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Abstract

Two methods of constructing 2D Toda 7-functions that are generating functions for
certain geometrical invariants of a combinatorial nature are related. The first involves
generation of paths in the Cayley graph of the symmetric group 5, by multiplication
of the conjugacy class sums C € C[S,,] in the group algebra by elements of an abelian
group of central elements. Extending the characteristic map to the tensor product
C[S,] ® C[S,] leads to double expansions in terms of power sum symmetric functions,
in which the coefficients count the number of such paths. Applying the same map to
sums over the orthogonal idempotents leads to diagonal double Schur function expan-
sions that are identified as 7-functions of hypergeometric type. The second method is
the standard construction of 7-functions as vacuum state matrix elements of products
of vertex operators in a fermionic Fock space with elements of the abelian group of con-
volution symmetries. A homomorphism between these two group actions is derived and
shown to be intertwined by the characteristic map composed with fermionization. Ap-
plications include Okounkov’s generating function for double Hurwitz numbers, which
count branched coverings of the Riemann sphere with nonminimal branching at two
points, and various analogous combinatorial counting functions.

1 Introduction

Many of the known generating functions for various combinatorial invariants related to
Riemann surfaces have been shown to be KP 7-functions, and hence to satisfy the infi-
nite set of Hirota bilinear equations defining the KP hierarchy, or some reduction thereof.
These include the Kontsevich matrix integral [22], which is a KdV 7-function, the gener-
ator for Hodge invariants [21], the matrix integrals that generate single Hurwitz numbers
[3, 25], and the ones for Belyi curves and dessins d’enfants [2]. Other generating functions
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are known to be 7-functions of the 2D Toda hierarchy, some of which are also representable
as matrix integrals. Examples are the Itzykson-Zuber 2-matrix integral [19], which gener-
ates the enumeration of ribbon graphs, Okounkov’s generating function for double Hurwitz
numbers, counting branched covers of the Riemann sphere with fixed nonminimal branching
at a pair of specified points [26], and the Harish-Chandra-Itzykon—Zuber (HCIZ) integral
[14, 19], which generates the monotone double Hurwitz numbers [12].

The purpose of this work is to relate two different methods of constructing 2D Toda -
functions [28, 29, 30] as generating functions for geometrical-topological invariants that have
combinatorial interpretations involving counting of paths in the symmetric group. These
include the double Hurwitz numbers [26], which may be viewed equivalently as counting
paths in the Cayley graph from one conjugacy class to another, the monotone double Hurwitz
numbers [12], generated by the HCIZ integral in the N — oo limit, which count weakly
monotone paths, and the mixed double Hurwitz numbers [13], which count a combination of
both. To these we add a new family defined by matrix integrals [17, Appendix A] that are
variants of the HCIZ integral, which count combinations of weakly monotone and strictly
monotone paths. In each case, the generating function can be interpreted as a 7-function of
the 2D Toda integrable hierarchy that is of hypergeometric type [15, 16, 17, 27]. The first
method is based on combining Frobenius’ characteristic map, from the centre Z(CIS,]) of
the group algebra CI[S,] to the algebra A of symmetric functions, with automorphisms of
Z(C|[S,]) defined by multiplication by elements of a certain abelian group within Z(C[S,]).
The second is based on the usual construction of 7-functions [16, 17, 27, 29] as vacuum state
matrix elements of products of vertex operators and operators from the Clifford group acting
on a fermionic Fock space F.

Under the characteristic map, extended to C[S,] ® CI[S,], the sum > o nlg ® g over
all diagonal elements maps to the diagonal double Schur function expansion given by the
Cauchy-Littlewood formula or, equivalently, to a diagonal sum of products of the power sum
symmetric functions. This may be interpreted as the restriction of the vacuum 2D Toda
T-function to flow variables given by power sums. Certain homomorphisms of the group
algebra, defined by multiplication by central elements consisting of exponentials of linear
combinations of power sums in the special set of commuting elements {7;, 72, J3, - . .} intro-
duced by Jucys [20] and Murphy [24], give rise to a “twisting” of the expansions in symmetric
functions which, depending on the choice of the specific element, produce 7-functions of hy-
pergeometric type [16, 17, 27] that may be interpreted as combinatorial generating functions.
The usual way to construct 7-functions of this type is by evaluating the vacuum state matrix
elements with a group element that is diagonal in the standard fermionic basis. The abelian
group of such diagonal elements is identified as the group C of convolution symmetries [18].

