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COMPLETE SYMMETRIC POLYNOMIALS IN JUCYS-MURPHY

ELEMENTS AND THE WEINGARTEN FUNCTION

JONATHAN NOVAK

Abstract. A connection is made between complete homogeneous symmetric
polynomials in Jucys-Murphy elements and the unitary Weingarten function
from random matrix theory. In particular we show that hr(J1,...,Jn), the
complete homogeneous symmetric polynomial of degree r in the JM elements,
coincides with the rth term in the asymptotic expansion of the Weingarten
function. We use this connection to determine precisely which conjugacy
classes occur in the class basis resolution of hr(J1,...,Jn), and to explicitly
determine the coefficients of the classes of minimal height when r < n. These
coefficients, which turn out to be products of Catalan numbers, are governed
by the Moebius function of the non-crossing partition lattice NC(n).

1. Introduction

Consider the tower

(1) {1} = C[S(1)] ⊂ C[S(2)] ⊂ . . .C[S(n)] ⊂ . . .

of the group algebras of the symmetric groups, where C[S(n − 1)] is canonically
embedded in C[S(n)] as the linear span of permutations having n as a fixed point.
Recently, Okounkov and Vershik [OV] have developed a novel approach to the
representation theory of the symmetric groups in which a key role is played the
the Gelfand-Zetlin algebra GZ(n), which is by definition the algebra generated by
Z(1), . . . , Z(n), where Z(i) is the center of C[S(i)].

Okounkov and Vershik give a remarkably concrete description of the Gelfand-
Zetlin algebra: they prove that GZ(n) = C[J1, . . . , Jn], where the Ji’s are special
elements of C[S(n)] called the Jucys-Murphy elements. The JM elements are defined
by J1 := 0 and

(2) Ji = (1, i) + · · · + (i − 1, i)

for 2 ≤ i ≤ n. For example, the JM elements in C[S(4)] are

J1 = 0

J2 = (1, 2)

J3 = (1, 3) + (2, 3)

J4 = (1, 4) + (2, 4) + (3, 4).

Given Okounkov and Vershik’s characterization of GZ(n), it is natural to ask for
a characterization of Z(n) itself in terms of the JM elements. It was shown by Jucys
[J] in 1974 that Z(n) = Sym[J1, . . . , Jn], the algebra of symmetric polynomials in

Date: November 24, 2008.

1

http://arXiv.org/abs/0811.3595v2


2 J. I. NOVAK

the JM elements. Jucys proved this remarkable fact by explicitly evaluating the
elementary symmetric polynomials in JM elements.

For each partition (or Young diagram) µ ⊢ n, let Cµ denote the formal sum of
all permutations in S(n) of cycle type µ. Then {Cµ}µ⊢n is a natural basis of Z(n),

called the class basis. If one thinks of Z(n) as the algebra of functions f : S(n) → C

which are constant on conjugacy classes, then Cµ is the indicator function of the
conjugacy class labelled by µ.

Theorem 1.1 ([J]). For 1 ≤ r ≤ n, let

(3) er(J1, . . . , Jn) =
∑

1≤i1<i2<···<ir≤n

Ji1
Ji2

. . . Jin

be the rth elementary symmetric polynomial in the JM elements, and put e0 := 1

(the identity element of C[S(n)]). Then for 0 ≤ r ≤ n,

(4) er(J1, . . . , Jn) =
∑

µ⊢n
ℓ(µ)=n−r

Cµ.

In other words, Jucys’ result states that er(J1, . . . , Jn) is the indicator function of
the set of permutations with exactly n − r cycles. For example, the class basis
resolution of e2(J1, J2, J2, J4) is the sum of all classes indexed by Young diagrams
µ ⊢ 4 with exactly 2 rows:

(5) e2(J1, J2, J3, J4) = C(3,1) + C(2,2).

