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SECOND ORDER FREENESS

AND FLUCTUATIONS OF RANDOM MATRICES:

I. GAUSSIAN AND WISHART MATRICES AND

CYCLIC FOCK SPACES

JAMES A. MINGO (∗) AND ROLAND SPEICHER (∗)(†)

Abstract. We extend the relation between random matrices and
free probability theory from the level of expectations to the level of
fluctuations. We introduce the concept of “second order freeness”
and interpret the global fluctuations of Gaussian and Wishart ran-
dom matrices by a general limit theorem for second order freeness.
By introducing cyclic Fock space, we also give an operator alge-
braic model for the fluctuations of our random matrices in terms of
the usual creation, annihilation, and preservation operators. We
show that orthogonal families of Gaussian and Wishart random
matrices are asymptotically free of second order.

1. Introduction

Free probability has at least three basic facets: operator algebras,
random matrices, and the combinatorics of non-crossing diagrams. This
can be seen very clearly in Voiculescu’s generalization of Wigner’s semi-
circle law to the case of several independent matrices [Voi1]. The dis-
tribution arising in this limit of random matrices can be modelled by
a sum of creation and annihilation operators on full Fock spaces and
described nicely in terms of non-crossing partitions.

On the random matrix side, Voiculescu’s theorem describes the lead-
ing contribution to the large N -limit of expectations of traces of Gauss-
ian random matrices. However, in the random matrix literature there
are many investigations on more refined questions in this context. On
one side, subleading contributions to the large N -limit are of interest
and have to be understood up to some point for dealing with ques-
tions concerning the largest eigenvalue of such random matrices. On
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2 J. A. MINGO AND R. SPEICHER

the other side, there has also been a lot of interest in leading con-
tributions to other important quantities, like, e.g., global fluctuations
(i.e., variance of two traces) of the considered random matrices. One
should note that there are relations between these two questions. We
are not going to explore these relations here, but we want to direct
the reader’s attention to the so-called “loop equations” in the physical
literature (see, e.g. [Eyn]) and to the “master equation” in [HT].

We will concentrate in this paper on the second kind of question. As
is well-known from the physical literature, in many cases these leading
contributions are given by planar (or genus zero) diagrams and thus
have quite a bit the flavour of the combinatorics of free probability. In
the recent paper [MN] this description was made precise for the global
fluctuations in the case of Wishart matrices, and in particular the rele-
vant set of planar diagrams (“annular non-crossing permutations”) was
introduced and examined. However, this description of the fluctuations
in the large N -limit was on a purely combinatorial level. Since it looks
quite similar to the description of free Poisson distributions in terms
of non-crossing partitions, one expects to find some genuine free prob-
ability behind these results. In particular, one would expect to have a
description on the level of operator algebras and to have also a precise
statement of the kind of “freeness” that arises here.

In this paper we will show that this is indeed the case. On one hand,
using the notion of a cyclic Fock space, we can formulate the fluctu-
ations in terms of the usual creation, annihilation, and preservation
operators. On the other hand, we will also introduce an abstract “free-
ness” property for bilinear tracial functionals, which not only give us
a conceptual understanding, but, on the other hand, is also crucial for
proving our main theorems on the fluctuations.

Second order freeness, while stronger than the freeness of Voiculescu,
nevertheless appears to be a central feature of ensembles of random
matrices. Indeed, in this paper we prove that two standard exam-
ples of random matrix ensembles exhibit second order freeness: or-
thogonal families of Gaussian random matrices and orthogonal families
of Wishart random matrices are asymptotically free of second order.
Moreover in [MSS] we show that independent Haar distributed random
unitary matrices are asymptotically free of second order.

The main results of the paper are thus. In section 5 (with proofs
in section 7) we show that semi-circular and compound Poisson fam-
ilies on the full Fock space are free of second order. In section 6 we
establish the basic properties of second order freeness and prove a gen-
eral limit theorem. In section 8 we diagonalize the fluctuations in the
Gaussian and Wishart case, thus recovering and extending results of
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Cabanal-Duvillard [C-D]. In section 9 we prove asymptotic freeness of
second order for orthogonal families of Gaussian and Wishart random
matrices.

2. Preliminaries

Here we collect some general notation and concepts which we will
use in the following.

Our presentation should be, by and large, self-contained, however, it
will rely of course on the basic ideas and concepts of free probability.
For more details on this, one should consult [VDN, Voi2, NSp, HP].
Furthermore, the concepts of annular non-crossing permutations and
partitions will play a crucial role. We will provide all relevant infor-
mation on them in the text. However, our presentation will be quite
condensed, and for further details one should consult the original paper
[MN].

2.1. Some general notation. For natural numbers n,m ∈ N with
n < m, we denote by [n,m] the interval of natural numbers between n
and m, i.e.,

[n,m] := {n, n+ 1, n+ 2, . . . , m− 1, m}.
For a matrix A = (aij)

N
i,j=1, we denote by Tr the un-normalized trace

and by tr the normalized trace,

Tr(A) :=

N
∑

i=1

aii, tr(A) :=
1

N
Tr(A).

For an n ∈ N, we will denote by P (n) the set of partitions of [1, n],
i.e., σ = {B1, . . . , Br} ∈ P (n) is a decomposition of [1, n] into disjoint
subsets Bi: Bi 6= ∅ for i = 1, . . . , r, Bi ∩ Bj = ∅ for i 6= j and

[1, n] =

r
⋃

i=1

Bi.

The elements Bi of σ will be addressed as blocks of σ.
Given a mapping i : [1, n] → [1, N ], the kernel, ker(i), is defined as

the partition of [1, n], such that two numbers k, l ∈ [1, n] belong to the
same block if and only if i(k) = i(l).

If we are considering classical random variables on some probability
space, then we denote by E the expectation with respect to the cor-
responding probability measure and by kr the corresponding classical
cumulants (as multi-linear functionals in r arguments); in particular,

k1{a} = E{a} and k2{a1, a2} = E{a1a2} − E{a1}E{a2}.
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2.2. Annular non-crossing permutations and partitions. The
leading asymptotics of various random matrix quantities can be de-
scribed in terms of special “planar” objects (see, e.g., [Eyn, Zvo]).
There are two equivalent ways of formulating these results: a geo-
metric “genus”-expansion, expressed by a sum over surfaces where the
planar part corresponds then to sums over surfaces of genus zero; an
algebraic description, where instead of using surfaces one can sum
over permutations and planarity is then a geodesic-like condition on
a length-function of these permutations. If one prefers to associate
partition like pictures with permutations, then planarity is a condition
that these partitions have non-crossing diagrams (where, however, one
has to be careful about which drawings are allowed).

We prefer to think in terms of permutations and partitions. Let us
recall the relevant definitions and results.

Let, for r ≥ 1, natural numbers n(1), . . . , n(r) be fixed. Consider a
partition σ ∈ P (n(1)+ · · ·+n(r)). In [MN], the class of “multi-annular
non-crossing partitions” NC(n(1), . . . , n(r)) was defined and, for r = 2
(“annular” case), an extensive study of various characterizations of
such non-crossing partitions was made. We will not go into details
here, but we only want to state the characterization which we will use.
It will be the case r = 2 which is relevant for us; so let us use the
notation NC(n,m) for the (n,m)-annular non-crossing partitions. It
is a good picture to think of two concentric circles, with n points on
the outer and with m points on the inner. We put [1, n] in clockwise
order on the outer circle and [n + 1, n+m] in counter-clockwise order
on the inner one. Adopting this convention will require that in some
of our formulas the indices corresponding to the outer circle run in the
opposite direction from the indices on the inner circle.
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Figure 1. On the left is the annular non-crossing permuta-

tion (1, 2, 12, 9, 8) (3, 4) (5, 10, 11) (6) (7). On the right is the

permutation after the blocks that are contained in one circle

have been removed.

Consider a σ ∈ P (n + m). We shall give a recursive procedure for
deciding if σ is annular non-crossing. Suppose σ has a block which
is contained either in [1, n] or in [n + 1, n + m] and which consists of
cyclically consecutive numbers; then we remove this block and repeat
the process until we get a partition σ′ ∈ P (n′ + m′) with no blocks
which are contained in either [1, n] or [n+ 1, n+m] and which consist
of cyclically consecutive elements. Then, by definition, σ will be in
NC(n,m) if and only if n′, m′ ≥ 1 and σ′ ∈ NC(n′, m′). Thus it
suffices to say when σ is in NC(n,m) for σ with no blocks which are
contained in either [1, n] or [n+1, n+m] and which consist of cyclically
consecutive elements.

The characterizing property of such σ is the following: If we write
the blocks B ∈ σ in the form B = B′ ∪ B′′, where B′ ⊂ [1, n] and
B′′ ⊂ [n + 1, n + m], then, for all blocks B of σ, both parts, B′ and
B′′ must be non-empty and each of them must consist of cyclically
consecutive numbers. Furthermore, the cyclic order of the restrictions,
B′

1, B
′
2, . . . , B

′
k, of the blocks of σ to the interval [1, n] must be the

reverse of the cyclic order of the restrictions, B′′
1 , B

′′
2 , . . . B

′′
k , of the

blocks to the interval [n + 1, n + m]. Note that this characterization
contains the statement that a σ ∈ NC(n,m) is connected in the sense
that at least one block of σ contains elements both from [1, n] and from
[n+ 1, n+m] (i.e., σ connects the two circles).

In the context of random matrices, it is permutations, not partitions,
which appear in calculations. In order to go over from partitions σ to
permutations π one has to choose a cyclic order on each of the blocks
of σ. Choosing such an order for each block will produce an “annular
non-crossing permutation” out of an annular non-crossing partition.
The set of annular non-crossing permutations is denoted by SNC(n,m)
– and by SNC(n(1), . . . , n(r)) in the multi-annular case – and it is this
set which was the main object of interest in [MN]. In [MN, §6] it
was shown that a permutation τ is in SNC(n,m) if two conditions are
satisfied. The first condition is connectedness: at least one cycle of
τ connects the two circles and the second is planarity: the geodesic
condition must be satisfied: #(π) + #(π−1γ) = m + n, where #(π)
denotes the number of cycles of π and γ is the permutation with two
cycles: γ = γn,m = (1, 2, 3 . . . , n)(n+ 1, . . . , n+m)
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We wish to describe what it means to be a a non-crossing permuta-
tion on an r multi-annulus. By an r multi-annulus we mean a collection
of r circles with n(1) points on the first circle, n(2) points on the sec-
ond circle, . . . , n(r) points on the rth circle. Connectivity of τ means
that every pair of circles is connected by at least one cycle of τ . The
planarity of τ is defined using a geodesic condition. Let γn(1),n(2),...n(r)

be the permutation of [n(1) + · · · + n(r)] with r cycles — the rth cy-
cle being (n(1) + · · ·n(r − 1) + 1, . . . , n(1) + · · ·n(r)). τ will be pla-
nar if τ satisfies the geodesic condition #(τ) + #(γn(1),n(2),...n(r)τ

−1) =
n(1) + · · ·+ n(r) + 2 − r.

As observed in [MN], there is not necessarily a unique choice of
a cyclic order on a block of σ; to put it another way, the mapping
from π to σ (which consists in forgetting the order on the cycles) is
not injective. However, this deviation from injectivity is not too bad.
Let us consider a block B ∈ σ, and denote by B′ := B ∩ [1, n] and
B′′ := B ∩ [n + 1, n + m] the parts of B lying on the first and on the
second circle, respectively. On each of the two circles we respect the
given cyclic order on (1, . . . , n) and on (n+ 1, . . . , n+m) The allowed
orders on B thus consist of choosing a ‘first’ element of B′ and a ‘first’
element of B′′; then the order on B is obtained by running through B′

from the first to the last element, then going over to the first element in
B′′ and continuing in B′′ to the last element. Hence the only freedom
we have is the choice of first elements in B′ and in B′′.

Let us call a block B ∈ σ a through-block, if both B′ := B ∩ [1, n]
and B′′ := B ∩ [n+1, n+m] are non-empty. Then only σ with exactly
one through-block have two or more π’s in SNC(n,m) as preimages.
Namely, if B = B′ ∪ B′′ is the unique through-block of such a σ, then
every element from B′ can be chosen as first element, and the same for
B′′, thus there are exactly |B′| · |B′′| possible choices of cyclic orders
for B. If, however, there is more than one through-block, then the first
element on each component of them is uniquely determined and there
is exactly one possible order for each block.

