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Abstract 

In this paper, we present formulas for the number of decompositions of elements of the Weyl 
groups of type A., D. and B, as products of a number of reflections that is not necessarily 
minimal. For this purpose, we consider the poset of conjugacy classes of W introduced in 
B6dard and Goupil (1992) for the symmetric group. This poset describes the action of the set of 
reflections of a reflection group on its conjugacy classes. In particular, we show how the 
reflection decompositions in the symmetric group 65. are related to the reflection decomposi- 
tions in D.. 

1. Introduction 

For each element x of a Coxeter group W, there holds a presentation 

x = p l  "" Pr(x,w) (1.1) 

ofx  as a product of reflections Pl . . . . .  P,(x, w) belonging to Wwhere r(x, W) is minimal 
for given xe  W. The elements in a given conjugacy class Ci of W always have the same 

number of reflections r(Ci) in their minimal decomposition (1) and the number of 

these minimal decompositions, denoted p(C~), also depends only on the conjugacy 
class C~. 

Let R be the formal sum of all the reflections of W which lies in the center cg [ W] of 
the group algebra of W over the real number field ~. The number p(C~) is the 

coefficient of the conjugacy class C~ in the r(C~)th power of R in ~ [ W ] :  

p(Ci )  = R'(Calc,, (1.2) 

In the symmetric group ~ . ,  the numbers p(C~) are essentially obtained from the 
classical result of Denes [3] stating that the number of minimal decompositions of 
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a k-cycle is equal to the number k k -2  of trees on k vertices. The purpose of this paper is 
first to give a description of the coefficients p(C~) for the Weyl groups of type B and D. 

and then to relate these coefficients to the enumeration of the decompositions of 
elements of (~. into more than the minimum number of transpositions. In Section 2, 
we describe the poset Z ( W )  of conjugacy classes of W and recall the formulas for the 
numbers p(C~) in the symmetric group. In Sections 3 and 4, we give the formulas for 
the numbers p(C~) in the groups D. and B. respectively and in Section 5, we show how 
we can use our results for the group D. to enumerate the number of decompositions of 
elements a of 6 .  with cycle type 2=(k~,k2) into more than the minimum number 
r(a, ffi.) of transpositions. 

2. Definitions 

Let us first recall some facts about the Weyl groups of type A., Bn and D. which will 
be used throughout this text. The conjugacy classes C(#, t~.) of the symmetric group 
S. are indexed by partitions/~ of n written # I-- n. The number n is called the weight of 
the partition p and we write 1#1= n. We write kt = 1 ' '  2 ~2-.. n ~" to mean that a permuta- 
tion x~ C(p, 6 , )  contains ~i cycles of length i. If  2 = 1 a l 2 a . . . .  n p" is another partition of 
n, then the sum 2+/3 is defined as 2 + / 3 =  l'l+P12"2+a~ ... n "2+a". 

The hyperoctahedral group B. can be seen as the group of signed permutation 
matrices of order n. It contains the group D. as a subgroup of index 2. The group D. 
consists of the signed permutations matrices of order n with an even number of entries 
equal to - 1. 

In similarity with the symmetric group, it is convenient to represent the elements 
a of B. by a sequence of n integers tr~ 0" 2 ' ' '  O'n with -- n ~< ai ~< n for all i = 1 . . . . .  n. The 
integer ai can be seen as the image of i under a. Two k-cycles in B. are conjugate iff the 
number of - 1  in their matrix or row representation have the same parity. For 
example the two 5-cycles ( 3 , 4 , 2 , - 5 ,  1) and ( - 5 , 3 , - 4 ,  1 , - 2 )  are in the same con- 
jugacy class of B.. We may therefore call the cycles and the conjugacy classes of B. 
positive or negative according to their even or odd number  of negative elements in 
their row or matrix representation and the conjugacy classes of B. are indexed by 
pairs of partitions (2,p) such that 12l + I~l = n  where the partition 2 describes the 
distribution of positive cycles and/~ gives the distribution of the negative cycles. The 
set of reflections of B, contains two conjugacy classes noted R1 and R2. The class R~ 
contains the positive reflections p~. j and p_ ~,-i and the class RE contains the negative 
reflections p_~. These reflections are defined by the following relations: 

pl, j(bi-bj) = -b i+bj ,  pl.j(bk)=bk k # i , j  (2.1a) 