In symmetric function theory, the complete homogeneous symmetric polynomials
are in many ways “dual” to the elementary symmetric polynomials. Recall that
hr ∈ Sym[x1, . . . , xn] are defined by h0 := 1 and

(6) hr :=
∑

1≤i1≤i2≤···≤ir≤n

xi1
xi2

. . . xir

for r ≥ 1. Clearly er = 0 for r > n, but this is not the case for the hr’s. Indeed one
has the generating functions

(7) E(t) =
∑

r≥0

ert
r = (1 + x1t)(1 + x2t) . . . (1 + xnt),

valid as an identity in C[x1, . . . , xn, t], and

(8) H(t) =
∑

r≥0

hrt
r = (1 − x1t)−1(1 − x2t)−1 . . . (1 − xnt)−1,

valid as an identity in C[x1, . . . , xn][[t]]. In particular, one has the identity
E(t)H(−t) = 1 in the latter ring.

Another example of the duality between er and hr can be expressed in terms
of antisymmetric and symmetric powers of matrices. If A is an n × n matrix with
eigenvalues x1, . . . , xn, then

(9) er(x1, . . . , xn) = Tr ∧rA

while

(10) hr(x1, . . . , xn) = Tr∨rA,

see e.g. [B].
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Given the dual nature of the elementary and complete homogeneous symmetric
polynomials, one would hope for an analogue of Jucys result (Theorem 1.1) for
hr(J1, . . . , Jn). Below we will prove that, for any r ≥ 0,

(11) hr(J1, . . . , Jn) = (−1)r
∑

µ⊢n

ar(µ)Cµ,

where ar is precisely the rth term in the asymptotic expansion of the Weingarten
function, a special function which occurs in the theory of random unitary matrices.

Using known results about the Weingarten function, we characterize the conju-
gacy classes which appear in the class basis resolution of hr(J1, . . . , Jn), and give
exact formulas for some of the coefficients. The coefficients which we are able to
determine explicitly correspond to “minimal classes,” and turn out to be governed
by the Moebius function of the non-crossing partition lattice NC(n).

2. The Weingarten Function

2.1. Weingarten function in random matrix theory. A random matrix may
be described either “locally,” by giving the joint distribution of the matrix entries, or
“globally”’ as a probability distribution on matrix space. For example, the Ginibre
Unitary Ensemble is described locally as the class of random matrices whose entries
are i.i.d. standard complex Gaussian random variables, while the Circular Unitary
Ensemble is described globally in terms of the Haar probability measures on the
unitary groups. In the latter case, a non-trivial problem is to recover the local
description from the global one. This consists of determining the joint moments of
the matrix entries of a Haar-distributed random unitary matrix, which is equivalent
to evaluating all matrix integrals of the form

(12) Id(i, j, i ′, j ′) =

∫

Ud

ui(1)j(1) . . . ui(n)j(n)ui ′(1)j ′(1) . . . ui ′(n)j ′(n)dU,

where

(13) Ud = {U ∈ GLd(C) : U∗ = U−1}

is the unitary group equipped with normalized Haar measure dU, and i, j, i ′, j ′ :

{1, . . . , n} → {1, . . . , d} are arbitrary functions. Of particular interest is the large d

limit of the joint moments.
Considerable progress on this problem has been made by Collins [C] and Collins-

Śniady [CS], who make use of the classical Schur-Weyl duality between representa-
tions of Ud and S(n) in the tensors

(14) C
d ⊗ · · · ⊗ C

d

︸ ︷︷ ︸
n

,

to exhibit the existence of a central function Wgd ∈ Z(n) with the following re-
markable property:

(15) Id(i, j, i ′, j ′) =
∑

σ,τ∈S(n)

n∏

k=1

δi(k)i ′(σ(k))δj(k)j ′(τ(k)) Wgd(τσ−1).

The function Wgd is called the Weingarten function, and identity (15) is the Wein-
garten convolution formula. It is similar in spirit to the Wick formula for Gaussian
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random variables. It follows immediately from (15) that Wgd has the integral
representation

(16) Wgd(σ) =

∫

Ud

u11 . . . unnu1σ(1) . . . unσ(n)dU,

valid when d ≥ n. In principle, the Weingarten convolution formula reduces the
computation of the joint moments of the matrix entries of a random unitary matrix
to the problem of explicitly describing the Weingarten function.