For Gaussian random matrices only non-crossing pairings will play
a role. These are those annular non-crossing partitions for which
each block consists of exactly two elements. One should note that
in this case the distinction between permutations and partitions van-
ishes, because for pairings there is always exactly one possibility for
putting an order on blocks. We will denote the set of annular non-
crossing pairings by NC2(n,m); and, for the multi-annular situation,
by NC2(n(1), . . . , n(r)). In the multi-annular case the geodesic condi-
tion can be written #(γn1,...,nr

π) = 2 − r + (n1 + · · · + nr)/2.
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3. Combinatorial description of global fluctuations

We are interested in the fluctuations of various types of N ×N ran-
dom matrices around their largeN -limit. Here, we are going to consider
two classes of random matrices, namely Gaussian random matrices and
(a generalization of) Wishart matrices. Let us fix the notation for our
investigations.

3.1. Semi-circular case. Let (XN)N∈N be a sequence of N ×N Her-
mitian Gaussian random matrices. Then, in the limit N → ∞, XN

converges to a semi-circular variable s. Let us consider directly the
case of several such Gaussian random matrices. The entries of different
random matrices need not be independent from each other, but they
have to form a Gaussian family. A convenient way to describe such a
situation is to index the matrices by elements from some real Hilbert
space HR, such that the covariance between entries from XN(f) and
XN(g) is given by the inner product 〈f, g〉. More precisely we say that
{Xn(f)}f∈HR

is a family of Hermitian Gaussian random matrices if
XN(f) = (xi,j(f))N

i,j=1 and the entries {xi,j(f) | 1 ≤ i, j ≤ N, f ∈ HR}
form a Gaussian family with covariance given by

E{xij(f)xkl(g)} = 0 for i < j, k < l, and f, g ∈ HR and

E{xij(f)x̄kl(g)} = δikδjl ·
1

N
〈f, g〉 for i ≤ j, k ≤ l, and f, g ∈ HR

By Wick’s formula (see e.g. [J, Sections 1.3 and 1.4]) we have

E{xi1,j1(f1)xi2,j2(f2) · · ·xi2k ,j2k
(f2k)} =

∑

π∈P2(2k)

∏

(r,s)∈π

〈xir,jr
(fr), xis,js

(fs)〉

where the sum is over all pairings π of [2k] and the contribution of each
pairing is the product of 〈xir ,jr

, xis,js
〉 over all pairs (r, s) of π.

Then, Voiculescu’s extension of Wigner’s theorem to this multi-
dimensional case states that, for N → ∞, such a family of random
matrices converges to a semi-circular system with the same covariance.
We want to look more closely on that convergence and investigate the
“global fluctuations” around this semi-circular limit; this means, we
want to understand the asymptotic behaviour of traces of products of
our random matrices. It turns out that, with the right scaling with
N , these random variables converge to a Gaussian family and thus the
main information about them is contained in their covariance.

If one invokes the usual genus expansions for expectations of Gauss-
ian random matrices then one gets quite easily the following theorem.
It turns out that the leading orders are given by planar pairings. Since
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we are looking on cumulants and not just moments, the relevant pair-
ings also have to connect the r circles.

Theorem 3.1. Let XN (f) (f ∈ HR) be a family of Hermitian Gaussian
random matrices. Let kr denote the rth classical cumulant (considered
as multi-linear mapping of r arguments), then for f1, . . . , fn1+···+nr

∈
HR, the leading order of the cumulants of the random variables

(1)
{

Tr
(

XN (f1) · · ·XN (fn(1))
)

, . . . ,

Tr
(

XN(fn(1)+···+n(r−1)+1) · · ·XN(fn(1)+···+n(r))
)}

are given by

(2) kr

{

Tr[XN(f1) · · ·XN(fn(1))], · · · ,

Tr[XN(fn(1)+···+n(r−1)+1) · · ·XN (fn(1)+···+n(r))]
}

= N2−r ·
∑

π∈NC2(n(1),...,n(r))

∏

(i,j)∈π

〈fi, fj〉 +O(N−r).

Proof: Let n = n(1) + · · · + n(r), γ be the permutation of [n1 +
· · · + nr] with the r cycles (1, . . . , n1)(n1 + 1, . . . , n1 + n2) · · · (n1 +
· · · + nr−1 + 1, · · · + n1 + · · · + nr), and Yi = tr

(

XN (fn(1)+···+n(i−1)+1)

· · ·XN (fn(1)+···+n(i))
)

. Then by Wick’s formula

E(Y1 · · ·Yr) =
N

∑

i1,...,in=1

E(xi1,iγ(1)
(f1) · · ·xin,i1(fn))

=

N
∑

i1,...,in=1

∑

π∈P2(n)

∏

(k,l)∈π

〈fk, fl〉δik,iγ(l)
δil,iγ(k)

=
∑

π∈P2(n)

∏

(k,l)∈π

〈fk, fl〉
N

∑

i1,...,in=1

δik,iγ(l)
δil,iγ(k)

=
∑

π∈P2(n)

∏

(k,l)∈π

〈fk, fl〉N#(γπ)

Following the argument in [MN, proof of Proposition 9.3] we have

kr(Y1, . . . , Yr) =
∑

π∈P2(n)

π is connected

∏

(k,l)∈π

〈fk, fl〉N#(γπ)

The terms of highest order are the planar ones thus we obtain equa-
tion (2).
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This theorem contains all relevant combinatorial information about
the asymptotic behaviour of our traces. Since an increase of the num-
ber of arguments of the cumulants corresponds to a decrease in the
exponent of N , a cumulant kr will always dominate a cumulant kp if
r < p. So in leading order only the first cumulant survives in the limit,
which gives us the following statement analogous to the law of large
numbers.

Corollary 3.2. For each f1, . . . , fn ∈ HR, the random variables
{

tr
(

XN(f1) · · ·XN(fn)
)}

N

converge in distribution to the constant random variables α(f1, . . . , fn)·
1, where

α(f1, . . . , fn) =
∑

π∈NC2(n)

∏

(i,j)∈π

〈fi, fj〉.

This corollary is of course just a reformulation of Voiculescu’s result
that E{tr[XN (f1) · · ·XN(fn)]} has, in the limit N → ∞, to agree with
the corresponding moments of a semi-circular family.

But we can now go a step further. If we subtract the mean of the
random variables, then the first cumulants are shifted to zero and it
will be the second cumulants which survive – after the right rescaling.
Since higher cumulants vanish compared to the second ones, we get
Gaussian variables in the limit.

Corollary 3.3. Consider the (magnified) fluctuations around the limit
expectation,

FN(f1, . . . , fn) := N ·
(

tr[XN(f1) · · ·XN(fn)] − α(f1, . . . , fn)
)

= Tr[XN(f1) · · ·XN(fn)] −Nα(f1, . . . , fn).

The family of all fluctuations
(

FN (f1, . . . , fn)
)

n∈N,fi∈HR

converges in

distribution towards
(

F (f1, . . . , fn)
)

n∈N,fi∈HR

, a centered Gaussian fam-

ily with covariance given by

E{F (f1, . . . , fn) · F (fn+1, . . . , fn+m)} =
∑

π∈NC2(n,m)

∏

(i,j)∈π

〈fi, fj〉.

Our goal now is to present a conceptual understanding of this form
of the covariance; in particular one that would easily diagonalize it.
In principle, this is a purely combinatorial problem. However, our
point of view is that limits of random matrices which have the flavour
of free combinatorics should also have a description in terms of the
operator side of free probability, i.e., operators on full Fock spaces.
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We will provide such a description and show that it diagonalizes our
covariance.

3.2. Compound Poisson case. Let (XN)N∈N be a sequence of N×N
complex Gaussian random matrices (i.e. the entries of XN are indepen-
dent centered complex Gaussians with variance 1/N) and let (DN)n∈N

be a sequence of N ×N non-random matrices for which a limit distri-
bution exists as N → ∞. Then, in the limit N → ∞, {XN , X

∗
N , DN}

converges in distribution to {c, c∗, d}, where c is a circular element, d
has the limit distribution of the DN , and {c, c∗} and d are free. In par-
ticular, X∗

NDNXN converges to c∗dc, which is a free compound Poisson
element, see [Sp2, 4.4]. We shall discuss the fluctuations of the random
matrices

PN := X∗
NDNXN

around the limit c∗dc. Since PN is a generalization of a Wishart matrix,
we will call it in the following a compound Wishart matrix.

As we shall see it is appropriate to consider a more general situation.
Namely, consider not just a single non-random matrix DN , but also all
its powers Dk

N at the same time, or more generally, let us consider

a family {D(N)
1 , D

(N)
2 , D

(N)
3 , . . . , D

(N)
p }N of N × N complex matrices.

We shall say the family converges in distribution if there are operators
d1, d2, d3, . . . , dp and a tracial state ψ on D, the complex *-algebra
generated by {1, d1, d2, . . . , dp}, such that

lim
N→∞

tr[D
(N)
i1

· · ·D(N)
ik

] = ψ(di1 · · · dik)

for all i1, i2, . . . , ik.
We are again interested in global fluctuations of these matrices in the

limit N → ∞; i.e., we want to consider the asymptotic behaviour of
mixed moments of our random matrices. Again the key point is the un-
derstanding of the leading order of the cumulants in these traces. This
leading order is described by summing over non-crossing permutations,
but in contrast to the semi-circular case, all permutations contribute,
not just pairings. In order to describe the contribution of such a general
non-crossing permutation, we need the following notation.

Notation 3.4. Let (A, ψ) be a unital algebra with a tracial state ψ;
for each π ∈ Sp we shall define a p-linear functional, ψπ, on A×· · ·×A.
Write π = c1 · c2 · · · · · ck as a product of disjoint cycles, and for each i,
ci = (ri,1, . . . , ri,li). Then define the p-linear functional ψπ by

ψπ(a1, a2, a3, . . . , ap) =
k

∏

i=1

ψ(ari,1
· · ·ari,li

)
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Note that we need ψ to be a trace, because a cycle c comes only with
a cyclic order.

An example of this notation is the following, take

π = {(1, 2, 6), (3, 4, 5)} ∈ SNC(3, 3).

Then
ψπ(a1, a2, a3, a4, a5, a6) = ψ(a1a2a6) · ψ(a3a4a5).

Note also that the cyclic order is important. In SNC(2, 1) consider

π1 = {(1, 2, 3)} and π2 = {(1, 3, 2)}.
Although their block structure is the same, as permutations they are
different elements from SNC(2, 1) and we have

ψπ1(a1, a2, a3) = ψ(a1a2a3) and ψπ2(a1, a2, a3) = ψ(a1a3a2).

We shall denote the number of cycles in the permutation π by #(π).
Let us now state the basic combinatorial description of the leading

order of cumulants in traces of products of our compound Wishart
matrices. For the usual Wishart matrices this was derived in [MN].
Our more general version follows by the same kind of calculations (c.f.
Capitaine and Casalis [CC, §5]).

Theorem 3.5. Let {XN}N be a sequence of complex Gaussian random
matrices. Put

PN(Di) := X∗
ND

(N)
i XN

Let (kr)r∈N denote the classical cumulants, then we have for all r ∈ N

(3) lim
N
N r−2kr

{

Tr[PN(D1) · · ·PN(Dn1)], · · · ,

Tr[PN(Dn1+···+nr−1+1) · · ·PN (Dn1+···+nr
)]
}

=
∑

π∈SNC(n(1),...,n(r))

ψπ(d1, . . . , dn1+···+nr
)

Proof: Let n = n1+ · · ·+nr and let γ be the permutation with r cycles:
(1, . . . , n1)(n1 +1, . . . , n1 +n2) · · · (n1 + · · ·+nr−1 +1, . . . , n1 + · · ·+nr).
Let

Yl = Tr(PN(Dn1+···+nl−1+1) · · ·PN(Dn1+···+nl
))

By [GLM, Theorem 2]

(4) E(Y1 · · ·Yr) =
∑

σ∈Sn

N#(σ−1γ)−nTrσ(D1, D2, . . . , Dn)

For σ ∈ Sn let σ∨γ be the partition of [n] whose blocks are the orbits
of the group generated by σ and γ. σ∨γ also defines a partition of the
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r cycles of γ. Let us denote this partition of [r] by Aγ(σ). Conversely
let s be the number of cycles of σ, σ ∨ γ determines a partition of the
cycles of σ; we shall denote this by Aσ(γ). Note that if Aγ(σ) = 1r

then σ ∨ γ = 1n and thus Aσ(γ) = 1s.
For a partition A = {A1, . . . , Ak} of [r] let

EA(Y1, . . . , Yr) =

k
∏

l=1

E(
∏

i∈Al

Yi)

If A = 1r then EA(Y1, . . . , Yr) = E(Y1 · · ·Yr). Equation (4) can now be
extended easily to obtain

EA(Y1, . . . , Yr) =
∑

σ∈Sn

Aγ(σ)≤A

N#(σ−1γ)−nTrσ(D1, . . . , Dn)

Let µ(A,B) be the Möbius function of the lattice of partitions; in
particular µ(A, 1r) = (−1)#(A)−1(#(A) − 1)!. Note that

∑

B≤A≤1r

µ(A, 1r) =

{

1 B = 1r

0 B < 1r

kr(Y1, . . . , Yr)

=
∑

A∈P(r)

µ(A, 1r)EA(Y1, . . . , Yr)

=
∑

A∈P(r)

µ(A, 1r)
∑

σ∈Sn

Aγ(σ)≤A

N#(σ−1γ)−nTrσ(D1, . . . , Dn)

=
∑

σ∈Sn

N#(σ−1γ)−nTrσ(D1, . . . , Dn)
∑

A∈P(r)

Aγ(σ)≤A

µ(A, 1r)

=
∑

σ∈Sn

σ∨γ=1n

N#(σ−1γ)−nTrσ(D1, . . . , Dn)

=
∑

σ∈Sn

σ∨γ=1n

N#(σ−1γ)−nTrσ(D1, . . . , Dn)

Recall that for σ ∈ Sn with σ ∨ γ = 1n there is an integer g =
g(σ) such that #(σ) + #(σ−1γ) + #(γ) = n + 2(1 − g) and that σ ∈
SNC(n1, . . . , nr) means that σ ∨ γ = 1n and g(σ) = 0.
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kr(Y1, · · · , Yr)

= N−n
∑

σ∈Sn

σ∨γ=1n

N#(σ−1γ)N#(σ) trσ(D1, . . . , Dn)

=
∑

σ∈Sn

σ∨γ=1n

N2−r−2g(σ)trσ(D1, . . . , Dn)

= N2−r
∑

σ∈SNC (n1,...,nr)

trσ(D1, . . . , Dn) +O(N−r)

Since limN trσ(D1, . . . , Dn) = ψσ(d1, . . . , dn) we have the required
result.

