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We provide a bijection between the set of factorizations, that is, ordered (n−1)-
tuples of transpositions in Sn whose product is (12...n), and labelled trees on n
vertices. We prove a refinement of a theorem of J. Dénes (1959, Publ. Math. Inst.
Hungar. Acad. Sci. 4, 63–71) that establishes new tree-like properties of factoriza-
tions. In particular, we show that a certain class of transpositions of a factorization
corresponds naturally under our bijection to leaf edges (incident with a vertex of
degree 1) of a tree. Moreover, we give a generalization of this fact. © 2002 Elsevier

Science (USA)

1. INTRODUCTION

Let Tn be the set of labelled trees on vertices {1, 2, ..., n}=[n], and Fn
be the set of (n−1)-tuples of transpositions (s1, ..., sn−1) in the symmetric
group Sn acting on [n], whose ordered product s1 · · ·sn−1 is equal to the
cycle Cn=(12...n) (in this paper, our convention is that, in an ordered
product, the permutations are performed right to left) . The elements of Fn
are called factorizations, and the transpositions s1, ..., sn−1 in a factoriza-
tion are called factors. Cayley [3] proved that |Tn |=nn−2, and Dénes [4]
proved that |Fn |=|Tn |, by giving a bijection between sets of cardinality
(n−1)! |Fn | and (n−1)! |Tn |. Dénes posed the problem of finding a bijection
between Fn and Tn, and subsequently two such bijections have been given,
by Moszkowski [12] and Goulden and Pepper [10].



Although both of these bijections are reasonably simple, neither of them
restricts nicely to natural combinatorial subsets (e.g., so that the image of a
combinatorially natural subset of Tn corresponds to a natural subset of
Fn). However, by examining the elements of Tn and Fn for small n, we find
that there are natural combinatorial subsets of Tn and Fn of equal cardi-
nality, as follows. Let Tn(k) be the set of trees in Tn with k leaves (vertices
of degree one). A transposition (s t) on [n] is called a consecutive pair if
t — s+1 modulo n, where throughout, we write n to mean 0. Let Fn(k) be
the set of factorizations in Fn with k factors that are consecutive pairs.
Table I gives the cardinalities |Tn(k)| for n [ 6, and a systematic examina-
tion of the factorizations in Fn shows that |Fn(k)|=|Tn(k)| for 3 [ n [ 6.
This suggests that there exists a bijection between Fn and Tn for arbitrary
n \ 3 that maps consecutive pairs to leaves, but neither of the previous
bijections exhibits this property.

In this paper, we describe a bijection between Fn and Tn in which conse-
cutive pairs of factorizations correspond to leaves of trees. We refer to our
bijection as a structural bijection because of this correspondence between
these combinatorial structures (consecutive pairs and leaves). But more is
true; the bijection extends to generalizations of consecutive pairs and of
leaves respectively, as described below.

For a tree T ¥Tn, consider removing any single edge from the tree, to get
two trees T1 and T2 (the components of the graph that results when the edge
is deleted from T). Let ti, i=1, 2, be the number of vertices in Ti (so, e.g.,
t1+t2=n), and define the edge-deletion index of the edge to be min{t1, t2}.
Define the edge-deletion distribution of the tree T to be e(T)=(a1, a2, ...)
where aj is the number of edges in T with edge-deletion index j (so e.g.,
a1+a2+·· ·=n−1). Let Tn(a1, a2, ...) be the set of trees in Tn with edge-
deletion distribution (a1, a2, ...).

For a transposition (s t), s < t, define the difference index to be
min{t−s, n−t+s}. For a factorization F ¥Fn, define the difference distri-
bution of F to be d(F)=(d1, d2, ...) where dj is the number of factors in F

TABLE I

The Number of Trees on n Vertices with k Leaves for n [ 6

n/k 2 3 4 5 Total

2 1 1
3 3 3
4 12 4 16
5 60 60 5 125
6 360 720 210 6 1296
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with difference index j (so e.g., d1+d2+·· ·=n−1). Let Fn(d1, d2, ...) be
the set of trees in Fn with difference distribution (d1, d2, ...).

Our structural bijection, described in Section 3, actually gives a bijection
between Fn(c1, c2, ...) and Tn(c1, c2, ...) for all (c1, c2, ...), ci \ 0, c1+c2
+·· ·=n−1, n \ 1. The main result of our paper is as follows:

Theorem 1.1. For each n \ 1, there is a bijection

f:Fn QTn : FW T

such that d(F)=e(T).