2.2. Weingarten function and JM elements. We will show that Wgd is essen-
tially the generating function for complete homogeneous symmetric polynomials in
JM elements. Our approach is based on the following remarkable result due to
Collins [C].

Theorem 2.1 ([C]). For any d ≥ n, Wgd is an invertible element of Z(n). The

class basis resolution of Wg−1
d is

(17) Wg−1
d =

∑

µ⊢n

dℓ(µ)Cµ.

Let H(t) ∈ C[J1, . . . , Jn][[t]] be the generating function for complete homoge-
neous symmetric polynomials in JM elements:

(18) H(t) =
∑

r≥0

hr(J1, . . . , Jn)tr = (1 − J1t)−1(1 − J2t)−1 . . . (1 − Jnt)−1.

This is a formal power series in t with coefficients in the Gelfand-Zetlin subalgebra
of C[S(n)] (in fact in Z(n)).

Theorem 2.2 ([N2]). For any d ≥ n,

(19) Wgd =
1

dn
H(−

1

d
) = (d + J1)−1(d + J2)−1 . . . (d + Jn)−1.

Proof. Observe that

dnE(
1

d
) = dn

n∑

r=0

er(J1, . . . , Jn)d−r

=

n∑

r=0

dn−r
∑

µ⊢n
ℓ(µ)=n−r

Cµ

=
∑

µ⊢n

dℓ(µ)
Cµ

= Wg−1
d ,

where the second line follows by applying Jucys’ theorem. Since E(t)H(−t) = 1,

the result follows. �

2.3. Asymptotic expansion of Wgd and the Moebius function. Consider
now the resolution of Wgd with respect to the class basis of Z(n) :

(20) Wgd =
∑

µ⊢n

Wgd(µ)Cµ.
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Collins [C] demonstrated the existence of a sequence of central functions

(21) a0, a1, . . . , ar, · · · ∈ Z(n)

with the property that

(22) Wgd(µ) =
a0(µ)

dn
+

a1(µ)

dn+1
+ · · · +

ar(µ)

dn+r
+ . . .

for all µ ⊢ n. The series (22) is the asymptotic expansion of Wgd .

Collins [C] has shown that the first order asymptotics of Wgd are governed
by the Moebius function of the non-crossing partition lattice NC(n). Recall that
NC(n) consists of the set of all non-crossing partitions of {1, . . . , n} under the reverse
refinement partial order: π ≤ π ′ in NC(n) if and only if every block of π is contained
in a block of π ′. NC(n) is a lattice with minimal element

(23) 0n = {1} ⊔ {2} ⊔ · · · ⊔ {n}

and maximal element

(24) 1n = {1, 2, . . . , n}.

Non-crossing partition lattices were first studied by Kreweras [K] from a purely
combinatorial point of view. Later, Speicher discovered that non-crossing partition
lattices play the same role in Voiculescu’s free probability theory that full partition
lattices play in classical probability, see [NS] for further information. The Moebius
function of NC(n) is determined as follows: for π = V1 ⊔ · · · ⊔ Vℓ ∈ NC(n),

(25) Moeb([0n, π]) = (−1)n−ℓ

ℓ∏

i=1

Cat|Vi|−1,

where

(26) CatN :=
1

N + 1

(

2N

N

)

is the Catalan number.
NC(n) is canonically embedded in the symmetric group S(n) by mapping π =

V1 ⊔ · · · ⊔ Vℓ onto the permutation permπ with cycle structure determined by
V1, . . . , Vℓ in the natural way. For example, the partition

(27) π = {1, 4, 5} ⊔ {2, 3} ∈ NC(5)

is identified with the permutation

(28) permπ = (1, 4, 5)(2, 3) ∈ S(5).

Under this identification, the Moebius function becomes a central function on S(n)

whose class basis resolution is

(29) Moeb =
∑

µ⊢n

Moeb(µ)Cµ,

where

(30) Moeb(µ) = Moeb(µ1, . . . , µℓ) = (−1)n−ℓ

ℓ∏

i=1

Catµi−1

for each µ ⊢ n.