This theorem contains again all relevant information about the limit
behaviour of the random variables Tr(PN(Di1) · · ·PN(Din)). First, we
have the following statement analogous to the law of large numbers.

Corollary 3.6. The random variables {tr[PN(Di1) · · ·PN(Din)]}i1,...in

converge in distribution to constant random variables β(di1, . . . , din) ·1,
where

(5) β(di1, . . . , din) :=
∑

π∈NC(n)

ψπ(di1 , . . . , din).

The form of β(di1, . . . , din) is, of course, in agreement with the fact
that E{tr[PN(Di1) · · ·PN(Din)]} has, in the limitN → ∞, to agree with
the corresponding moment of the compound free Poisson variables,

ψ(c∗di1c · c∗di2c · · · c∗dinc)

where c is a circular random variable *-free from {d1, . . . , dp}. Again,
we magnify the fluctuations around that limit, thus shifting the first
cumulants to zero and getting only a non-vanishing limit for the second
cumulants – hence getting normal limit fluctuations.

Corollary 3.7. Consider the (magnified) fluctuations around the limit
value,

FN (Di1, . . . , Din) : = N ·
(

tr[PN(Di1) · · ·PN(Din)] − β(di1, . . . , din)
)

(6)

= Tr[PN(Di1) · · ·PN(Din)] −Nβ(di1 , . . . , din).

The family of all fluctuations (FN(Di1 , . . . , Din))n∈N converges in dis-

tribution towards a centered Gaussian family
(

(F (di1, . . . , din)
)

i1,...,in
,



14 J. A. MINGO AND R. SPEICHER

with covariance given by

(7) E{F (di1, . . . , dim) · F (dim+1, . . . , dim+n
)}

=
∑

π∈SNC(m,n)

ψπ(di1, . . . , din+m
).

Again, it remains to understand this covariance and we will be aiming
at a more operator-algebraic description of these fluctuations in order
to attack this combinatorial problem.

4. Realization of semi-circular and free compound

Poisson elements on Fock spaces

The main theme of our investigations is the conviction that wher-
ever planar or non-crossing objects arise, there is some free probability
lurking behind the picture. Since the fluctuations of our Gaussian and
Wishart random matrices can be described combinatorially in terms
of non-crossing permutations, we expect also some operator-algebraic
or some more abstract “free” description of this situation. Our main
results in the coming sections will provide these descriptions. Let us
begin by recalling the realization of a semi-circle and a compound Pois-
son distribution on a full Fock space by using creation, annihilation,
and preservation operators.

4.1. Semi-circular case. For a real Hilbert space HR with complex-
ification H, we consider the full Fock space

F(H) :=
∞

⊕

n=0

H⊗n = CΩ ⊕H⊕H⊗2 ⊕ . . .

and define, for f ∈ H, the creation operator l(f) by

l(f)Ω = f

and

l(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn

and the annihilation operator l∗(f), by

l∗(f)Ω = 0

and

l∗(f)f1 ⊗ · · · ⊗ fn = 〈f1, f〉f2 ⊗ · · · ⊗ fn

(n ∈ N, f1, . . . , fn ∈ H).
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For f ∈ HR, we put

ω(f) := l(f) + l∗(f)

and we will denote by A(HR) the complex unital ∗-algebra generated
by all ω(f) for f ∈ HR. Note that all ω(f) are self-adjoint and that
the vector Ω is cyclic and separating for the algebra A(HR).

If we define on H an involution f 7→ f̄ by

f1 + if2 := f1 − if2 for f1, f2 ∈ HR,

then f 7→ ω(f) extends from a real linear mapping on HR to a complex
linear mapping on H with

ω(f) = l(f) + l∗(f̄) (f ∈ H).

Note that the unital ∗-algebra generated by all ω(f) with f ∈ H is just
A(HR).

It is well known (see, e.g., [VDN]) that these operators ω(f) have a
semi-circular distribution and thus the asymptotics of the expectation
of traces of Gaussian random matrices can also be stated as follows.

Proposition 4.1. Let XN(f) (f ∈ HR) be a family of Hermitian
Gaussian random matrices. Then for all f1, . . . , fn ∈ HR

(8) lim
N→∞

E{tr[XN(f1) · · ·XN(fn)]} = 〈ω(f1) · · ·ω(fn)Ω,Ω〉.

Let us in this context also recall the definition of the Wick products.

Definition 4.2. For f1, . . . , fn ∈ H the Wick product W (f1⊗· · ·⊗fn)
is the unique element of A(HR) such

(9) W (f1 ⊗ · · · ⊗ fn)Ω = f1 ⊗ · · · ⊗ fn.

For n = 0, this has to be understood as W (Ω) = 1.

Since Ω is cyclic and separating for A(HR), these Wick products
exist and are uniquely determined.

From the definition of the creation and annihilation operators it is
clear that these Wick products satisfy for all f, f1, . . . , fn ∈ H the
relation

ω(f)W (f1⊗· · ·⊗fn) = W (f ⊗ f1 ⊗· · ·⊗fn)+ 〈f1, f̄〉W (f2 ⊗· · ·⊗fn).

This can also be used as a recursive definition for the Wick products
and shows that W (f1 ⊗ · · · ⊗ fn) is a polynomial in ω(f1), . . . , ω(fn).

In the case f = f1 = · · · = fn this reduces to the three-term recur-
rence relation for the Chebyshev polynomials and shows that

W (f⊗n) = Un(ω(f)/2),

where Un is the nth Chebyshev polynomial of the second kind.
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4.2. Compound Poisson case. In this case we start with a unital
∗-algebra D equipped with a tracial state ψ and represent D, via the

GNS-representation, on H := D〈·,·〉
, where the inner product on H is

given by
〈d1, d2〉 := ψ(d∗2d1).

Then we take the full Fock space F(H) and consider there as before
the creation and annihilation operators l(d) and l∗(d), respectively. But
now we have, in addition, also to consider the preservation (or gauge)
operator Λ(d) (d ∈ D) which is defined by

Λ(d)Ω = 0

and
Λ(d)f1 ⊗ · · · ⊗ fn = (df1) ⊗ f2 ⊗ · · · ⊗ fn

for f1, . . . , fn ∈ H. Note that the multiplication D × D → D extends
to a module action

D ×H → H
(d, f) 7→ df.

For d ∈ D we define now

(10) p(d) := l(d) + l∗(d∗) + Λ(d) + ψ(d)1,

and we will denote by A(D) the unital ∗-algebra generated by all p(d)
for d ∈ D. Note that we have

p(d)∗ = p(d∗) for d ∈ D.
One knows (see, e.g., [GSS, Sp1, NSp]) that these operators p(d)

give a realization of compound Poisson elements, i.e., their moments
are given by Eq. (5). Thus we can state the asymptotics of the expected
value of traces of our compound Wishart matrices also in the following
form.

Proposition 4.3. Suppose the family {D(N)
1 , . . . , D

(N)
p } converges in

distribution to {d1, . . . , dp} in (D, ψ). Let (XN )N∈N be a sequence of
N ×N Hermitian Gaussian random matrices. Then

(11) lim
N→∞

E{tr[PN(Di1) · · ·PN(Din)]} = 〈p(di1) · · · p(din)Ω,Ω〉.

Again, Wick products will play a role in this context. As before,
these should be polynomials in the {p(d) | d ∈ D} with the defining
property that

W (d1 ⊗ · · · ⊗ dn)Ω = d1 ⊗ · · · ⊗ dn.

However, in contrast to the semi-circular case, the multiplication of d’s
in the arguments (under the action of Λ) has the effect that in order
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to produce counter-terms for p(d1) · · · p(dn)Ω to get d1 ⊗ · · · ⊗ dn one
also has to involve operators like p(d1d2) etc. This means that W (d⊗n)
is in general not just a polynomial in p(d), but some polynomial in all
{p(dk) | k ≤ n}. In particular, in general there is no relation between
Wick polynomialsW (d⊗n) and the orthogonal polynomials with respect
to the distribution of p(d). From the point of view of Levy processes
the occurrence of p(dk) in W (d⊗n) is not very surprising, because this
corresponds to the higher diagonal measures (Ito-formulas) and a Levy
process should come along with its higher variations.

It appears that Anshelevich [Ans] was the first to introduce and in-
vestigate these polynomials in this generality (and also some q-deform-
ations thereof). Since these polynomials appear implicitly in the clas-
sical case in a paper of Kailath and Segall, he called them free Kailath-
Segall polynomials.

By taking into account the action of our operators on the full Fock
space one sees quite easily that these Wick products should be defined
as follows.

Definition 4.4. For a given algebra D with state ψ, the Wick prod-
ucts or free Kailath-Segall polynomials of the corresponding compound
Poisson distribution are recursively defined by (d, d1, . . . , dn ∈ D)

W (d) = p(d) − ψ(d)1

and

W (d⊗ d1 ⊗ · · · ⊗ dn) = p(d)W (d1 ⊗ d2 ⊗ · · · ⊗ dn)

− ψ(dd1)W (d2 ⊗ d3 ⊗ · · · ⊗ dn)

−W (dd1 ⊗ d2 ⊗ · · · ⊗ dn)

− ψ(d)W (d1 ⊗ d2 ⊗ · · · ⊗ dn)

5. Cyclic Fock space

Our main aim is to express the formulas for the limit fluctuations
of Gaussian random matrices and of compound Wishart matrices also
with the help of the operators ω(f) and p(d), respectively. In order to
do so we have, however, to introduce another variant of a Fock space.
Whereas the elements in the full Fock space, f1 ⊗ · · · ⊗ fn, are linear
kind of objects – with a beginning and an end - we are looking on traces
and thus should identify the beginning and the end in a cyclic way.

Here are two versions of such a cyclic Fock space, the first one over
arbitrary Hilbert spaces H and suited for semi-circular systems, and
the second one over an algebra D and suited for compound Poisson
systems.
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Since for the calculation of our moments we only have to deal with
elements in the algebraic Fock space (without taking a Hilbert space
completion), we will restrict ourselves to this case in the following in
order to avoid technicalities about unbounded operators.

5.1. Semi-circular case. For a Hilbert space H, the algebraic full
Fock space

Falg(H) := CΩ ⊕H⊕H⊗2 ⊕H⊗3 ⊕ · · ·
is generated by tensors f1⊗· · ·⊗fn, where we can think of the f1, . . . , fn

as being arranged on a linear string. To stress this linear nature of the
usual full Fock space, we will address it in the following as linear Fock
space Flin(H). In our tracial context, however, we should consider
circular tensors, where we think of the f1, . . . , fn as being arranged
around a circle. We will denote these circular tensors by [f1 ⊗ · · ·⊗ fn]
and the corresponding n-th particle space by H⊗n

cyc. If we pair two
circles, then we have the freedom of rotating them against each other,
so the canonical inner product for this situation is given as follows.

Definition 5.1. The cyclic Fock space is the algebraic direct sum

(12) Fcyc(H) =
∞

⊕

n=0

H⊗n
cyc

equipped with an inner product given by linear extension of

(13) 〈[f1 ⊗ · · · ⊗ fn], [g1,⊗ · · · ⊗ gm]〉cyc :=

δnm ·
n−1
∑

k=0

〈f1, g1+k〉 · 〈f2, g2+k〉 · · · 〈fn, gn+k〉,

where we count modulo n in the indices of g.