Note that for factorizations, a factor with difference index 1 is a conse-
cutive pair, and for trees, an edge with edge-deletion index 1 is incident
with a leaf, so this is a generalization of the consecutive pair-leaf corre-
spondence, as promised. In the case n=2, the single edge in the unique tree
has difference index equal to 1, but is incident with two leaves. Of course,
the single factor (12) in the unique factorization is a consecutive pair, so
the bijection claimed in Theorem 1.1 holds for n=2, although the conse-
cutive pair-leaf correspondence breaks down.

The bijection is based on a geometrical interpretation of a factorization,
called a chord diagram, whose properties are developed in Section 2. The
bijection, described in Section 3, has a smooth composition with the well-
known Prüfer code bijection between trees and the set [n]n−2. Consequently
one can obtain a bijection under this composition that canonically proves
that |Fn |=nn−2.

Further motivation for this paper, which gives a third bijection for the
Dénes result, beyond the combinatorial benefits of exhibiting tree properties
of edges as differences of factors, is provided in Section 4, where we describe
recent work on more general factorization questions in the symmetric group,
related to certain problems arising from algebraic geometry.

Finally, there are immediate enumerative consequences of our main
result. For example, there is a nice formula for the entries in Table I, which
can be obtained in various ways by counting trees with a given number of
leaves. This formula is a simple multiple of a Stirling number of the second
kind, and in closed form it gives

|Tn(k)|=1
n
k
2 C
n−k

i=0

1n−k
i
2 (−1)n−k−i in−2,

for 2 [ k [ n (see, e.g., Stanton and White [14, p. 67]). Using our bijection,
we therefore have established that this formula also holds for |Fn(k)|.
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2. THE CIRCLE CHORD DIAGRAM

We begin with a detailed analysis of several aspects of factorizations in
Fn. First, if r ¥Sn and y=(st) ¥Sn is a transposition, then there are two
cases that arise in determining the product a=yr. If s, t appear on the
same cycle in the disjoint cycle representation of r, then that cycle is cut
into two different cycles (one containing s, the other t) in the disjoint cycle
representation of a. Otherwise, if s, t appear on two different cycles of r,
then these cycles are joined into one cycle (containing both s and t) of a.
We call y a join or a cut of r, respectively, in these cases (see, e.g., Berge
[2, p. 142]).

For a factorization F=(s1, ..., sn−1) in Fn, let fi=sisi+1 · · ·sn−1, i=1,
..., n−1, be the partial products of F, and define si to be a join or cut of F
when si is a join or cut of fi+1, respectively (when determining the product
fi=sifi+1), for i=1, ..., n−1 (where fn=e, the identity of Sn). Now fn
has n cycles (all fixed points), and f1=Cn has 1 cycle. Moreover, each join
decreases the number of cycles by 1, and each cut increases the number
of cycles by 1. We conclude that each of the n−1 factors si in f1=
s1 · · ·sn−1fn must be a join, since together they decrease the n cycles of fn
by n−1, to the single cycle of f1.

We say that a sequence a1, ..., am of elements in [n] is Cn-ordered if the
order of the elements is consistent with their circular order on the cycle
Cn=(12...n). Equivalently, this means that there is a unique i with 1 [ ai <
ai+1 < · · · < am < a1 < · · · < ai−1 [ n.

Proposition 2.1. ForF ¥Fn, and a partial productfi ofF, any subsequence
of elements on a cycle of fi is Cn-ordered.

Proof. For F=(s1, ..., sn−1), we have fi=si · · ·sn−1, where all factors
s1, ..., sn−1 are joins, from the above join-cut analysis. Thus the effect of
the sequence of subsequent joins s1, ..., si−1 in f1=s1 · · ·si−1fi, on the
elements of a cycle of fi is to keep them together on cycles that are formed
by the joins. Moreover, it is easy to check that their circular order is main-
tained around such cycles. But f1=Cn, so we conclude that the elements
on each cycle of fi must be Cn-ordered, and therefore so must all sub-
sequences of elements on each such cycle. L

We now consider a circle chord diagram. For any fixed n, this is a circle
drawn in the plane with n points on it, labelled 1, 2, ..., n clockwise. In
addition, there are n−1 chords on these n points, numbered 2, ..., n
distinctly. For example, Fig. 1 gives a circle chord diagram with n=9; the
numbers on the edges are circled to distinguish them from the names of
points on the circle.
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FIG. 1. A circle chord diagram with n=9.