Theorem 2.3 ([C]). The coefficients a0, a1, . . . , ar, . . . in the asymptotic expansion
of Wgd have the following properties:
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• for any r ≥ 0 and µ ⊢ n, ar(µ) is non-zero if and only if there exists an
integer g ≥ 0 such that

(31) ℓ(µ) = n − r + 2g.

• If µ satisfies ℓ(µ) = n − r, then

(32) an−ℓ(µ)(µ) = Moeb(µ).

2.4. The class expansion of hr(J1, . . . , Jn). According to Theorem 2.2

(33) Wgd =
1

dn
H(−

1

d
) =

∑

r≥0

(−1)rhr(J1, . . . , Jn)
1

dn+r
.

Since this is precisely the asymptotic expansion of Wgd, we have the following
result.

Theorem 2.4. The coefficients in the asymptotic expansion of Wgd are the com-
plete homogeneous symmetric polynomials in JM elements:

(34) ar = (−1)rhr(J1, . . . , Jn).

Equivalently the coefficients in the asymptotic expansion of Wgd are the coefficients
in the class basis resolution of complete homogeneous symmetric polynomials in JM
elements:

(35) hr(J1, . . . , Jn) = (−1)r
∑

µ⊢n

ar(µ)Cµ.

Collins’ theorem 2.3 on the asymptotic expansion of Wgd(µ) says that the coef-
ficients ar(µ) go down in steps of two, starting at an−ℓ(µ)(µ) = Moeb(µ).

Corollary 2.5. The class basis resolution of hr(J1, . . . , Jn) is of the form

(36) hr(J1, . . . , Jn) = (−1)r
∑

g≥0

∑

µ⊢n
ℓ(µ)=n−r+2g

ar(µ)Cµ.

When n > r ≥ 1, this is

(37) hr(J1, . . . , Jn) = (−1)r
∑

µ⊢n
ℓ(µ)=n−r

Moeb(µ)Cµ+(−1)r
∑

g≥1

∑

ν⊢n
ℓ(ν)=n−r+2g

ar(ν)Cµ.

As an example, consider the class basis resolution of h2(J1, J2, J3, J4) (recall that
we computed e2(J1, J2, J3, J4) above as an example of Jucys’ theorem). Since 4−2 =

2, only classes of height 2 (corresponding to g = 0) or 4 (corresponding to g = 1)
can occur in the resolution of h2(J1, J2, J3, J4). We know that the coefficients of the
“minimal” g = 0 classes are given by the Moebius function of NC(n). Thus

(38) h2(J1, J2, J3, J4) = 2C(3,1) + C(2,2)
︸ ︷︷ ︸

g=0

+ a2((1, 1, 1, 1))C(1,1,1,1)
︸ ︷︷ ︸

g=1

.

It is tempting to hypothesize that the coefficients ar(µ) have a topological inter-
pretation for arbitrary g ≥ 0, as in [GJ] where it is found that the coefficients in the
class basis resolution of transitive powers of JM elements are related to branched
covers of the sphere. This is supported by the fact that the g = 0 case in our setting
is determined by the Moebius function of the lattice of partitions whose graphical
representations can be embedded on the sphere.
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3. Character Expansion and Content Evaluation

3.1. Character expansion via JM elements. Another basis of the center Z(n)

of the group algebra C[S(n)] is provided by the set {χλ}λ⊢n of irreducible characters
of S(n). If f ∈ Z(n) is a central function, its resolution

(39) f =
∑

λ⊢n

f(λ)χλ

with respect to the character basis of Z(n) is called the character expansion of
f. In this section we explicitly determine the character expansions of Wgd and
hr(J1, . . . , Jn).

The character expansion of Wgd can be deduced from Theorem 2.2 and the fol-
lowing fundamental property of JM elements, which is due to Jucys. Recall that the
content c(�) a cell � in a Young diagram λ is the column index of � subtract the
row index of �. For a Young diagram λ, we denote by Aλ the multiset (or “alpha-
bet”) of its contents. For example, if λ = (4, 2, 1) then Aλ = {{0, 1, 2, 3,−1, 0, −2}}.