Note that one can also embed the full Fock space into the cyclic one
via

[f1 ⊗ · · · ⊗ fn] =
1√
n

n
∑

k=1

fk ⊗ fk+1 ⊗ · · · ⊗ fk−1.

In order to write our formula for the fluctuations in terms of moments
of operators we still use the operators on the linear Fock space, but we
will in the end make things cyclic by mapping the linear Fock space
onto the cyclic one.

Definition 5.2. We consider the mapping c between linear and cyclic
Fock space,

c : Flin(H) → Fcyc(H),
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which is given recursively by

(14) cΩ = 0, c (f) = [f ],

and

(15) c (f1 ⊗ · · · ⊗ fn) = [f1 ⊗ · · · ⊗ fn] + 〈f1, f̄n〉 · c (f2 ⊗ · · · ⊗ fn−1)

f1 ⊗ f2 ⊗ f3 ⊗ f4 ⊗ f5 ∼
Figure 2.

[f1 ⊗ f2 ⊗ f3 ⊗ f4 ⊗ f5]

Figure 3

〈f1, f5〉 [f2 ⊗ f3 ⊗ f4]

Figure 4

〈f1, f5〉 〈f2, f4〉 [f3]

Figure 5

Illustration of equation (15). Elements of the full Fock space, f1 ⊗
f2⊗f3⊗f4⊗f5 are represented by linear “half pairings” (figure 2). The
operator c takes a linear half pairing and wraps it around into a circle
(figure 3). Then c pairs off the f ’s until either one or none remains
(figures 4 and 5). The idea of a half pairing is a special case of a half
permutation explained fully in [KMS].

Of course, one can also write down this explicitly, here are just two
examples:

(16) c (f1 ⊗ f2 ⊗ f3 ⊗ f4 ⊗ f5) = [f1 ⊗ f2 ⊗ f3 ⊗ f4 ⊗ f5]

+ 〈f1, f̄5〉 · [f2 ⊗ f3 ⊗ f4] + 〈f1, f̄5〉 · 〈f2, f̄4〉 · [f3]

and

(17) c (f1 ⊗ f2 ⊗ f3 ⊗ f4 ⊗ f5 ⊗ f6) = [f1 ⊗ f2 ⊗ f3 ⊗ f4 ⊗ f5 ⊗ f6]

+ 〈f1, f̄6〉 · [f2 ⊗ f3 ⊗ f4 ⊗ f5] + 〈f1, f̄6〉 · 〈f2, f̄5〉 · [f3 ⊗ f4]

Let us now consider the relation between this cyclic Fock space and
fluctuations of Gaussian random matrices. So for the following, let
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XN(f) be our Gaussian random matrices which converge, for N → ∞,
in distribution to a semi-circular family, given by ω(f) := l(f) + l∗(f)
realized on the full Fock space.

Our main point is now that we can express the fluctuations of the
Gaussian matrices via the operators ω(f).

Theorem 5.3. Let XN (f) (f ∈ HR) be a family of Hermitian Gaussian
random matrices. Then for all n,m ∈ N and all f1, . . . , fn, g1, . . . ,
gm ∈ HR

(18) lim
N→∞

k2{Tr[XN(f1) · · ·XN(fn)],Tr[XN (g1) · · ·XN(gm)]}
= 〈cω(f1) · · ·ω(fn)Ω, cω(gm) · · ·ω(g1)Ω〉cyc

Note that the inversion of indices in the g’s is forced upon us by the
fact that our expression in random matrices is linear in both its traces,
whereas our cyclic Fock space inner product is anti-linear in the second
argument

Remark 5.4. One might wonder whether the right-hand side of our Eq.
(18) should not also have the structure of a variance. This is indeed
the case, but is somehow hidden in our definition that cΩ = 0. If,
instead of c , we use the mapping c̃ , given as follows

c̃ η := c η + 〈η,Ω〉Ω,
then the right-hand sided of (18) has the form

〈c η1, c η2〉cyc = 〈c̃ η1, c̃ η2〉cyc − 〈c̃ η1,Ω〉cyc · 〈Ω, c̃ η2〉cyc.

We will prove Theorem 5.3 later as a corollary of a general limit
theorem. For the moment, we will be content with checking the con-
sistency of our statement with respect to traciality. Since the left hand
side is tracial in the arguments of the traces, the right hand side should
be tracial, too. Recall that A(HR) is the unital ∗-algebra generated by
all ω(f) = l(f) + l∗(f̄) with f ∈ H.

Lemma 5.5. The mapping

A(HR) → Fcyc(H)(19)

a 7→ c aΩ(20)

is tracial, i.e., for all a, b ∈ A(HR) we have

c abΩ = c baΩ.

Proof. Since Ω is cyclic and separating for the algebra A(HR), it suffices
to show that

cω(f)W (f1 ⊗ · · · ⊗ fn)Ω = cW (f1 ⊗ · · · ⊗ fn)ω(f)Ω



SECOND ORDER FREENESS 21

for all f, f1, . . . , fn ∈ H. On the left side, we have

cω(f)W (f1⊗· · ·⊗fn)Ω = c (f⊗f1⊗· · ·⊗fn)+〈f1, f̄〉·c (f2⊗· · ·⊗fn).

For the right side, it follows from the relation1 W (f1 ⊗ · · · ⊗ fn)∗ =
W (f̄n ⊗ · · · ⊗ f̄1) that

W (f1⊗· · ·⊗fn)ω(f) = W (f1⊗· · ·⊗fn⊗f)+〈fn, f̄〉W (f1⊗· · ·⊗fn−1),

which yields

cW (f1⊗· · ·⊗fn)ω(f)Ω = c (f1⊗· · ·⊗fn⊗f)+〈fn, f̄〉·c (f1⊗· · ·⊗fn−1).

From the definition of c we see that both sides are the same.

5.2. Compound Poisson case. Let us now consider the case where
we have a ∗-algebra D with trace ψ. We denote by

Flin(D) =
∞

⊕

n=0

D⊗n

the algebraic linear Fock space and by

Fcyc(D) =

∞
⊕

n=0

D⊗n
cyc

the algebraic cyclic Fock space.
Since in this case we also have actions of our operators which multiply

inside the argument, we have to take this into account when we glue
the beginning and end of the tensors together. Thus we have to change
the definition of the map c as follows.

Definition 5.6. We consider the linear mapping

c : Flin(D) → Fcyc(D),

given recursively by

cΩ := 0 and c (d) = [d]

1As we have been unable to locate a proof of this in the literature one is given in
[KMS, §10]. The main idea is to write ω(f1)ω(f2) · · ·ω(fn) as a linear combination
of Wick polynomials. In fact we may write ω(f1)ω(f2) · · ·ω(fn) =

∑

π Wπ(f1⊗f2⊗
· · ·⊗fn) (*) where the sum is over all non-crossing “half-pairings” of [n], that is non-
crossing pairings of [n] with only singletons and pairs such that the singletons are
not enclosed by any pair, and Wπ(f1⊗· · ·⊗fn) = 〈fi1 , fj1〉 · · · 〈fik

, fjk
〉W (fl1⊗· · ·⊗

flm) where the pairs of π are (i1, j1), . . . , (ik, jk) and the singletons are (l1), . . . , (lm).
Note that in (*) there is only one term involving a Wick polynomial on n f ’s. So
that if we know that W (f1 ⊗ · · · ⊗ fm)∗ = W (fm ⊗ · · · ⊗ f1) for m < n they we
apply induction to the adjoint of (*).
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and

(21) c (d1 ⊗ · · · ⊗ dn) := [d1 ⊗ · · · ⊗ dn] + [dnd1 ⊗ d2 ⊗ · · · ⊗ dn−1]

+ ψ(d1dn) · c (d2 ⊗ · · · ⊗ dn−1)

For example

(22) c (d1 ⊗ d2 ⊗ d3) = [d1 ⊗ d2 ⊗ d3] + [d3d2 ⊗ d2] + ψ(d3d1)[d2]

d1 ⊗ d2 ⊗ d3 ∼

Figure 6.

[d1 ⊗ d2 ⊗ d3]

Figure 7.

[d3d1 ⊗ d2]

Figure 8.

ψ(d3d1)[d2]

Figure 9.

Illustration of Equation (22) The vector d1 ⊗d2 ⊗d3 is represented
by a linear half permutation (figure 6) with one open block for each
factor in the tensor product (c.f. [KMS, §10]). [d1 ⊗ d2 ⊗ d3] is rep-
resented by a circular half permutation with one open block for each
factor in the tensor product. ψ(d3d1)[d2] is represented by a circular
half permutation with one closed block and one open block (figure 9).
The operator c first turns the linear half permutation into a circular
half permutation (figure 7). Then c fuses a pair of open blocks (figure
8) and then closes the just formed open block (figure 9). This process
continues until either one or zero open blocks remain.

Then we claim that one can express the fluctuations of our compound
Wishart matrices also by calculations in terms of the corresponding
operators p(d).

Theorem 5.7. Suppose {D(N)
1 , . . . , D

(N)
p } converges in distribution to

{d1, . . . , dp} in (D, ψ) and (XN)N∈N is a sequence of N ×N Hermitian
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Gaussian random matrices. We put PN (Di) := XND
(N)
i XN and let

p(di) be our operators on the full Fock space, then we have for all m,n ∈
N that

(23) lim
N→∞

k2{Tr[PN(Di1) · · ·PN(Din)],Tr[PN(Din+1) · · ·PN(Din+m
)]}

= 〈c p(di1) · · ·p(din)Ω, c p(din+1) · · · p(din+m
)Ω〉cyc.

Again, we check only the traciality of the right hand side and post-
pone the proof of the statement until we have proved our general limit
theorem. Recall that we denote by A(D) the unital ∗-algebra generated
by all p(d) for d ∈ D.

Lemma 5.8. The mapping

A(D) → Fcyc(D)

a 7→ c aΩ

is tracial.

Proof. Since Ω is cyclic and separating for A(D) (see [Ans]), it suffices
to check for d, d1, . . . , dn ∈ D that

c p(d)W (d1 ⊗ · · · ⊗ dn)Ω = cW (d1 ⊗ · · · ⊗ dn)p(d)Ω.

For n = 0, i.e., W (Ω) = 1, this is surely true. In general we have for
the left hand side

c p(d)W (d1 ⊗ · · · ⊗ dn)Ω = c p(d)d1 ⊗ · · · ⊗ dn

= c
(

d⊗ d1 ⊗ · · · ⊗ dn + ψ(dd1)d2 ⊗ · · · ⊗ dn

+ dd1 ⊗ d2 ⊗ · · · ⊗ dn + ψ(d)d1 ⊗ · · · ⊗ dn

)

By using the identity2 W (d1 ⊗ · · · ⊗ dn)∗ = W (d∗n ⊗ · · · ⊗ d∗1) we have

W (d1 ⊗ · · · ⊗ dn)p(d) = W (d1 ⊗ · · · ⊗ dn ⊗ d)

+ ψ(dnd)W (d1 ⊗ · · · ⊗ dn−1)

+W (d1 ⊗ · · · ⊗ dn−1 ⊗ dnd)

+ ψ(d)W (d1 ⊗ · · · ⊗ dn),

Thus the right hand side becomes

cW (d1 ⊗ · · · ⊗ dn)p(d)Ω = c
(

d1 ⊗ · · · ⊗ dn ⊗ d

+ ψ(dnd)d1 ⊗ · · · ⊗ dn−1

+ d1 ⊗ · · · ⊗ dn−1 ⊗ dnd

+ ψ(d)d1 ⊗ · · · ⊗ dn

)

2The proof is very similar to that sketched in the footnote on page 21. A detailed
proof is provided in [KMS, §10].
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So it remains to show that

c
(

d⊗ d1 ⊗ · · · ⊗ dn + ψ(dd1)d2 ⊗ · · · ⊗ dn + dd1 ⊗ d2 ⊗ · · · ⊗ dn

)

= c
(

d1⊗· · ·⊗dn ⊗d+ψ(dnd)d1⊗· · ·⊗dn−1 +d1⊗· · ·⊗dn−1⊗dnd
)

This can be checked directly by applying the definition of the mapping
c .

6. Second order freeness and abstract limit theorems

We shall derive our main theorems, 5.3 and 5.7, from a general limit
theorem, very much in the same spirit as one can get the distribution
of the semi-circle and the compound free Poisson distributions from
free limit theorems, see [Sp1]. The crucial idea is the notion of second
order freeness which we introduce below.

Definition 6.1. A second order non-commutative probability space (A,
ϕ, ρ) consists of a unital algebra A, a tracial linear functional

ϕ : A → C with ϕ(1) = 1

and a bilinear functional

ρ : A×A → C,

which is tracial in both arguments and which satisfies

ρ(a, 1) = 0 = ρ(1, b) for all a, b ∈ A.