P-i, j ( b i + b j ) = - b i - b j ,  p_i. j(bk)=bk, k~i , j ,  (2.1b) 

p-i(bi) = -b i ,  p-i(bk)=bk k~:i. (2.1c) 
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where{ b l, b2,-.-, b, } is the standard basis of ~". The cardinality of a conjugacy class 
C(2, #; B,) of B. is given by the formula 

IC(L#; B.)I=IC(2 + #; O.)I (] ( ~ + t " ]  2rta+u;~%). 
i = 1 \  ~i / 

(2.2) 

The conjugacy classes of D. are precisely the positive conjugacy classes of B. except 
when the cycles are all of even length (odd permutations) and positive (# = 0); in which 
case they split into two conjugacy classes of equal size. Since it is irrelevant to our 
discussion to distinguish these two conjugacy classes of D,, we will write C(2, 0; D.) 
for the disjoint union of these two conjugacy classes. The product R * C~ in the center 
c~ [ W] of the set of reflections R with any conjugacy class of W decomposes as a linear 
combination of conjugacy classes. We describe in the next proposition this decompo- 
sition for the groups (5., B. and D.. 

Proposition 2.1. Let p = 1 . . . . .  n ~" and 2 = 1 ~ . . . .  n ~" be partitions such that [#l + 121 = n. 
The coefficients in the decomposition of the product R * C(2, #; W) of the set of reflec- 
tions with any other conjugacy class of W in the basis of conjugacy classes are given in 
Fig. l for the symmetric group (5. and in Fig. 2for the groups B. and D.. In both figures, 
the weight of an oriented edge going from a class C(2,#; W) to the class C(2",#*; W) 
represents the coefficient of the class C(2". #*; W) in the product R * C(2, #; W). In Fig. 
1, since we need only one partition for the symmetric group, we set # = # *  =0. 

Proof. These coefficients are obtained by using simple combinatorial arguments that 
are developed in a case-by-case study. We omit the details. [] 

In Fig. 2, the superscripts in the fl's and c~'s give the multiplicities of positive and 
negative cycles respectively. Thus in both figures, cases (a) and (b) involve conjugacy 
classes with only positive cycles. Case (c) describes the action of joining a positive cycle 
and a negative cycle to form a bigger negative cycle by using a positive reflection. Case 
(d) is the only case involving the action of a negative reflection, it transforms a positive 
cycle into a negative cycle of the same length. Thus if we want to describe the action of 
reflections in the group D., we only have to discard case (d) in Fig. 2. The action of the 
set of reflections in the symmetric group given by Fig. 1 first appeared in [6]. It is 
similar to cases (a) and (b) of Fig. 2 for only upward weights differ by a factor 2. 

Observe that for any reflection group W we can construct a ranked poset Z(W) of 
conjugacy classes using the action by multiplication of the set of reflections in the 
following way. The rank of a conjugacy class Ci is the minimal number r(Ci) of 
reflections in the decomposition of an element ~reC~ as a product of reflections. The 
partial order on the conjugacy classes is given by the condition 

CjcoversCi ~ r (Cf l=r(Ci )+l  and VtreCj, 3 t eC i ,  p~R 

such that cr=tip. (2.3) 
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1/~ . . . .  i o . . . .  j#J ... (i +j)#,+ , ... n: ,  

( i ~ j )  ijflifl j ~j, ( i + j ) f l i + j + l  

1 # . . . .  i o , - i  . . . j 0 . - a  . . . ( i + j ) 0 , , j + l  ... n 0. 

(a) 

10 . . . .  i ~ . . . .  (2 i )~ . . . .  n0, 

1 O . . . .  i O, - 2 . . .  ( 2 i ) ~ ,  + a ... nO. 

(b) 

Fig. 1. Action by multiplication of R on conjugacy classes of (~,. 