In Section 2.5 we define a homomorphism Z: Ap — C from the group Ap of central
elements of the form {625’20 P} where the P;’s are the power sums in the Jucys-Murphy
elements, to the group C' of convolution symmetries. The elements of Ap act on Z(C[S,])



by multiplication, and are diagonal in the basis of orthogonal idempotents {F\}, labelled
by partitions A corresponding to irreducible representations. The elements of C act on F
and similarly are diagonal in the standard orthonormal basis {|\; N)} within each charge N
sector Fy C F. Composing the characteristic map with the one defining the Bose—Fermi
equivalence [7] gives an injection §,,: Z(C[S,]) — F of the centre of the group algebra into
the fermionic Fock space that maps the basis of orthogonal idempotents { Fi} to the orthonor-
mal basis {|A;0)}. The main result, stated in Theorem 2.2, is that this map intertwines the
action of the group Ap on Z(C[S,]) with that of C' on F.

The action of Ap on Z(CJ[S,]), when expressed in another basis {C\} consisting of
the sums over elements of the conjugacy class with cycle type A, provides combinatorial
coefficients that count paths in the Cayley graph of S, starting from an element in the
conjugacy class with cycle type A and ending on one with type p. These are just the matrix
elements of the Ap group element in the {C)} basis. The image of these basis elements
under the characteristic map are, up to normalization, the power sum symmetric functions
Py. Applying an element of Ap to the diagonal sum ) ges, g @ g introduces a “twist”
that is interpretable as a sum over various classes of paths in the Cayley graph. Applying
the map ch ® ch to this new element provides a double sum over the power sum symmetric
functions Py ([x])P,([y]), with coefficients given by the matrix elements of Ap which count
the number of such paths or, equivalently, a double Schur function expansion of a 7-function
of hypergeometric type, corresponding to a specific element of the group C of convolution
symmetries. This can be viewed as a method for constructing identities between double sums
over the power sum symmetric functions and diagonal double Schur function expansions
without involving the usual sums over irreducible characters of .S,,.

Several examples of this construction are provided in Section 3, starting with the generat-
ing function for the double Hurwitz numbers first studied by Okounkov [26]. In this case, the
convolution group element is given by an elliptic #-function. In the case of weakly monotone
double Hurwitz numbers, which count paths in the Cayley graph between a pair of elements
in given conjugacy classes consisting of sequences of transpositions that are weakly monoton-
ically increasing, it corresponds to convolution with the exponential function. Choosing the
expansion parameter that counts the number of steps in a path as z = —1/N, the resulting
sequence of 2D Toda 7-functions is just the large N limit of the HCIZ matrix integral [12, 13].
The mixed double Hurwitz numbers, consisting of a combination of weakly monotonically
increasing sequences and unordered ones, are obtained by multiplying the two Ap group
elements. A fourth example is introduced, in which the generating 2D Toda 7-function is
also interpretable as a matrix integral analogous to the HCIZ integral, but with the exponen-
tial trace product coupling replaced by a noninteger power of the characteristic polynomial
of the product [17, Appendix A]. This is shown to be a generating function for paths in
the Cayley graph consisting of a sequence of weakly monotonically increasing transpositions
followed by a sequence of strongly monotonically increasing ones. This type of coupling



has also been considered in the study of the spectral statistics of 2-matrix models [4, 5]. A
final case considered here is the family of hypergeometric 7-functions introduced recently
in [1] as examples of 7-functions having a similar structure to the Hurwitz generating func-
tions. These are shown to be generating functions for the number of multiple sequences of
strictly monotonically increasing paths in the Cayley graph connecting elements in a pair of
conjugacy classes.