Notation 6.2. Let unital subalgebras A1, . . . ,Ar ⊂ A be given.
1) We say that a tuple (a1, . . . , an) (n ≥ 1) of elements from A is
cyclically alternating if, for each k, we have an i(k) ∈ {1, . . . , r} such
that ak ∈ Ai(k) and, if n ≥ 2, we have i(k) 6= i(k+1) for all k = 1, . . . , n.
We count indices in a cyclic way modulo n, i.e., for k = n the above
means i(n) 6= i(1). Note that for n = 1 we mean that a1 is in some Ai.
2) We say that a tuple (a1, . . . , an) of elements from A is centered if we
have

ϕ(ak) = 0 for all k = 1, . . . , n.

Definition 6.3. Let (A, ϕ, ρ) be a second order non-commutative prob-
ability space. We say that unital subalgebras A1, . . . ,Ar ⊂ A are free
with respect to (ϕ, ρ) or free of second order, if they are free with re-
spect to ϕ and whenever we have centered and cyclically alternating
tuples (a1, . . . , an) and (b1, . . . , bm) from A then we have:

i) ρ(a1 · · ·an, b1 · · · bm) = 0 for n 6= m;
ii) ρ(a, b) = 0 for a ∈ Ai, b ∈ Aj, and i 6= j;
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iii) if n = m ≥ 2, then

ρ(a1 · · ·an, b1 · · · bn) =

n−1
∑

k=0

ϕ(a1bn+k) · ϕ(a2b(n−1)+k) · · ·ϕ(anb1+k).

Note that in the sum the indices of the a’s increase, whereas those
of the b’s decrease; one should think of two concentric circles with the
a’s on one of them and the b’s on the other. However, whereas on one
circle we have a clockwise orientation of the points, on the other circle
the orientation is counter-clockwise. Thus, in order to match up these
points modulo a rotation of the circles, we have to pair the indices as
in the sum above.

Condition (iii) is the annular version of the disc picture of first order
freeness: suppose ak ∈ Aik with φ(ak) = 0 for 1 ≤ k ≤ n and we ar-
range the elements a1, . . . , an around the boundary of a disc (figure 10).
The only non-crossing partition of [n] that only connects elements from
the same algebra consists of all singletons and since φ of a singleton is
0, we have that φ(a1 · · ·an) = 0.

In the annular case we put the centered and cyclically alternating
elements (a1, . . . , an) and (b1, . . . , bn) around the boundary of an an-
nulus. We only connect elements from the same algebra and as the
elements are centered we have no singletons; so we must connect in
pairs elements from opposite circles is all possible ways (figure 11).
This is the meaning of condition (iii).

Figure 10. Figure 11.

Note that, as in the case of freeness, the trick of writing elements a
as

a = ao + ϕ(a) · 1, where ϕ(ao) = 0,

allows us to calculate ρ in terms of ϕ and ρ restricted to the subalgebras.
However, whereas the formulas for ϕ of mixed moments contain only
ϕ applied to the subalgebras, ρ of mixed moments has in general to be
expressed in both ϕ and ρ restricted to the subalgebras.
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For example, assume we have two subalgebras A1 and A2, and ele-
ments a1, a2 ∈ A1 and b1, b2 ∈ A2. Then we have

(24) ρ(a1, b1) = 0,

(25) ρ(a1b2, a2) = ϕ(b2) · ρ(a1, a2)

or

(26) ρ(a1b2, a2b2) = ϕ(a1a2)ϕ(b1b2) − ϕ(a1a2)ϕ(b1)ϕ(b2)

− ϕ(a1)ϕ(a2)ϕ(b1b2) + ϕ(a1)ϕ(a2)ϕ(b1)ϕ(b2)

+ ρ(a1, a2)ϕ(b1)ϕ(b2) + ϕ(a1)ϕ(a2)ρ(b1, b2).

One should note that each variable appearing in the arguments of
ρ on the left-hand side of these examples has to appear exactly once
in each product on the right-hand side. Let us formalize this in the
following definition.

Notation 6.4. Let (A, ϕ, ρ) be a second order non-commutative prob-
ability space with subalgebras A1, . . . ,Ar ⊂ A, and consider elements
a1, . . . , an ∈ ∪r

i=1Ai. A balanced expression (with respect to the sub-
algebras A1, . . . ,Ar) in a1, . . . , an is a product of factors ϕ(ai1 · · ·ait)
and ρ(ai1 · · ·ais, aj1 · · ·ajt

) where each ai has to appear exactly once
among all arguments and the argument of each ϕ or the arguments of
each ρ contains only ai’s from a single Aj.

For example, balanced expressions in a1, a2, a3, a4 are

ϕ(a1a3)ϕ(a2a4) if a1, a3 ∈ A1 and a2, a4 ∈ A2

or ϕ(a1)ϕ(a4)ρ(a2, a3) if a1, a4 ∈ A1 and a2, a3 ∈ A2

Every summand on the right-hand side of Eq. (26) is a balanced ex-
pression in a1, a2, b1, b2 if a1, a2 ∈ A1 and b1, b2 ∈ A2.

Lemma 6.5. Let A1, . . . ,Ar in (A, ϕ, ρ) be free with respect to (ϕ, ρ).
Suppose we have cyclically alternating (a1, . . . , an) and (b1, . . . , bm) and
denote by s the number of different subalgebras appearing in {a1, . . . an,
b1, . . . bm}. Then ρ(a1 · · ·an, b1 · · · bm) is either 0 or can be written as a
sum of balanced expressions in a1, . . . , an, b1, . . . , bm, such that each of
these balanced expressions has at least s factors and contains at most
one ρ-factor.

Thus any expression of the form ρ(a1 · · ·an, b1 · · · bm) for cyclically
alternating (a1, . . . , an) and (b1, . . . , bm) is determined by the value of
ϕ restricted to A1 ∪ · · · ∪ Ar and by the value of ρ restricted to (A1 ×
A1) ∪ · · · ∪ (Ar ×Ar).
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Proof. We will prove this by induction on n+m. The case n+m = 2,
i.e., n = m = 1, is clear.

So consider n+m ≥ 3. Put

ao
k := ak − ϕ(ak) · 1, bol := bl − ϕ(bl) · 1

for k = 1, . . . , n and l = 1, . . . , m. Then we have

ρ(a1 · · ·an, b1 · · · bm)

= ρ
(

(ao
1 + ϕ(a1)) · · · (ao

n + ϕ(an)), (bo1 + ϕ(b1)) · · · (bom + ϕ(bm))
)

=
∑

p,q

ϕ(ap(1)) · · ·ϕ(ap(k)) · ϕ(bq(1))

× · · · × ϕ(bq(l)) · ρ
(

ao
p̄(1) · · ·ao

p̄(n−k), b
o
q̄(1) · · · boq̄(m−l)

)

,

(27)

where the sum runs over all partitions

((p(1), . . . , p(k)), (p̄(1), . . . , p̄(n− k)) of the set [1, n]

and

((q(1), . . . , q(l)), (q̄(1), . . . , q̄(m− l)) of the set [1, m]

into two ordered subsets (with k = 0, . . . , n and l = 0, . . . , m). The
term corresponding to k = l = 0 is, by Definition 6.3, either 0 (when
m 6= n) or is a balanced expression in the centered elements with
at least one factor for each occurring subalgebra. Now note that a
balanced expression in centered elements can be rewritten as a sum of
balanced expressions in the original elements and that the number of
factors can only increase by doing so.

For the other terms with k+ l ≥ 1, (ao
p̄(1), . . . , a

o
p̄(n−k)) and (boq̄(1), . . . ,

boq̄(m−l)) may no longer be cyclically alternating. So we group together
adjacent elements from the same algebra to produce a cyclically alter-
nating tuple with at least max{1, s − (k + l)} subalgebras appearing,
and so we can apply our induction hypothesis. Indeed, the term

(28) ρ
(

ao
p̄(1) · · ·ao

p̄(n−k), b
o
q̄(1) · · · boq̄(m−l)

)

contains elements from at least s− (k+ l) different subalgebras; by our
induction hypothesis, we may write it as the sum of balanced expres-
sions in the ao’s and bo’s, each product containing at least s− (k + l)
factors. Again we write a balanced expression in centered elements as
a sum of balanced expressions in the original elements. This means we
can write the term (28) as a sum of balanced expressions in

ap̄(1), · · · , ap̄(n−k), bq̄(1), · · · , bq̄(m−l)
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with at least s − (k + l) factors for each product. Together with the
k + l factors

ϕ(ap(1)) · · ·ϕ(ap(k)) · ϕ(bq(1)) · · ·ϕ(bq(l))

this gives the assertion. Note that in all our steps balancedness is
preserved and that at most one ρ-term can occur in all the reductions.

A very special case of such a factorization is given in the next lemma.

Lemma 6.6. Let (A, ϕ, ρ) be a second order non-commutative probabil-
ity space and let A1, . . . ,Ar ⊂ A be free with respect to (ϕ, ρ). Consider
cyclically alternating (a1 . . . , an) and (b1, . . . , bm) from A.
1) Assume that the subalgebra of a1 appears only once. Then we have

ρ(a1 · · ·an, b1 · · · bm) = ϕ(a1)ρ(a2 · · ·an, b1 · · · bm).

2) Assume that the subalgebra of b1 appears only once. Then we have

ρ(a1 · · ·an, b1 · · · bm) = ϕ(b1)ρ(a1 · · ·an, b2 · · · bm).

Proof. We only prove the first part. Put

ao
k := ak − ϕ(ak)1, bol := bl − ϕ(bl)1.

We have

ρ(a1 · · ·an, b1 · · · bm) = ρ
(

(ao
1 + ϕ(a1)1)a2 · · ·an, b1 · · · bm

)

= ρ(ao
1a2 · · ·an, b1 · · · bm) + ϕ(a1)ρ(a2 · · ·an, b1 · · · bm).

We shall show that the first term is 0.
Indeed, we shall show that if (a1, a2, . . . , an) and(b1, b2, . . . , bm) are

cyclically alternating and the algebra of a1 appears only once then
ρ(ao

1a2 · · ·an, b1 · · · bm) = 0. We shall do this by induction on m + n.
By equations (24) and (25) we have ρ(ao

1a2 · · ·an, b1 · · · bm) = 0 when
m+ n = 2 or 3. Suppose we have proved the result for m+ n < j; we
shall prove it for m+ n = j.

We shall use the expansion in equation (27) and show that for 1 ≤
k ≤ n − 1 and 1 ≤ l ≤ m, ρ(ao

1a
o
p(1) · · ·ao

p(k), b
o
q(1) · · · boq(l)) = 0 for all

subsets {p(1), . . . , p(k)} ⊂ {1, 2, 3, . . . , n − 1} and {q(1), . . . , q(l)} ⊂
{1, 2, 3, . . . , m}.

When k = n−1 and l = m we have that (ao
1, . . . , a

o
n) and (bo1, . . . , b

o
m)

are centered and cyclically alternating. If m 6= n we have ρ(ao
1a

o
2 · · ·

ao
n, b

o
1 · · · bom) = 0 by (i) of Definition 6.3. If m = n then by (iii), we

have ρ(ao
1a

o
2 · · ·ao

n, b
o
1 · · · bom) = 0 because ϕ(ao

1b
o
i ) = 0 for all i.

Suppose next that k + l ≤ m + n − 2. We can no longer expect
(ao

1, a
o
p(1), . . . , a

o
p(k)) and (boq(1), · · · , boq(l)) to be cyclically alternating; so
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we group adjacent terms from the same algebra and write ao
1a

o
p(1) · · ·

ao
p(k) = ao

1c1 · · · cs and boq(1) · · · boq(l) = d1 · · · dt with (c1, . . . , cs) and

(d1, . . . , dt) cyclically alternating and neither involving the algebra of
a1. Now s+ t+ 1 ≤ k+ l+ 1 ≤ m+ n− 1 ≤ j− 1, so by our induction
hypothesis ρ(ao

1a
o
p(1) · · ·ao

p(k), b
o
q(1) · · · boq(l)) = ρ(ao

1c1 · · · cs, d1 · · · dt) = 0

If by the lemma above we successively remove all subalgebras which
occur only once and multiply together cyclic neighbours from the same
subalgebra, then we arrive finally at ρ(a, b) for a, b from one of the
subalgebras (both from the same, in order to get a non-vanishing con-
tribution) or at ρ(a1 · · ·an, b1 · · · bm) where both arguments are cycli-
cally alternating and in addition each involved subalgebra appears at
least twice. In the latter case we have either a very special matching
of the involved subalgebras or we can strengthen Lemma 6.5 to obtain
at least one more ϕ-factor.