1 ~ . . . .  i 0 . . . .  j0J ... (i +j)O~ + j . . .  n0, 

( i : : j )  2ijfl~flj T+ ( i + j ) f l ~ + j + l  

lfl . . . .  i 0 i -  1 . . . j 0 j -  ~ ... (i-F j )  p' +j + 1 .../,lfl, 

(a) 

1 p . . . .  i 0 . . . .  (2i)02 . . . .  n0- 

2iz(~2~ ) TJ, i ( f l 2 i+ l )  

10 . . . .  i¢,-2 ... (2i)0~, +1 ... n #- 

(b) 

10 . . . .  i ~ . . . . .  j~J . . . .  ( i+j)~,+J ... n : -  

2(]fl, flj T~ (i-FJ)(~i+j +1)  

10~ ... i0, - 1 . . . .  j , j -  1 . . . .  (i +j)~ '  +i+ 1 ... no, 

re) 

1 01 . . .  i 0 ,  . . . .  i s ,  . . .  r iP ,  

ifl, T~ i (~+ l )  

10~  , . .  i 0 ~ - 2  . . . .  i = ~ + 1  . . . n 0 ,  

(d)  

1 0  . . . . .  i . . . . . .  j ~ J  . . .  ( i  + j ) &  + J - . -  n 0" 

( i ~ j )  ( i+j)f l~+j T+ 2 i j ( cq+l ) (o ( j+ l )  

10 . . . . .  i~, +1 . . . .  j , ,+ l . . . .  ( i + j)o~ , j -1  ... nO, 

(e) 

101 . . . .  i . . . . .  (2i) ° . . . . .  n 0" 

_ 2 / a i +  
ifl21 T J, 2i ~ 2 2 )  

1 o . . . . .  i~+2 ... (2i)0~, - 1 ... n~. 

(f) 

Fig. 2. Action by multiplication of R on conjugacy classes of type (2, #) in B, and D,. 

W e  give a weight  to each o r i en ted  edge (CI, Cj) of Z ( W )  equa l  to the  coefficient 

Ci * RIc~ w h e n  C~ covers  Cj or  Cj covers  C~ a n d  the weight  of a walk  f rom the  iden t i ty  

class to the class C~ is def ined  as the p r o d u c t  of  the weights  of each one  of its o r i en ted  

edge. T h u s  the  weight  p(C~) of  a c o n j u g a c y  class C~ descr ibed  in Eq. (1.2) is the s u m  of 

all weighted  cha ins  in  Z ( W )  f rom the iden t i ty  class to C~. In  the case of the sym m et r i c  

g roup ,  the poset  Z ( (~ , )  is i s o m o r p h i c  to the poset  of  pa r t i t i ons  o rdered  by  r e f inemen t  

[2]  a n d  it has  been  used a n d  descr ibed  in m o r e  detai ls  in  [9, 1]. 
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2.1. The symmetric group 

In ~ , ,  it is well known [3] that the number p ( l " -kk ;~ . )  of decompositions of 
a k-cycle as product of a minimum number of transpositions is k k- 2. If a permutation 
consists of two disjoint cycles of length kl and kz, the number of its decompositions is 
given by 

kl kzklk2, f f , . ) = k ~ , - 2 ( k l + k 2 - 2  ~ (2.4) p(l" 
\ ] k l - 1  

because building the two disjoint cycles is done with two independent sets of trans- 
positions of cardinality kl - 1 and k 2 -  1. The product of a transposition from one set 
with a transposition from the other set commutes. So any two minimal sequences of 
transpositions, one giving a k~-cycle and the other a k2-cycle, can be shuffled without 
changing the result. The number of shuffles is counted by the binomial coefficient in 
(2.4). This shuffle principle can be used to obtain an expression for p(#, (5.) where/~ is 
any partition ofn [ l ]  and it will also be used throughout the text for the groups B. and 

Dn. 

3. The group D. 

We first consider the case where the conjugacy class C(2,/t; D.) contains no negative 
cycle, i.e./~ =0. 

Proposition 3.1. For any partitions 2 }- k and # t- n-- k, we have 

p(2, 0; Dk)= p(),, 0; Bk)=p(2; (~k), 

p(2, p; D,)= p(2, ~,)P(0, p; D,) { r(2,/1; D.)~ 
\ 

p( 2,1~; B.)= p( 2, eb.) p( O, l~; B,) ( r( R, l~; B,) ~ 
\ r(;,~.) )" 

(3.1) 

(3.2) 

(3.3) 

Proof. Identity (3.1) is a straightforward consequence of the comparison of cases (a) 
and (b) in Figs. 1 and 2. Identities (3.2) and (3.3) are obtained by using the shuffle 
principle on 2 and p. [] 

In order to obtain a complete picture of reflection decompositions, the remaining 
cases to be studied are the ones with conjugacy classes of D. and B, that have no 
positive k-cycle with k > l  and the generic situation is the conjugacy class 
C((l"-k'-k2), (kl, k2); D.) containing two disjoint negative cycles of length kx, k2. We 
begin our study with a technical result. 
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5. Applications 

We now use Theorem 3.1 to count the number of factorizations of elements of 15. as 
products of more than the minimum number of transpositions. 