There is a natural injection from factorizations to circle chord diagrams:
for F=(s1, ..., sn−1) ¥Fn, the factor si=(si ti) corresponds to a chord
numbered i+1, joining points si and ti, for i=1, ..., n−1. Let C(F) be the
circle chord diagram associated with F in this way. For example, the chord
diagram illustrated in Figure 1 is C(F0), where

F0=((2 3), (4 5), (3 6), (3 5), (1 6), (6 8), (8 9), (6 7)). (1)

The circle chord diagram associated with a factorization F satisfies a
number of conditions, and we establish some of these in the following
result. Part (i) of this result is also part of the development of Dénes [4]
(see also Berge [2, p. 143]).

Theorem 2.2. In the circle chord diagram C(F) of a factorization F ¥Fn,

(i) the chords form a tree on [n], (f1)
(ii) the chords meet only at endpoints, (f2)

(iii) the edge numbers on the chords encountered when moving around a
vertex clockwise across the interior of the circle, form a decreasing sequence
of elements in {2, ..., n}. (f3)

Proof. For (i), let Gj be the graph on vertex-set [n], whose edges are the
chords corresponding to factors sj, ..., sn−1, for j=1, ..., n (Gn has no
edges). Then Gn has n components (each a single vertex), and the condition,
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established above, that sj is a join for each j implies that the chord corre-
sponding to sj is incident with vertices in different components of Gj+1, for
each j=1, ..., n−1. Thus Gj has one fewer components than Gj+1 for each
j=1, ..., n−1, and we conclude that G1 has one component, so it is a con-
nected graph. But the edges of G1 are the chords of C(F), so the n−1
chords of C(F) are a connected graph on n vertices, which must therefore
be a tree.

For (ii), suppose otherwise, that the chords corresponding to si=(st)
and sj=(uv), where s < t, u < v and i < j, cross each other. Now the geo-
metric crossing condition is equivalent to the condition that the sequence
stuv is not Cn-ordered. But in fi, the cycle containing s will include stuv as a
subsequence, and we have a contradiction of Proposition 2.1, which
establishes that stuv must be Cn-ordered. We conclude that chords do not
cross and can therefore meet only at endpoints.

For (iii), for each fixed i=1, ..., n, suppose the factors moving i are

sl1=(i s1), ..., slk=(i sk)

where 1 [ l1 < · · · < lk [ n−1, k \ 1.
Then fl1 will include isk...s1 as a subsequence on the cycle containing i,

and we conclude from Proposition 2.1 that isk...s1 is Cn-ordered. But the
edge corresponding to slj has number lj+1, and (iii) follows. L

For example, it is straightforward to verify that the circle chord diagram
C(F0) illustrated in Figure 1 does indeed satisfy conditions (f1), (f2) and
(f3).

Now for circle chord diagrams satisfying condition (f2), the n−1 chords
and the circle partition the circle and its interior into n regions. The bound-
ary of a region consists of a collection of chords and arcs of the circle. An
arc is a segment of the circle from point i to point i+1 modulo n.

Proposition 2.3. For circle chord diagrams satisfying conditions (f1)
and (f2), each region contains precisely one arc in its boundary.

Proof. If the boundary of any region consists entirely of chords, then
these chords form a cycle in the graph of the chords (called G1 in the proof
of Theorem 2.2(i)). But this graph is a tree, from Theorem 2.2(i), and
therefore has no cycles. We conclude that the boundary of each of the n
regions contains at least one of the n arcs. But this means that each region
has exactly one arc, giving the result. L

For example, each region of the circle chord diagram C(F0) illustrated in
Fig. 1 contains precisely one arc in its boundary.
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Now consider the following condition for the above regions: the numbers
on the chords of the boundary increase clockwise, starting immediately
after the unique arc. (f3)Œ

Note, for example, that each of the 9 regions in Fig. 1 satisfies (f3)Œ.

Proposition 2.4. For circle chord diagrams, conditions (f1), (f2) and
(f3) are equivalent to (f1), (f2) and (f3)Œ.

Proof. Immediate. L

We end this section by showing that conditions (f1), (f2) and (f3)Œ
characterize circle chord diagrams associated with factorizations.