Lemma 6.7. Let (A, ϕ, ρ) be a second order non-commutative probabil-
ity space and let A1, . . . ,Ar ⊂ A be free with respect to (ϕ, ρ). Suppose
(a1, . . . , an) and (b1, . . . , bm) are cyclically alternating and denote by s
the number of different subalgebras appearing in {a1, . . . , an, b1, . . . bm}.
Suppose also that each involved subalgebra appears at least twice.

Then ρ(a1 · · ·an, b1 · · · bm) can be written as a sum of balanced ex-
pressions with at least s+ 1 factors unless the following conditions are
satisfied:

(∗)











— m = n = s;
— for each k there is k′ such that ak and bk′ are from the same
subalgebra; and
— there is q such that for all k, k′ = −k + q mod n.

In this case ρ(a1 · · ·an, b1 · · · bn) = ϕ(a1b1′) · · ·ϕ(anbn′) + S, where S is
a sum of balanced expressions with at least s+ 1 factors.

Proof. Let us look again at the expansion

ρ(a1 · · ·an, b1 · · · bm)

=
∑

p,q

ϕ(ap(1)) · · ·ϕ(ap(k)) · ϕ(bq(1)) · · ·ϕ(bq(l))

· ρ
(

ao
p̄(1) · · ·ao

p̄(n−k), b
o
q̄(1) · · · boq̄(m−l)

)

.(29)

First, consider a term with k+l ≥ 1. Then there are two possibilities.
If all {ap(1), . . . , ap(k), bq(1), . . . , bq(l)} belong to different subalgebras,
then there must be exactly s subalgebras in {ap̄(1), . . . , ap̄(n−k), bq̄(1),
. . . , bq̄(m−l)} because each involved subalgebra appears at least twice.
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If we group together any adjacent terms that may come from the same
subalgebra we obtain cyclically alternating arguments and so can apply
Lemma 6.5. According to Lemma 6.5 we can write ρ(ao

p̄(1) · · ·ao
p̄(n−k),

boq̄(1) · · · boq̄(m−l)) as a sum of balanced expressions with at least s factors.

Combining these with the k + l factors ϕ(ap(1)) · · ·ϕ(ap(k))ϕ(bq(1)) · · ·
ϕ(bq(l)) we have that every term with k+ l ≥ 1 can be written as a sum
of balanced expressions with at least s+ 1 factors.

Second, consider the term ρ(ao
1 · · ·ao

n, b
o
1 · · · bom) corresponding to k =

l = 0. If m 6= n we have this is zero by Definition 6.3. So suppose m =
n. Again by Definition 6.3 ρ(ao

1 · · ·ao
n, b

o
1 · · · bon) =

∑n−1
k=0 ϕ(ao

1b
o
n+k) · · ·

ϕ(ao
nb

o
k+1).

If s < n then each term ϕ(ao
1b

o
n+k) · · ·ϕ(ao

nb
o
k+1) has n ≥ s+1 factors

or is zero if for some factor ϕ(ao
rb

o
n+k−r), ar and bn+k−r come from

different algebras. Thus we get either 0 or a balanced expression with
at least s+ 1 factors.

Finally assume that s = m = n. Each subalgebra must appear
exactly twice, so for each k there is k′ such that ak and bk′ are from the
same subalgebra, or else for all q, ϕ(ao

1b
o
n+q−1) · · ·ϕ(ao

nb
o
q) = 0. Again

we will have ϕ(ao
1b

o
n+q−1) · · ·ϕ(ao

nb
o
q) = 0 unless k′ = −k+q mod n, for

some q. For this q we have ρ(ao
1 · · ·ao

n, b
o
1 · · · bon) = ϕ(ao

1b
o
1′) · · ·ϕ(ao

nb
o
n′).

By substituting ϕ(ao
kb

o
k′) = ϕ(akbk′) − ϕ(ak)ϕ(bk′) into ϕ(ao

1b
o
1′) · · ·

ϕ(ao
nb

o
n′) we may write ρ(ao

1 · · ·ao
n, b

o
1 · · · bon) as ϕ(a1b1′) · · ·ϕ(anbn′) plus

a sum of balanced expressions with at least n+1 = s+1 factors.

We are now almost ready for the main limit theorem of second order
freeness. It will turn out that moments of the limit can be calculated in
terms of annular non-crossing objects. However, in this setting we will
not arrive directly at permutations (as in the fluctuation formulas for
random matrices), but – as is much more natural in the context of limit
theorems – at partitions. In the random matrix setting of section 3 we
got contributions of the form ψπ for non-crossing permutations π. So
we have to define the analogous object ψ̌σ for non-crossing partitions
σ. However, for non-crossing partitions, the contribution to ψ̌σ of a
block which is the only through-block will require special treatment.
We will need two different types of functions, ψ̌1 in the case of multiple
through-blocks and ψ̌2 in the case of a single through-block.

Notation 6.8. Let T be an index set and let two functions

ψ̌1 :
⋃

n∈N

T n → C, (t1, . . . , tn) 7→ ψ̌1(t1, . . . , tn)
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and

ψ̌2 :
⋃

n,m∈N

T n × Tm → C

(t1, . . . , tn) × (tn+1, . . . , tn+m) 7→ ψ̌2(t1, . . . , tn; tn+1, . . . , tn+m)

be given. Assume that ψ̌1 is tracial in its arguments, i.e., for all n ∈ N

and all t1, . . . , tn ∈ T we have

ψ̌1(t1, t2, . . . , tn) = ψ̌1(t2, . . . , tn, t1),

and that ψ̌2 is tracial in each of its groups of arguments, i.e., for all
n,m ∈ N and all t1, . . . , tn+m we have

ψ̌2(t1, . . . , tn; tn+1, . . . , tn+m) = ψ̌2(t2, . . . , tn, t1; tn+1, . . . , tn+m)

and

ψ̌2(t1, . . . , tn; tn+1, . . . , tn+m) = ψ̌2(t1, . . . , tn; tn+2, . . . , tn+m, tn+1).

Fix n,m ∈ N and consider an annular non-crossing partition σ ∈
NC(n,m). Then, for given t1, . . . , tn, tn+1, . . . tn+m ∈ T we define
ψ̌σ(t1, . . . , tn; tn+1, . . . , tn+m) as follows: If B is not the only through-
block of σ then we choose the unique cyclic order on B (c.f. section
2.2) and, writing it as a cycle B = (i(1), . . . , i(k)), we put

(30) ψ̌B(t1, . . . , tn; tn+1, . . . , tn+m) := ψ̌1

(

ti(1), ti(2), . . . , ti(k)

)

.

If B is the only through-block of σ, then we write it as B = B1∪B2 with
B1 = (i(1), . . . , i(k)) ⊂ [1, n] and B2 = (j(1), . . . , j(l)) ⊂ [n+1, n+m],
where we induce the cyclic order of [1, n] on B1 and the cyclic order of
[n+ 1, n+m] on B2. For such a block B we put

(31) ψ̌B(t1, . . . , tn; tn+1, . . . , tn+m) := ψ̌2

(

ti(1), . . . , ti(k); tj(1), . . . , tj(l)
)

.

Finally, we define
(32)

ψ̌σ(t1, . . . , tn; tn+1, . . . , tn+m) :=
∏

B∈σ

ψ̌B(t1, . . . , tn; tn+1, . . . , tn+m).

Here are some examples of this notation: Consider n = m = 2 and

σ1 = {(1, 3), (2, 4)} σ2 = {(1, 2, 3), (4)}.
Then σ1 has two through-blocks so

(33) ψ̌σ1(t1, t2; t3, t4) = ψ̌1(t1, t3)ψ̌1(t2, t4)

whereas σ2 has one through-block so

(34) ψ̌σ2(t1, t2; t3, t4) = ψ̌1(t4)ψ̌2(t1, t2; t3).
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Theorem 6.9. Let (AN , ϕN , ρN) (N ∈ N) be second order non-com-
mutative probability spaces and let, for each N ∈ N, unital subalgebras
A1

N , . . . ,AN
N ⊂ AN be given which are free with respect to (ϕN , ρN ). Let

T be an index set and assume that we have, for each t ∈ T and each
N ∈ N, elements

qi
N(t) ∈ Ai

N (i = 1, . . . , N),

such that the following properties are satisfied:
(a) The distribution of the qi

N (t) under (ϕN , ρN) is invariant under
permutations of the upper indices, i.e., for all N ∈ N, and all permu-
tations π : [1, N ] → [1, N ] we have for all n,m ∈ N, t1, . . . , tn+m ∈ T
and all i(1), . . . , i(n+m) ∈ [1, N ] that

ϕN

(

q
i(1)
N (t1) · · · qi(n)

N (tn)
)

= ϕN

(

q
π◦i(1)
N (t1) · · · qπ◦i(n)

N (tn)
)

and

ρN

(

q
i(1)
N (t1) · · · qi(n)

N (tn), q
i(n+1)
N (tn+1) · · · qi(n+m)

N (tn+m)
)

= ρN

(

q
π◦i(1)
N (t1) · · · qπ◦i(n)

N (tn), q
π◦i(n+1)
N (tn+1) · · · qπ◦i(n+m)

N (tn+m)
)

(b) For all n,m ∈ N and all t1, . . . , tn, tn+1, . . . , tn+m ∈ T there exist
constants ψ̌1(t1, . . . , tn) and ψ̌2(t1, . . . , tn; tn+1, . . . , tn+m) such that

(35) lim
N→∞

N · ϕN

(

qi
N (t1) · · · qi

N(tn)
)

= ψ̌1(t1, . . . , tn)

and

(36) lim
N→∞

N · ρN

(

qi
N (t1) · · · qi

N(tn), qi
N(tn+1) · · · qi

N (tn+m)
)

= ψ̌2(t1, . . . , tn; tn+1, . . . , tn+m).

For t ∈ T and N ∈ N let

SN(t) := q1
N(t) + · · ·+ qN

N (t) ∈ AN .

Then we have

(37) lim
N→∞

ρN

(

SN(t1) · · ·SN(tn), SN(tn+1) · · ·SN(tn+m)
)

=
∑

σ∈NC(n,m)

ψ̌σ(t1, . . . , tn; tn+1, . . . , tn+m)

Note that the left-hand side of the expressions (35) and (36) are
independent of the value of the index i, and that the functions ψ̌1 and
ψ̌2 defined there have the traciality properties which are required in
Notation 6.8.
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Proof. For better legibility, we will suppress in the following the index
N at ϕN and ρN and just write ϕ and ρ, respectively.

We have

ρ
(

SN(t1) · · ·SN(tn), SN(tn+1) · · ·SN(tn+m)
)

=
∑

i:[1,n+m]→[1,N ]

ρ
(

q
i(1)
N (t1) · · · qi(n)

N (tn), q
i(n+1)
N (tn+1) · · · qi(n+m)

N (tn+m)
)

Because of our invariance assumption (a), the value of the term

(38) ρ
(

q
i(1)
N (t1) · · · qi(n)

N (tn), q
i(n+1)
N (tn+1) · · · qi(n+m)

N (tn+m)
)

depends on i only through the information where these indices are
the same and where they are different. As usual, this information is
encoded in a partition σ of the set [1, n+m], and we denote the common
value of (38) for all i with ker(i) = σ by

(39) ρσ

(

qN(t1) · · · qN (tn), qN(tn+1) · · · qN(tn+m)
)

.

Then we can continue our calculation as follows:

ρ
(

SN(t1) · · ·SN(tn), SN(tn+1) · · ·SN(tn+m)
)

=
∑

σ∈P(n+m)

∑

i:[1,n+m]→[1,N ]

ker(i)=σ

ρ
(

q
i(1)
N (t1) · · · qi(n)

N (tn),

q
i(n+1)
N (tn+1) · · · qi(n+m)

N (tn+m)
)

=
∑

σ∈P(n+m)

ρσ

(

qN (t1) · · · qN(tn), qN(tn+1) · · · qN (tn+m)
)

· (N)|σ|,

because the number of i : [1, n+m] → [1, N ] with the property ker(i) =
σ is given by

N(N − 1) · · · (N − |σ| + 1) =: (N)|σ|.

We have now to examine the contributions for different σ. Let us
first assume that σ contains a block B which is either contained in
[1, n] or contained in [n + 1, . . . , n +m] and all of whose elements are
consecutive in the induced cyclic order. Because of traciality of ρ it
suffices to consider the case B = [1, s] for some s with 1 ≤ s ≤ n. By
Lemma 6.6, this implies

ρσ

(

qN (t1) · · · qN(ts) · · · qN(tn), qN(tn+1) · · · qN(tn+m)
)

= ϕ
(

qN (t1) · · · qN(ts)
)

· ρσ′

(

qN(ts+1) · · · qN(tn), qN (tn+1) · · · qN (tn+m)
)

,

where σ′ is that partition which results from σ by removing the block
B = [1, s] and relabelling elements. Since

lim
N→∞

N · ϕ(qN (t1) · · · qN(ts)) = ψ̌1(t1, . . . , ts),
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the block B makes exactly the contribution to the final result as claimed
in Eq. (37). Thus, by successively removing such blocks, it suffices to
consider σ’s which have no blocks which are contained in either [1, n]
or [n+ 1, n+m] and which consist of cyclically consecutive elements.