For a symmetric polynomial f in n variables, f(Aλ) is the content evaluation of f

at λ. For our example diagram this would be

(40) f(0, 1, 2, 3,−1, 0, 2).

Theorem 3.1 ([J]). For any symmetric polynomial f in n variables,

(41) f(J1, . . . , Jn)χλ = f(Aλ)χλ.

That is, χλ is an eigenvector for the linear operator “multiplication by f(J1, . . . , Jn)”
on Z(n) with corresponding eigenvalue f(Aλ).

Using Theorem 3.1 we can find the character expansion of the Weingarten func-
tion. Given a Young diagram λ ⊢ n, let Hλ denote the product of hook-lengths of
λ. Let

(42) sλ(1d) =
1

Hλ

∏

�∈λ

(d + c(�))

be the Schur polynomial sλ evaluated at (1, 1 . . . , 1︸ ︷︷ ︸
d

) (see [S]).

Theorem 3.2. The character expansion of Wgd ∈ C[S(n)] is

(43) Wgd =
∑

λ⊢n

1

H2
λsλ(1d)

χλ.

Proof. By the second orthogonality relation for the irreducible characters of a finite
group, the character expansion of the unit 1 of Z(n) is

1 =
1

n!

∑

λ⊢n

dim(λ)χλ,

where

(44) dim(λ) =
n!

Hλ
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is the number of standard Young tableaux of shape λ. Therefore by Corollary 2.4
we have the following:

Wgd =
∑

r≥0

ar

dn+r

=
∑

r≥0

(−1)rhr(J1, . . . , Jn)(
∑

λ⊢n

H−1
λ χλ)

1

dn+r

=
∑

λ⊢n

H−1
λ (

∑

r≥0

(−1)rhr(Aλ)
1

dn+r
)χλ

=
∑

λ⊢n

H−1
λ

∏

�∈λ

(d + c(�))−1χλ

=
∑

λ⊢n

1

H2
λsλ(1d)

χλ.

�

Theorem 3.2 was derived in [C] by a different method which does not involve JM
elements. One benefit to our approach is that in the course of proving Theorem
3.2, we have shown that

(45) ar = (−1)r
∑

λ⊢n

hr(Aλ)

Hλ

χλ.

Thus we have the following.

Theorem 3.3. The character expansion of hr(J1, . . . , Jn) is

(46) hr(J1, . . . , Jn) =
∑

λ⊢n

hr(Aλ)

Hλ

χλ.

An interesting Corollary of this result is the formula

(47) Moeb(µ) = (−1)n−ℓ(µ)
∑

λ⊢n

hn−ℓ(µ)(Aλ)

Hλ

χλ(µ)

for the Moebius function of NC(n). This in turn gives an esthetically pleasing family
of identities relating content evaluation, hook-products, characters, and Catalan
numbers:

(48)
∑

λ⊢n

hn−ℓ(µ)(Aλ)

Hλ

χλ(µ) =

ℓ(µ)∏

i=1

Catµi−1 .

4. Tables

Using Theorem 3.2, one can easily compute the asymptotic expansion of Wgd ∈

Z(n), and thus the class basis resolution of hr(J1, . . . , Jn) for all r ≥ 0, from the
character table of S(n). In this appendix we tabulate this data for n = 2, 3, 4.
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4.1. n = 2.

• Wgd((1, 1)) = 1
d2−1

=
1

d2
+

1

d4
+

1

d6
+

1

d8
+

1

d10
+

1

d12

1

d14
+

1

d16
+ . . . .

• Wgd((2)) = −1
d(d2−1)

= −
1

d3
−

1

d5
−

1

d7
−

1

d9
−

1

d11
−

1

d13
−

1

d15
− . . .

h0(J1, J2) = C(1,1)

h1(J1, J2) = C(2)

...

h2r(J1, J2) = C(1,1)

h2r+1(J1, J2) = C(2)

...