Lemma 2.5. A circle chord diagram on n points satisfying conditions
(f1), (f2) and (f3)Œ is equal to C(F) for some F ¥Fn.

Proof. Consider a circle chord diagram satisfying conditions (f1), (f2)
and (f3)Œ. Suppose that the chord numbered i joins points ai and bi, and let
si−1=(ai bi), for i=2, ..., n. Now consider the product of transpositions

s=s1 · · ·sn−1.

Condition (f3)Œ implies that s(j) — j+1 modulo n for each j=1, ..., n, by
considering the action of the transpositions on the boundary of the region
containing the arc (j, j+1). Thus s=Cn, and FŒ=(s1, ..., sn−1) is a
factorization in Fn. The result follows, since we have established that the
circle chord diagram is equal to C(FŒ). L

In summary, the results in this section have established that there is a
bijection between Fn and circle chord diagrams satisfying (f1), (f2), and (f3)Œ.

3. THE STRUCTURAL BIJECTION

We are now able to describe the structural bijection that proves our main
theorem. Consider the circle chord diagram C(F) for some factorization
F ¥Fn. Form the graph f(F) by a ‘‘planar dual’’ construction, as follows.
For each region of C(F) we have a vertex of f(F) (say, drawn in the
middle of the arc contained in the boundary of the region). Then place an
edge between two vertices if the boundaries of their corresponding regions
share a chord. We (temporarily) assign label i to this edge of f(F), where i
is the number of the shared chord in C(F). Thus, at this stage, f(F) has n
vertices and n−1 edges (one edge for each edge of C(F)), and is connected
because C(F) is connected, so we conclude that f(F) is a tree.

112 GOULDEN AND YONG



Now pause to observe two properties of f(F) at this stage. (These
observations are not necessary to complete our construction, but make the
reversal of our bijection straightforward.) First, condition (f3)Œ on C(F)
implies that, at each vertex of f(F), the clockwise sequence of labels on the
incident edges is Cn-ordered. Second, the clockwise order of the vertices of
f(F) around the circle can be described, as follows. Vertex 1 is placed on
the arc (n, 1). Make the unique traversal of the outside of the tree in a
clockwise direction, starting from vertex 1 and proceeding along the left
side of the edge with the smallest temporary label among those edges
incident with vertex 1. This traversal ends when both sides of every edge
have been traversed, at vertex 1. At each visit to a vertex, compare the
temporary label on the edge whose side has been traversed immediately
before the vertex, to the temporary label on the edge whose side has been
traversed immediately after the vertex; check for the condition that the
‘‘before’’ label is weakly greater than the ‘‘after’’ label. Note that for a leaf
vertex, this condition is always satisfied at the unique visit to the vertex,
since the labels being compared are identical (arising from two sides of the
same leaf edge). For vertex 1, this condition is never satisfied, because of
the clockwise Cn-ordered property above. For every other vertex, this con-
dition is satisfied exactly once, again because of the clockwise Cn-ordered
property. The order of the vertices appearing on arcs (1, 2), ..., (n−1, n) is
now straightforward; it is the order in which the vertices satisfy the weakly
decreasing condition along the traversal.

Finally, complete the construction by labelling the vertices distinctly with
the elements of [n], as follows. The vertex corresponding to the region with
arc (n, 1) in its boundary has label 1. For each edge, find the unique path
to vertex 1 from that edge, and ‘‘slide’’ the temporary label on the edge to the
incident vertex away from vertex 1, thus labelling the other n−1 vertices
2, ..., n. The resulting tree is f(F), and it is clear from our description
above that f(F) ¥Tn. For example, Fig. 2 illustrates f(F0) where F0 is
given in (1), and C(F0) is given in Fig. 1.

We claim that f:Fn QTn is a bijection. In section 2 we proved that there
is a bijection between Fn and circle chord diagrams satisfying (f1), (f2) and
(f3)Œ. Also, our ‘‘planar dual’’ construction above is a bijection between
circle chord diagrams satisfying (f1), (f2) and (f3)Œ and Tn, since the
clockwise Cn-ordered requirement at each vertex forces a unique planar
embedding of a tree, and then the vertices are placed at the midpoints of
the arcs of the circle uniquely as described above. Together, these bijections
prove the claim. In the resulting bijection f, note that a factor in F with
difference index k corresponds precisely to an edge of f(F) with edge-
deletion index k, so d(F)=e(f(F)) and we have proved Theorem 1.1.