So let us now assume that σ contains no blocks which are contained in
either [1, n] or [n+1, n+m] and which consist of cyclically consecutive
elements, and consider (39). By multiplying together neighbouring
elements corresponding to the same block of σ we can rewrite the two
arguments of ρ in a cyclically alternating form. The fact that σ contains
no blocks of the form treated above implies that after this rewriting
of arguments each involved subalgebra occurs at least twice. But then
Lemma 6.7 implies that, unless condition (*) is satisfied, we can write
all these terms as sums of products of at least |σ| + 1 factors. By our
assumption, each of these factors multiplied by N converges to a finite
number; however, since we have more than |σ| factors, this product
multiplied by N |σ| will vanish in the limit N → ∞. This means that
we can only get a non-vanishing limit for a σ which satisfies condition
(*) of Lemma 6.7. However, these are exactly the cases where each
block B of σ is of the form B = B1 ∪ B2, where B1 ⊂ [1, n] and
B2 ⊂ [n + 1, m + 1], are non-empty, and each consists of consecutive
numbers with respect to the inherited order. Furthermore, the cyclic
order of the restrictions of all blocks to the interval [1, n] must be
the inversion of the cyclic order of the restrictions of all blocks to the
interval [n + 1, n + m]. In this case (39) calculates as follows. If we
have only one block in σ, then our assumption, Equation (36), gives,
in the limit, for such a σ the contribution

ψ̌2(t1, . . . , tn; tn+1, . . . , tn+m).

If, on the other side, σ has more than one block, then we get, according
to the description of annular non-crossing partitions in section 2.2 and
our assumption (36), the product of ψ̌B over all blocks B of σ.

Note that the reduction above leads to non-vanishing contributions
exactly for non-crossing partitions σ from NC(n,m) and each such
partition σ contributes a term ψ̌σ(t1, . . . , tn; tn+1, . . . , tn+m).

7. Proofs of Theorems 5.3 and 5.7

Now we can prove our main theorems by reducing them to the situ-
ation covered in our limit theorem.
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7.1. Proof of Theorem 5.3. We have to show that for all n,m ∈ N

and f1, . . . , fn+m ∈ HR

〈cω(f1) · · ·ω(fn)Ω, cω(fn+m) · · ·ω(fn+1)Ω〉cyc

=
∑

π∈NC2(n,m)

∏

(i,j)∈π

〈fi, fj〉.

Note that we can, for any N ∈ N, replace H by

N
⊕

i=1

H = H⊕ · · · ⊕ H (N summands)

and ω(f) by
1√
N
ω(f ⊕ · · · ⊕ f).

We can then put this into the framework of our general limit theorem
by letting T = HR,

AN = A(

N
⊕

i=1

H), Ai
N = A(0 ⊕ · · · ⊕ H

i-th
⊕ · · · ⊕ 0)

ϕN(a) = 〈aΩ,Ω〉 (a ∈ AN)

and
ρN(a, b) = 〈c aΩ, c b∗Ω〉cyc (a, b ∈ AN)

and finally, for f ∈ HR,

qi
N(f) =

1√
N
ω(0 ⊕ · · · ⊕ f

i-th
⊕ · · · ⊕ 0) ∈ Ai

N .

Let us check that A1
N , . . . ,AN

N ⊂ AN are free with respect to (ϕN , ρN):
Freeness with respect to ϕN is well-known, so we only have to consider
ρN . Take centered and cyclically alternating tuples (a1, . . . , an) and
(b1, . . . , bm) from AN . Let us only consider the case n,m ≥ 2, the cases
were at least one of them is 1 are similar. Note that the centeredness of
the ai implies that each aiΩ has no component in the direction Ω and
thus, by the fact that neighbours are from algebras with orthogonal
Hilbert spaces, we have

a1a2 · · ·anΩ = (a1Ω) ⊗ (a2Ω) ⊗ · · · ⊗ (anΩ).

Since also the first and the last element are orthogonal, the action of
c becomes in this case just

c a1a2 · · ·anΩ =
[

a1Ω ⊗ a2Ω ⊗ · · · ⊗ anΩ
]

.

In the same way we have

c b∗mb
∗
m−1 · · · b∗1Ω =

[

b∗mΩ ⊗ b∗m−1Ω ⊗ · · · ⊗ b∗1Ω
]

.
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If we take now the inner product in the cyclic Fock space between these
two vectors, then we get

ρN(a1 · · ·an, b1 · · · bm) = δnm

n−1
∑

k=0

〈a1Ω, b
∗
n+kΩ〉 · · · 〈anΩ, b∗1+kΩ〉

= δnm

n−1
∑

k=0

ϕ(a1bn+k) · · ·ϕ(anb1+k),

as required by our Definition 6.3. Thus the subalgebras A1
N , . . . ,AN

N

are free with respect to (ϕN , ρN). The invariance assumption on the
distribution with respect to (ϕN , ρN) is also easily verified and so we
can apply our limit theorem.

Let SN(f) = q1
N (f) + · · · + qN

N (f). Since

〈cω(f1) · · ·ω(fn)Ω, cω(fn+m) · · ·ω(fn+1)〉cyc

= ρN (SN(f1) · · ·SN(fn), SN(fn+1) · · ·SN (fn+m))

we can take the limit as N → ∞ and apply Theorem 6.9. So it remains
to identify the limits ψ̌1 and ψ̌2 in the assumption of that theorem. One
sees easily that

ψ̌1(f1, . . . , fn) = lim
N→∞

N · ϕN

(

qi
N(f1) · · · qi

N (fn)
)

=

{

〈f1, f2〉 if n = 2

0 otherwise

and

ψ̌2(f1, . . . ,fn; g1, . . . , gm)

= lim
N→∞

N · ρN

(

qi
N (f1) · · · qi

N (fn), qi
N(g1) · · · qi

N(gm)
)

=

{

〈f1, g1〉 if n = 1 = m

0 otherwise
.

This gives exactly our claim.

7.2. Proof of Theorem 5.7. From equation (3) we only have to prove
that

(40) 〈c p(d1) · · · p(dn)Ω, c p(d
∗
n+m) · · ·p(d∗n+1)Ω〉cyc

=
∑

π∈SNC(n,m)

ψπ(d1, . . . , dn, dn+1, . . . , dn+m).
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Note that we can replace D by D ⊗ L∞[0, 1], ψ by ψ ⊗ τ , where τ is
integration with respect to Lebesgue measure on [0, 1], and for each
N ∈ N, p(d) by

p(d⊗ χ(0, 1)) = p1
N (d) + p2

N(d) + · · · + pN
N(d),

where we have put

pi
N(d) := p(d⊗ χ(I i

N))

with χ(I i
N) denoting the characteristic function of the interval

I i
N =

(i− 1

N
,
i

N

)

.

This fits into the framework of our general limit theorem by putting
T = D,

AN = A(D ⊗ L∞(0, 1)), Ai
N = A(D ⊗ L∞(I i

N )),

ϕ(a) = 〈aΩ,Ω〉, ρ(a, b) = 〈c aΩ, c b∗Ω〉cyc (a, b ∈ AN),

and finally

qi
N(d) = pi

N(d) ∈ Ai
N .

One can check again by the same arguments as for the semi-circular
case that A1

N , . . . ,AN
N ⊂ AN are free with respect to (ϕN , ρN ). Also

the invariance assumption on the distribution with respect to (ϕN , ρN)
is easily verified.

Since p(d) has, for each N , the same moments with respect to ϕN

and ρN as SN(d) = q1
N(d) + · · ·+ qN

N (d), we can calculate the moments
of p(d) via SN (d) by sending N → ∞ and invoking our limit theorem,
Theorem 6.9. It only remains to identify the limits ψ̌1 and ψ̌2 from the
hypothesis of the theorem, and show that

∑

σ∈NC(n,m)

ψ̌σ(d1, . . . , dn; dn+1, . . . , dn+m)

=
∑

π∈SNC(n,m)

ψπ(d1, . . . , dn, dn+1, . . . , dn+m)(41)

Note that each inner product appearing in the calculation of

ϕN(pi
N(d1) · · · pi

N(dn))

gives a factor 1/N ; one inner product must be involved in any case
to get a non-vanishing result, thus the sought limits single out exactly
the contributions with one inner product. In the case of ϕN(pi

N (d1) · · ·
pi

N(dn)) this means that pi
N(dn) must act as a creation operator, pi

N(d1)
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as an annihilation operator and all the other p’s as preservation oper-
ators, thus

ψ̌1(d1, . . . , dn) = lim
N→∞

N · ϕN (pi
N(d1) · · ·pi

N(dn))

= 〈d2d3 · · · dn, d
∗
1〉 = ψ(d1d2 · · · dn)

In the case of ρN one has to note that the only relevant contributions
to c pi

N(d1) · · ·pi
N(dn)Ω are of the form: pi

N(dn) must act as creation
operator; since cΩ = 0, no annihilation operator can appear, but since
c can also act by multiplication of arguments there might be a second
action as creation operator (let’s say of pi

N(dk)), all the other p have
to act as preservation operators. Thus the relevant contributions of
c pi

N(d1) · · · pi
N(dn)Ω are the terms with k = 1, . . . , n of the form

c (d1 · · · dk ⊗ dk+1 · · · dn).

Since we are looking for terms which give in the end exactly one inner
product, the relevant action of c is given by multiplying arguments
and yields terms of the form

[dk+1 · · · dnd1 · · · dk] for some k = 1, . . . , n.

In the same way the relevant contributions of c pi
N(d∗n+m) · · ·pi

N(d∗n+1)Ω
are of the form

[d∗n+l−1 · · · d∗n+1d
∗
n+md

∗
n+m−1 · · · d∗n+l] for some l = 1, . . . , m.

Thus we have

ψ̌2(d1, . . . , dn; dn+1, . . . , dn+m)(42)

= lim
N→∞

N · ρN(pi
N(d1) · · · pi

N(dn), pi
N(dn+1) · · ·pi

N (dn+m))

= lim
N→∞

N · 〈c pi
N(d1) · · ·pi

N (dn)Ω, c p
i
N(d∗n+m) · · ·pi

N(d∗n+1)Ω〉cyc

=

n
∑

k=1

m
∑

l=1

〈[dk+1 · · · dnd1 · · · dk], [d
∗
n+l−1 · · · d∗n+1d

∗
n+m · · · d∗n+l]〉cyc

=

n
∑

k=1

m
∑

l=1

ψ(dn+l · · · dn+mdn+1 · · · dn+l−1dk+1 · · · dnd1 · · · dk)

Suppose σ ∈ NC(n,m) has more than one through-block. Then
for each block B, ψ̌B(d1, . . . , dn; dn+1, . . . , dn+m) = ψB(d1, . . . , dn+m)
by equation (30). Thus

ψ̌σ(d1, . . . dn; dn+1, . . . , dn+m) = ψπ(d1, . . . dn, dn+1, . . . , dn+m)

where π ∈ SNC(n,m) is the unique permutation whose cycle decompo-
sition is the partition π.
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Figure 12. One of the
possible cycles which
contribute to the sum in ψ̌B in
the case B is a unique through
block.

Now suppose that σ has only one through-block, let [σ] be the set of
all π ∈ SNC(n,m) whose cycle decomposition gives the partition σ. If
B is a block of σ which is not a through-block then again by equation
(30) ψ̌B and ψB are equal. If B is the unique through-block then as in
equation (31) write B = {j1, . . . , jr} ∪ {jr+1, . . . , jr+s}. Then by (42)

ψ̌B(dj1, . . . , djr
; djr+1, . . . , djr+s

) = ψ̌2(dj1, . . . , djr
; djr+1, . . . , djr+s

)

=
∑

c

ψc(dj1, . . . , djr
, djr+1, . . . , djr+s

)

where c runs over the cycles in π ∈ [σ] which give the block B. Hence
ψ̌σ =

∑

π∈[σ] ψπ and thus equation (41) is proved.

8. Diagonalization of fluctuations

Let us now use our description of fluctuations of random matri-
ces in terms of operators to diagonalize these fluctuations. The one-
dimensional Gaussian case is well established in the physical and math-
ematical literature (see, e.g., [Pol, AJM, Joh]), whereas looking on
the one-dimensional Wishart case and, in particular, on the multi-
dimensional Gaussian case was initiated by Cabanal-Duvillard [C-D].
Indeed, trying to understand and reproduce the results of Cabanal-
Duvillard was the original motivation for our investigations.