2 The characteristic map, twisting homomorphisms
and convolution symmetries

2.1 The characteristic map and the Cauchy-Littlewood formula

Let A = C[Py, P, .. .] be the ring of symmetric functions, equipped with the usual projection
homomorphism

n (2.1)

onto the ring A, of symmetric polynomials in n variables for each n. The two bases of A
relevant for our purposes will be the power sum symmetric functions [23]

P,:=P,P,---P

Foe(p)

(2.2)

and the Schur symmetric functions S, both labelled by integer partitions A = A\ >
oAy >0, =g > o pggy > 0. These are related by the Frobenius formula,

Po= Y xawSy Si= > XA(M)%7 (2.3)

I A I
[A=]pl [|=|A|
where y\(p) are the irreducible characters of the symmetric groups (with g denoting the
conjugacy class consisting of elements with cycle lengths y;) and, denoting the number of
parts of A\ equal to ¢ by m,,

Z, = [[mitim™. (2.4)

The irreducible characters x, also appear in the change of basis formula between two
important bases of the centre { Z(CJ[S,])} of the symmetric group algebra, namely the con-
jugacy class sums C),, which consist of sums of all permutation with a fixed cycle type p,

Cu=Y g, (2.5)

gESn
cyc(g)=p

4



and the orthogonal idempotents {F)}, corresponding to the irreducible representations of
Sy, which have the useful computational property that

F)\F)\:F)\, F)\F,,zofor)\#,u. (26)

These are similarly related by

1 1
Cu=— Y. hwawk, = N > xa(wCy, (2.7)
O =l A el =1\

where h) is the product of the hook lengths of the partition A, also given by the formulae

hy = 00D g ((;)

2.8
Al A—itj) (28)

1<, j<e(A)

Frobenius’s characteristic map is a linear map that intertwines these changes of bases in
Z(C[S,]) and A, defined by

chy: Z(C[S,]) — A
c,—P,/Z, (2.9)
F)\ — Su/h)\.

In fact this map is a linear isomorphism if we restrict its codomain to the space of homoge-
neous symmetric functions of degree n. It will be useful to extend the map ch,, to the whole
group algebra C[S,,| by defining

Chn(g) = Pcyc(g)/n! (2.10)

for a permutation g € S,,. Applying the tensor product map ch ® ch to the element

Y nlg@g e C[S,] @ C[S,] (2.11)
geSh
then gives
ch®ch (Z nlg® g) => ZLPA[xDPMy]) =Y Ss@)sy) =11 l%xyb
9ESy p lpl=n "t A |Al=n a,b “
(2.12)

where we have identified A ® A with the ring of symmetric functions in two sets of variables
x and y. The last equality is just the Cauchy-Littlewood formula ([23]). Restricting the 2D
Toda flow variables

t = (t1,19,...), s = (s1,52,...) (2.13)



to the power sum values
1 1
t =~ o Pi= = b 2.14
i Z Lq S i Z Yy ( )

we have
n

1 o
H e — ezizl Ztisi, (2.15)

1—=2x
a,b=1 alb

which is the vacuum 2D Toda 7-function, restricted to the values (2.14).

2.2 “Twisting” homomorphisms: multiplication by power sums in
the Jucys-Murphy elements

The map (2.12) can be “twisted” by elements of an abelian group Ap,, acting on the centre
Z(C[S,]) to obtain other 2D Toda 7-functions of interest as follows. The Jucys-Murphy
elements {7, € C[S,]},_, _, are defined as sums of transpositions,

b—1

Jo =Y (ab). (2.16)

a=1

They are easily seen to generate a commutative subalgebra of C[S,], and any symmetric
polynomial in them is in the centre Z(CI[S,]). We can adjoin to the ring of symmetric
functions A a “trivial” element F,, taking value n under the extended evaluation map

A A[Po] — Z(C[SHD
G G(J)

- 2.17
b=1

POHP()(j) =nld.

Remark 2.1. While the trivial element Py acts like a scalar for any fixed n, it allows us to write
down expressions for conjugacy classes C which hold uniformly for all n (see [6, 8]), such as

Pi(T) = Cyyn-s, Py(J) = 5Po(T)(Po(T) —1) = Cayns
1= Cn, 3P1(T) = 3Po(T) + 3 Po(T) (Po(T) — 1) = Cagyn-s. (2.18)

From these follow equations for products of conjugacy classes such as
02171—2 . 021n72 = 30317173 + 2022171—4 + (Z) Cln. (219)

In this way, the ring A[Py] can be seen as an inverse limit of the centres Z(CJ[S,]) for all n € N,
sometimes called the Farahat-Higman algebra [10].