Theorem 5.1. Let R(n) be the conjugacy class of transpositions of S.. We have 

p(O, (k,, k2); O.)l C(O, (kl, k2); D.)l 

= 2"- x I C(kl,  k2; 15.)[ [R (n)" [Ctk,, k2, ¢..) 

- R ( k 2 )  [C~k2"C~k2)P(l"-k'kl;S') k 2 + l  " 

Proof. The left-hand side of (5.1) counts the number of factorizations as products of 
kl + k2 reflections of all elements aeC(0,  (kl,  kz); D.). Observe that when we remove 
the "minus signs" from the elements in these sequences of reflections, we obtain 
elements of 15. in the class C(k~,k2;15.). Since there are two reflections of D, that 
correspond to each transposition in 15. after we remove the sign and since we have the 
same number of choices in 15. and in D. for the reflection that breaks a cycle in two, we 
add the factor 2"-1 to the right-hand side of (5.1). 

To obtain an element ae  C(kl,  k2; 15.) as a product of n transpositions we can also 
build a kl -cyc le  with kl + 1 transpositions and a k 2 -  cycle with k 2 - 1  transpositions 
that commute with the transpositions in the first sequence or vice versa. We apply the 
shuffle principle and remove these possibilities from R(n)"lC~k,.k~; ~,) in the right-hand 
side of (5.1) to obtain the left-and side. [] 

Corollary 5.1. Let R(n) be the class of transpositions of 15. and suppose that kl ,  k2 are 

positive integers with kl + k2 = n. Then the number of ways to factor an element of the 
class C(kl,k2; 15.) as a product of the minimum number of transpositions plus two is 

R(n)n[C~k,,k2;~%) 

kk'+lk*2~+l ( k , + k 2 ~ 4  kk'+ltz'2v', - W'~2''t'k~+2tk'+k:', k, +, ,  

k l+k2  \ kl /I 4! 

kk2+lt~2 1)k],+2zk,+k2x 
2 ~,r~2 - -  ~ k 2 + 1 !  q 

4! 

Proof. We need two identities 

n "+ l ( n Z -  1) 
R Zn ~" + l J c~n~,~%)- 4! ' 

I C(0, (k,, k2); D.)I= 2" - 21C((kl, k2); 15.)I- 

(5.e) 

(5.3) 
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Identity (5.2) in fact is a special case of 

R(n)"lc((.),~,.)- n! (--1)k (n-- 2k-- 1)"' (5.4) 
k = O  

which is derived from the character formula (see for instance [8]) for the product of 
conjugacy classes in N. (see also [5]) 

IC(1"-22' ffi")l~ ~ (Z l:"Si)°:~(a";"-', (5.5) 

where f ~ " - *  is the dimension of the irreducible representation indexed by l~n-r .  
Hence the result follows from (3.6) and (5.1). [] 

The next theorem extends the result in Theorem 5.1 to arbitrary conjugacy classes 
of ~ , .  

Theorem 5.2. Let 2=(21 ,22 , - "  ,2k)I---n and r(2) be the minimal number of transposi- 
tions in a decomposition (1.1) of an element of C(2; 15,). Then we have 

R , , . , j r ( ; . )  + 2 
'~'~) C O . ; O . )  

k 

=Z 
i , j= l  

i¢ j  

R(21+ a,+~j / r ( 2 ) + 2 )  
2j) [c(~,.~j;~,, .)p(2-2i-2j;~,-a,-a,)\ 2 i+2 ; / /  

k ~ , / r ( 2 ) +  2"] 
- ( k - 2 )  E R(2i)~'+llc((~,';~',.) p(2-2i;v9"-~,) ~ 2,+ 1 /" 

i = 1  

(5.6) 