Since the fluctuations are given by taking inner products in cyclic
Fock space, we can achieve such a diagonalization by taking functions
of our operators which yield elementary tensors in cyclic Fock space.
This means we are looking for a kind of cyclic Wick products.

8.1. Semi-circular case. We should look for cyclic analogues of the
Wick products W (f1⊗· · ·⊗fn). Let us denote them by C(f1⊗· · ·⊗fn).
They should be determined by the property that

cC(f1 ⊗ · · · ⊗ fn)Ω = [f1 ⊗ · · · ⊗ fn].
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Notice that we have

cW (f1 ⊗ · · · ⊗ fn)Ω = c (f1 ⊗ · · · ⊗ fn)

= [f1 ⊗ · · · ⊗ fn] + 〈f1, f̄n〉 · c f2 ⊗ · · · ⊗ fn−1

= cC(f1 ⊗ · · · ⊗ fn)Ω + 〈f1, f̄n〉 · cW (f2 ⊗ · · · ⊗ fn−1)Ω,

thus we could define these cyclic Wick products by the following recur-
sion:

C(f1 ⊗ · · · ⊗ fn) = W (f1 ⊗ · · · ⊗ fn) − 〈f1, f̄n〉 ·W (f2, . . . , fn−1).

For n = 1, this means, of course,

C(f) = W (f) = ω(f).

If we put

f := f1 = f2 = · · · = fn (with ‖f‖ = 1),

then we know that

W (f⊗n) = Un(ω(f)/2),

where the {Un}n are the Chebyshev polynomials of the second kind.
Let Vn(x) = Un(x/2); then Vn(ω(f)) = W (f⊗n

). Now, if we write our
cyclic Wick polynomials in this one-dimensional case as

C(f⊗n) = 2Tn(ω(f)/2),

then these Tn must satisfy

2Tn = Un − Un−2 (n ≥ 2)

and

T1(x) = U1(x)/2 = x.

This shows that the {Tn} are Chebyshev polynomials of the first kind.
Let us now consider the multi-dimensional case. It is easy to see

that if fi is orthogonal to fi+1 for all i = 1, . . . , k, then we have for all
n(1), . . . , n(k) > 0 that

W (f
⊗n(1)
1 ⊗f⊗n(2)

2 ⊗· · ·⊗f⊗n(k)
k ) = W (f

⊗n(1)
1 )·W (f

⊗n(2)
2 ) · · ·W (f

⊗n(k)
k ).

If we assume in addition that also f1 and fk are orthogonal then we
get for the corresponding C:

C(f
⊗n(1)
1 ⊗ f

⊗n(2)
2 ⊗ · · ·⊗f⊗n(k)

k ) = W (f
⊗n(1)
1 ⊗ f

⊗n(2)
2 ⊗ · · · ⊗ f

⊗n(k)
k )

= W (f
⊗n(1)
1 ) ·W (f

⊗n(2)
2 ) · · ·W (f

⊗n(k)
k ).

The covariance between such functions in our random matrices is given
by the inner product in the cyclic Fock space. If we have k, l ≥ 2 and
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f1, . . . , fk ∈ HR and g1, . . . , gl ∈ HR such that fi ⊥ fi+1 for i = 1, . . . , k
and gi ⊥ gi+1 for i = 1, . . . , l then we have

lim
N→∞

k2

{

Tr[Vn(1)(XN(f1)) · · ·Vn(k)(XN(fk)],

Tr[Vm(1)(XN(g1)) · · ·Vm(l)(XN(gl))]
}

= 〈[f⊗n(1)
1 ⊗ · · · ⊗ f

⊗n(k)
k ], [g

⊗m(l)
l ⊗ · · · ⊗ g

⊗m(1)
1 ]〉cyc.

Thus we recover the results of Cabanal-Duvillard [C-D] for that case.

8.2. Compound Poisson case. Again, we are looking for polynomi-
als C(d1 ⊗ · · · ⊗ dn) which have the property

cC(d1 ⊗ · · · ⊗ dn)Ω = [d1 ⊗ · · · ⊗ dn].

We have

cW (d1 ⊗ · · · ⊗ dn)Ω = c (d1 ⊗ · · · ⊗ dn)

= [d1, . . . , dn] + [dnd1, d2, . . . , dn−1] + ψ(d1dn) c (d2 ⊗ · · · ⊗ dn−1)

= cC(d1 ⊗ · · · ⊗ dn)Ω + cC(dnd1 ⊗ d2 ⊗ · · · ⊗ dn−1)Ω

+ ψ(d1dn)cW (d2 ⊗ · · · ⊗ dn−1)Ω

Thus we define the C’s in the following recursive way:

(43) W (d1 ⊗ · · · ⊗ dn) = C(d1 ⊗ · · · ⊗ dn)

+ C(dnd1 ⊗ d2 ⊗ · · · ⊗ dn−1) + ψ(d1dn)W (d2 ⊗ · · · ⊗ dn−1)

There does not seem to be a nice closed form for this in the one-
dimensional case.

Let us also look at the multi-dimensional situation. We model this
by assuming that we have elements d1, . . . , dr ∈ D such that didj = 0
for i 6= j. Then we have again for i(j) 6= i(j + 1) (j = 1, . . . , n) and
k(1), . . . , k(n) > 0 that

W (d
⊗k(1)
i(1) ⊗ · · · ⊗ d

⊗k(n)
i(n) ) = W (d

⊗k(1)
i(1) ) · · ·W (d

⊗k(n)
i(n) ).

If also i(1) 6= i(n), then we have again equality between W and C, i.e.

C(d
k(1)
i(1) ⊗ · · · ⊗ d

k(n)
i(n) ) = W (d

⊗k(1)
i(1) ⊗ · · · ⊗ d

⊗k(n)
i(n) )

= W (d
⊗k(1)
i(1) ) · · ·W (d

⊗k(n)
i(n) ).
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8.3. Poisson case. Let us specialize the general compound Poisson
case to the usual Poisson case.

The usual Poisson case is special within the class of compound ones
by a very special state on D. Restrict for the moment to one random
matrix, i.e., the algebra D is generated by one element d. Then the
fact that we have a free Poisson variable p(d) means that this d is a
projection and thus

ψ(dk) = ψ(d) =: λ.

So we can identify p(d) = p(d2) = . . . and everything reduces again
to polynomials in just one variable p(d). Again one knows (see [Ans,
Theorem 4.11]) that the linear Wick polynomials Wn(d) := W (d⊗n) are
given by the orthogonal polynomials with respect to the distribution
of p(d) (i.e. with respect to the Marchenko-Pastur = free Poisson
distribution). Let us denote these polynomials by Πn, then we have

Wn(d) = Πn(p(d)).

If we put Cn(d) := C(d⊗n), then the general relation between W and
C becomes in this case:

Wn(d) = Cn(d) + Cn−1(d) + λWn−2.

If we put Cn(d) = Γn(p(d)) for some polynomials Γn, then the above
tells us that

Πn − λΠn−2 = Γn + Γn−1.

This gives us exactly the polynomials {Γn} which appear in Cabanal-
Duvillard’s results [C-D].

As an extension of this, we also get the multi-dimensional Poisson
case: There the “diagonalizing polynomials” in more than one vari-
able are given by alternating products in the one-dimensional linear
polynomials {Πn}.

A more detailed investigation of this diagonalization of fluctuations
will be presented in [KMS].

9. Asymptotic freeness of Gaussian and constant

matrices

Our results about compound Wishart matrices can be considered
as describing the limiting relation between Gaussian random matrices
and constant matrices for special moments – namely those with pat-
terns of the form X∗D1XX

∗D2X · · ·X∗DnX. This raises, of course,
the question whether we can say something substantial about the gen-
eral relation between Gaussian and constant matrices. In view of the
basic theorem of Voiculescu that Gaussian random matrices and con-
stant matrices are asymptotically free, we would expect that we should
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have the same kind of statement also on the level of fluctuations. We
want to indicate here that this is indeed the case, thus providing strong
evidence that our notion of “second order freeness” is indeed the cor-
rect concept. Note that in the following definition we make a quite
strong requirement on the vanishing of the higher order cumulants.
This is however in accordance with the observation that in many cases
the unnormalized traces converge to Gaussian random variables. Of
course, if we have a non-probabilistic ensemble of constant matrices,
then the only requirement is the convergence of k1; all other cumulants
are automatically zero.

Definition 9.1. 1) Let {A1, . . . , As}N be a sequence of N×N -random
matrices. We say that they have a second order limit distribution if
there exists a second order non-commutative probability space (A, ϕ,
ρ) and a1, . . . , as ∈ A such that for all polynomials p1, p2, . . . in s non-
commuting indeterminates we have

(44) lim
N→∞

k1

{

tr[p1(A1, . . . , As)]
}

= ϕ
(

p1(a1, . . . , as)
)

,

(45) lim
N→∞

k2

{

Tr[p1(A1, . . . , As)],Tr[p2(A1, . . . , As)]
}

=

ρ
(

p1(a1, . . . , as); p2(a1, . . . , as)
)

,

and, for r ≥ 3,

(46) lim
N→∞

kr

{

Tr[p1(A1, . . . , As)], . . . ,Tr[pr(A1, . . . , As)]
}

= 0.

2) We say that two sequences ofN×N -random matrices, {A1, . . . , As}N

and {B1, . . . , Bt}N , are asymptotically free of second order if the se-
quence {A1, . . . , As, B1, . . . , Bt}N has a second order limit distribution,
given by (A, ϕ, ρ) and a1, . . . , as, b1, . . . , bt ∈ A, and if the unital alge-
bras

A1 := alg(1, a1, . . . , as) and A2 := alg(1, b1, . . . , bt)

are free with respect to (ϕ, ρ).

Remark 9.2. Corollary 3.3 shows that a family {XN(f)}f∈HR
of Her-

mitian Gaussian random matrices has a second order limit distribu-
tion. Theorem 5.3 identifies the limiting distribution in terms of cyclic
Fock space, and in the proof of Theorem 5.3 we have in addition
shown that the limiting distribution is free of second order in that
if K1, . . . ,Kn ⊂ H are orthogonal subspaces and Ai is the algebra gen-
erated by {ω(f) | f ∈ Ki} then A1, . . . ,An are free with respect to
(ϕ, ρ) where ϕ(a) = 〈aΩ,Ω〉 and ρ(a1, a2) = 〈c a1Ω, c a

∗
2Ω〉cyc. Thus
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we have shown orthogonal families of Gaussian random matrices are
asymptotically free of second order.

Remark 9.3. Corollary 3.7 showed that if {XN}N is a sequence of

complex Gaussian random matrices and PN(Di) = X∗
ND

(N)
i XN where

{D(N)
1 , D

(N)
2 , D

(N)
3 , . . .D

(N)
p }N is a sequence of N × N complex matri-

ces which converges in distribution to (d1, d2, . . . dp) in (D, ψ) then the
family {PN(Di)}i has a limiting distribution. Theorem 5.7 calculates
the limiting distribution in terms of cyclic Fock space. In the proof
of Theorem 5.7 we have shown that the limiting distribution is free of
second order in that if didj = 0 for i 6= j and Ai is the algebra gen-
erated by p(di) then A1, . . . ,Ap are free with respect to (ϕ, ρ) where
ϕ(a) = 〈aΩ,Ω〉 and ρ(a1, a2) = 〈c a1Ω, c a

∗
2Ω〉cyc. Thus we have shown

orthogonal families of Wishart random matrices are asymptotically free
of second order.

Now we can address the question of the relation between Gaussian
random matrices and constant matrices. We can even be more general
for the latter and consider random matrices which are independent
from the Gaussian ones.

Let, as usual, XN(f) (f ∈ HR) be a family of Hermitian Gaussian
random matrices

XN (f) =
(

xij(f)
)N

i,j=1
,

as in section 3.1

Theorem 9.4. Let {XN(f) | f ∈ HR}N be a sequence of Hermitian
Gaussian N × N-random matrices and {A1, . . . , As}N a sequence of
N×N-random matrices which has a second order limit distribution. If
{XN(f) | f ∈ HR}N and {A1, . . . , As}N are independent, then they are
asymptotically free of second order.

The proof of this theorem relies on the same kind of calculations as,
for example, in [MN]. Since we do not want to go into random matrix
calculations here, we defer more details about this to [KMS].

If the random matrices {A1, . . . , As} are non-random constant ma-
trices with limiting distribution with respect to the trace, then all kr

vanish identically for r ≥ 2, thus they have a second order limit dis-
tribution, and we get as a corollary of the above that the asymptotic
freeness between Gaussian random matrices and constant matrices re-
mains also true on the level of fluctuations, i.e., with respect to our
concept of second order freeness.
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A more systematic investigation of this concept will be pursued
in forthcoming publications. In particular, fluctuations of Haar dis-
tributed unitary random matrices from this point of view will be treated
in [MSS].
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