4.2. n = 3.

• Wgd((1, 1, 1)) = d2−2
d(d2−1)(d2−4)

=
1

d3
+

3

d5
+

11

d7
+

43

d9
+

171

d11
+

683

d13
+

2731

d15
+ . . .

• Wgd((2, 1)) = −1
(d2−1)(d2−4)

= −
1

d4
−

5

d6
−

21

d8
−

85

d10
−

341

d12
−

1365

d14
−

5461

d16
− . . .

• Wgd((3)) = 2
d(d2−1)(d2−4)

=
2

d5
+

10

d7
+

42

d9
+

170

d11
+

682

d13
+

2730

d15
+ . . .
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h0(J1, J2, J3) = C(1,1,1)

h1(J1, J2, J3) = C(2,1)

h2(J1, J2, J3) = 3C(1,1,1) + 2C(3)

h3(J1, J2, J3) = 5C(2,1)

h4(J1, J2, J3) = 11C(1,1,1) + 10C(3)

h5(J1, J2, J3) = 21C(2,1)

h6(J1, J2, J3) = 43C(1,1,1) + 42C(3)

h7(J1, J2, J3) = 85C(2,1)

h8(J1, J2, J3) = 171C(1,1,1) + 170C(3)

h9(J1, J2, J3) = 341C(2,1)

h10(J1, J2, J3) = 683C(1,1,1) + 682C(3)

h11(J1, J2, J3) = 1365C(2,1)

...

4.3. n = 4.

• Wgd((1, 1, 1, 1)) = 6−8d2+d4

d2(−36+49d2−14d4+d6)

=
1

d4
+

6

d6
+

41

d8
+

316

d10
+

2631

d12
+

22826

d14
+

202021

d16
+ . . .

• Wgd((2, 1, 1)) = 1
9d−10d3+d5

=
1

d5
+

10

d7
+

91

d9
+

820

d11
+

7381

d13
+

66430

d15
+

597871

d17
+ . . .

• Wgd((2, 2)) = 6+d2

d2(−36+49d2−14d4+d6)

=
1

d6
+

20

d8
+

231

d10
+

2290

d12
+

21461

d14
+

196560

d16
+

1782691

d18
+ . . .

• Wgd((3, 1)) = −3+2d2

d2(−36+49d2−14d4+d6)

=
2

d6
+

25

d8
+

252

d10
+

2375

d12
+

21802

d14
+

197925

d16
+

1788152

d18
+ . . .

• Wgd((4)) = 5
d(−36+49d2−14d4+d6)

=
5

d7
+

70

d9
+

735

d11
+

7040

d13
+

65065

d15
+

592410

d17
+

5358995

d19
+ . . .
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h0(J1, J2, J3, J4) = C(1,1,1,1)

h1(J1, J2, J3, J4) = C(2,1,1)

h2(J1, J2, J3, J4) = 6C(1,1,1,1) + C(2,2) + 2C(3,1)

h3(J1, J2, J3, J4) = 10C(2,1,1) + 5C(4)

h4(J1, J2, J3, J4) = 41C(1,1,1,1) + 20C(2,2) + 25C(3,1)

h5(J1, J2, J3, J4) = 91C(2,1,1) + 70C(4)

h6(J1, J2, J3, J4) = 316C(1,1,1,1) + 231C(2,2) + 252C(3,1)

h7(J1, J2, J3, J4) = 820C(2,1,1) + 735C(4)

h8(J1, J2, J3, J4) = 2631C(1,1,1,1) + 2290C(2,2) + 2375C(3,1)

h9(J1, J2, J3, J4) = 7381C(2,1,1) + 7040C(4)

h10(J1, J2, J3, J4) = 22826C(1,1,1,1) + 21461C(2,2) + 21802C(3,1)

h11(J1, J2, J3, J4) = 66430C(2,1,1) + 65065C(4)

h12(J1, J2, J3, J4) = 202021C(1,1,1,1) + 196560C(2,2) + 197925C(3,1) .
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