Proof. Theorem 5.2 states that the number of decompositions of a permutation of 
cycle type 2 as product of r(2) transpositions plus two is done by breaking a cycle in 
two smaller cycles at one point in the sequence of transpositions and then construct- 
ing on the new set of cycles the remaining part of 2 in two different ways: one is to 
construct two disjoint cycles of 2 using the two broken parts, the other is to join the 
two broken cycles into a cycle of 2 that contains the elements of the broken cycle. 
These two processes are actually counted in the first sum of the right-hand side of (5.6) 
but the second one is counted k - 1  times. We remove the surplus in the second 
sum. [] 

In the next corollary apply Theorem 5.2 to compute the number of decompositions 
for specific conjugacy classes of (ft,. 
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Corollary 5.2. Let k~ , k  2 and k be positive integers with O<k <~n=kl + k  2 and let R(n) 
be the class of transpositions of (5.. Then 

- - ( n  - -  k - 1) R ( k )  a+ l[c(a; ~%) 

= ( n - k ) ( k + l  k k 2 - 1 \  
2 J \  2 ) k ' - 2 + k k + ' (  (n -  )+4~-. )' 

. ~1 1 2  ) +k2 R(n)[c(l.lk,a2;~%)=(2)(kl+k2 . ( k ,  k],- 2 kkd- 2 
\ kx-  2 

+¢q[k~,+,kk22-2(k1+k2 ~ k2+, a,-2 kl+k2 

.+ k~' + l kk~+ ' (k'~ k~ ~_k,k'- a kk2=- a(k'~,k2) 

kl +k2 4! 

x [k2(kl - 1)+ k2(k2- 1)], 

C~k k=~(*- 1)+ 2(~k(k-- 1)+2)! 
R (n)"- ~ + 2 ]c(k,~; ¢%) = (4t)(kt)~" [6ak k -- 5k - 1]. 

(ii) 

(iii) 

Proof. These formulas are direct consequences of Theorem 5.2. [] 

In order to extend Theorem 5.1 to decompositions of permutations into an 
arbitrary number of transpositions, we introduce the following notation. For 
Wequals to (5, or D. denote by q-zig(Ci, W) the number of decompositions ofa~Ci as 
a product of r(Ci)+2q reflections. Each such decomposition can be represented in 
3~(W) by a path with q zigzags from the identity class to C~. Let q-mix(k1, k2) be the 
number of decompositions of aEC(k~,k2;(5.) as a product of r(C(k~,k2;(5,))+2q 
transpositions that contain at least one transposition (i,j) with i in the kl-cycle and 
j in the k2-cycle. In order to count q-zig(k1, k2; (5,) we first observe that 

q 

q-zig(kl, k2;  (sn) = 2 ((q--i)-zig(k~))(i-zig(k2)) 
i=O 

I 'k~+kz+2q-2~ 
x ~  kz+2i--1 )+q-mtx(k,,k2). (5.7) 

Since we know how to count q-zig(kl), for any positive integers q and k~, by using 
formula (5.5), it remains to evaluate q-mix(k,, k2). The next conjecture gives a partial 
answer to that question. 
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Conjecture 5.1. Let k~, k 2 be positive integers with ka + k2 = n, for any positive integer 
q, we have 

q--zig(O, (kl, k2); D.)= 2zq +' [-(q + 1)--rnix(kl, k2)]. (5.8) 

With the zigzag notation, identity (3.6) can be written in the form 

O-Zig(O, (kl, k2); D.) = 2(1 -- mix(k1, k2)), (5.9) 

which is our conjecture for q =0. Next we observe that for each walk in Z ( ~ . )  with 
q zigzags, there corresponds a set of walks with q-1 zigzags in Z(D.). There is 
numerical evidence and we have to show that the weight of this setof ( q -  1)-walks in 
D. is equal to 2q + 1 times the weight of the q-walk in (ft.. This could be tried using 
induction on the number q of zigzags. The problem of computing q-mix(k1, k2) is open 
but we give here without proof the expressions for q-mix(k1, k2) when q equals two 
and three. 

2-mix(kl,k2) 

_k~,+,k~2+,[-/k,+2~f n+2 \ /k,+3~f n+2 \ ['k,+4~(n+2"~-I 
-- [~ 4 )~k ,+2)+~  4 ) t k , + 3 ) + ~  4 / \k ,+4JJ '  

(5.10) 

3-mix(k1, k2) 

87 f /kl"Xfk2\ 

(5.11) 
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