To reverse the bijection, consider an arbitrary tree T. Now ‘‘slide’’ the
label on each vertex 2, ..., n to the incident edge along the unique path to
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FIG. 2. Construction of the tree f(F0).

vertex 1. By our two observations above, it is straightforward to see that
we can uniquely embed the tree in the plane so that the clockwise order of
the edge labels incident with every vertex is increasing, and then traverse
the tree to place the vertices at the midpoints of the arcs on a circle with
vertices 1, ..., n. We complete the determination of f−1(T) straight-
forwardly by inverting our planar dualization above to find the chords.

FIG. 3. Example of inverting the structural bijection.
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For example, for the tree T1, with n=8, and edges 13, 14, 17, 23, 28,
35, 56, we find that

f−1(T1)=((1 2), (1 3), (1 6), (4 5), (4 6), (6 7), (7 8)),

as illustrated in Fig. 3.
As a remark, we mention that our circle chord diagram construction

leads directly to another bijection between Fn and Tn. Given a circle chord
diagram associated with a factorization, simply ‘‘push’’ the edge labels in
the unique direction away from the vertex labelled 1. This gives an element
of Tn and is clearly reversible. This bijection is actually the same as that of
Moszkowski [12], and the description given above has appeared,
independently, in Poulalhon [13]. Also, in a different but related setting, a
planar dual construction that is similar to ours has been given in Deutsch
and Noy [5].

4. FACTORIZATIONS AND HURWITZ NUMBERS

The factorizations that we have considered in this paper are special cases
of a more general factorization problem in Sn. Consider k-tuples of
transpositions (s1, ..., sk) whose ordered product s1 · · ·sk is equal to an
arbitrary permutation p, and such that the group generated by s1, ..., sk
acts transitively on [n]. (When p=Cn, as is the case in this paper, this
transitivity is forced. Note that, in general, transitivity means in combina-
torial terms that the multigraph on vertices [n], and edge i j for each factor
(i j), is connected.) For each k, the number of such factorizations is clearly
constant on the conjugacy class of p in Sn. Moreover, if the conjugacy class
has disjoint cycle distribution specified by the partition a=(a1, ..., am) of n,
with m parts, then the minimum choice of k for which such factorizations
exist is k=n+m−2, and corresponding factorizations are called minimal
transitive factorizations. (Note that, from Goulden and Jackson [8], there
are exactly m−1 cuts in these factorizations, in addition to n−1 joins.) The
number of these factorizations is given by

(n+m−2)! nm−3 D
m

j=1

aajj
(aj−1)!

, (2)

from [8]. Such factorizations arise in the study of ramified covers of the
sphere by the sphere, with branching above infinity specified by a, simple
branching above other specified points, and no other branching (see, for
example, [1, 9, and 11]).
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In the case where the number of factors is k=n+m−2+2g, for an
arbitrary nonnegative integer g, such factorizations arise in ramified covers
of the sphere by a surface of genus g. The number of such covers, equal to
the number of corresponding factorizations as specified above, are called
Hurwitz numbers, and are studied extensively in algebraic geometry (see,
for example, [6, and 7]). Here, the expression for k is a consequence of the
Riemann–Hurwitz formula.

Clearly the expression in (2) specializes correctly to give nn−2 in the case
that a=(n), for which k=n−1, and these are the factorizations studied in
this paper. We would like to achieve a combinatorial understanding of this
expression for arbitrary a. The bijection in this paper allows us to specify
transposition factors according to their difference index, and in particular
to identify those in which this difference equals 1 (namely, the consecutive
pairs). These pairs are mapped to leaves in the corresponding tree, and the
Prüfer code bijection for trees (see, e.g., Stanton and White [14, p. 66]) is
based on successively removing leaves of the tree, each iteration yielding an
element of [n]. Thus we can compose our bijection with the Prüfer
bijection ‘‘smoothly’’, to identify combinatorially each of the factors n in
the enumeration of the factorizations of this paper. Now expression (2)
contains many similar factors, and our hope is that the combinatorial
decompositions of this paper can be extended to explain these factors in the
general case. As a specific instance of this possible extension, consider the
case a=(n−1, 1), where expression (2) becomes (n−1)n, and the fac-
torizations would have a single cut. The simplicity of this expression
suggests that a nice combinatorial explanation of the type referred to above
should be possible, but we have not yet been able to find one.
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