2—n —m = 2(p — n) + n — m is also even.) This implies that

2p—1 2
bpo=(2p— 3! ; 2p—n)=2p— 3)1!( 2”) — p2p — D!

But this is exactly the expression fbj > that is given by %) in the casé = 2, so we have
been able to proves] for k = 2 by elementary counting, independently of the bijection
developed in Sectiordand3. We are unable to give an elementary explanatiort foi3.

4.2. Atree bijection and the cage=k — 1

We conclude by considering the special case k — 1 of our bijection. In this case we
havep — k + 1 = 0, SOR, 41 contains the empty pairing only. Thys, , mapsB), «

to the set7; of trees. First, we give an example of this tree bijecquj)}{ in this case.

Example 4.3. In the casep = 6 andk = 7, consider € 77, given in Fig.3, and apply
wa% to (g, 1), wheree is the empty pairing.

From the reverse-labelled tréegiven in Fig.3, proceeding as in ExampB2, we obtain
o(w) = {{1,4},{2, 7}, {38}, {5, 10}, {6, 11}, {9, 12}}, anda(zV) = {1}, (n?) = {2},
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o(n®) = (3}, s(x®) = (4,5}, o(n®) = {6}, o(n®) = (7. 8,9}, 0(n'") = {10, 11, 12},
and the two-line representation @f ! follows, as given in the completed table below.

1{2]13 (4 5|67 8 9|10 11 12
9112 4|6|8 10 12| 1 5 7

Thus we obtaing (e, 1) = (1, 1) € Be7, where

p=1{{1,4},{2,3},{5, 6}, {7,12}, {8, 9}, {10, 11}},
n={{1,5,7},{2 4}, {3}, {6}. {8, 10,12}, {9}, {11}}.

In general, the mappingk‘_ll_k has a very simple direct description in terms of the tree
t. Some notation is needed in order to give this description: for artree7, traverse
the outside of the tree in a clockwise direction, beginning on the left side of the edge
between the root vertex and its leftmost descendant, and ending on the right-hand side of
the edge between the root vertex and its rightmost descendant. In this traversal, an alternating
sequence of vertices and edges will be encountered, with each edge appearing twice in the
sequence, once for each side. Assign the numhers 12k — 2 to the sides of the edges,
in the order that they are encountered in the traversal. For example, for thedresdered
in Example4.3above, the numbers assigned in the traversaboé placed om, as given
in Fig. 3.

In terms of the numbers assigned to the sides of edges, the mapping has the following
direct description: each pair in is the pair of numbers assigned to the two sides of an
edge oft; each block ofr consists of the numbers assigned to the counterclockwise side
of the edges incident with a vertex inFor example, it is straightforward to check that
this description accounts for the action of the mapping in Exas@eThe proof that this
works in general is straightforward, and is omitted.
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