Endomorphisms of Z(C|[S,]) consisting of multiplication by a central element are diagonal
in the basis {F},} of orthogonal idempotents. For elements of the form G(J), the result of
Jucys [20] and Murphy [24] gives the eigenvalues as

G(J)Fy = G(cont(\))F), (2.20)

where cont(\) is the multiset (possibly with repeated values) of contents of the boxes (i, j)
appearing in the Young diagram for the partition A,

cont(N) :={j—i:(i,j) € A} (2.21)

If G € A[P] is expressible in the form of a product

= f(P) [[Flxa), Pi=)_ ai (2.22)
a=1 a=1
the eigenvalue G cont())) is expressible as a content product:
G(cont(N)) = f(|A]) H F(j—1) (2.23)
(4,9)eX

Our “twisting” of the map ch®ch is defined to act on the second tensor factor only
through multiplication by a symmetric function G(J) for G € A[Fy] before applying the
Frobenius characteristic map:

ch®(choG(T)): Z(C[S,]) ® Z(C[S,]) = A® A. (2.24)

Using (2.20), it is easy to compute the result of applying the twisted homomorphism (2.24)
to the element (2.11) in the basis {S\([x])S,([y])} in three steps. First we apply the map
ch to the left tensor factor

cheld: > nlg®gm— Y Pux))®C, =Y mS\([x])® F) (2.25)

gESn 1y |pl=n A [Al=n

by egs. (2.3), (2.7). Then we multiply the right tensor factor by G(J)

Id@G(T): Y Sa(x]) @ Fy =Y G(cont(A))haSx([x]) @ Fi. (2.26)

A |Al=n A |Al=n

And finally, we apply the map ch to the right tensor factor

Id @ ch: Y G(cont(A))haSx([x]) @ Fy = Y G(cont(\))Sx([x])Sx([y]). (2.27)

A Al=n A Al=n



As will be seen in Section 2.4, this is the restriction of a 2-KP 7-function of hypergeometric
type to the values (2.14) of the flow parameters which, by suitable normalization, can be
extended to a Z-lattice of 2D Toda 7-functions.

We can perform the same computation in the basis { P\([x])P,([y])} instead. Multiplying
the basis elements C\ by G(J) gives a linear combination

T)Cx=>_GrCh, (2.28)
“w
where the coefficients G, are given in general by the character sum

ZG ((cont(¥)) xu (M) xo (1)- (2.29)

As will be seen below, in many cases G, is a combinatorial number, counting certain types
of paths in the Cayley graph of S,, from an element in the conjugacy class of type C to one
in the class C,. Applying the twisted homomorphism (2.24) to the element (2.11) in three
steps again gives

ch@ld: Y nlg@gr > Pi([x])®Cy (2.30)
gESn XA =n
Id®G(T): Y PAX)@Ci Y GrPi(x]) @ C, (2.31)
A A\=n X, 1y [ A=l =n
Id®@ch: Y GrPa(x) @ Cp > 2, Gru Pa([x]) Pu([y))- (2.32)
Aty [A|=|pl=n Aty [A|=pl=n

Comparing (2.27) and (2.32), we get a twisted version of (2.12):

ch ® ch (Z nlg® ( ) ZGAMP)\ ZG (cont(X)) Sx([x])Sx([y])-

gESn A [Al=n
A= W

(2.33)

2.3 Interpretation as generating functions

We now consider the combinatorial meaning of the coefficients G,,. If the operator G(J) is
taken to be the power series in a formal parameter z given by

Go(z,J) = N = ZPl F’ (2.34)
then the coefficient of z*/k! in G.(z, J) is the element
. k
P =D (ab) | = (Crin2)". (2.35)



This acts on the group algebra C[S,,] by multiplication by every possible product

(a1 b1)(az b2) - - - (ay by) (2.36)

of k (not necessarily disjoint, nor even distinct) transpositions. Thus, for any pair of permu-
tations g, h € S,, the coefficient of g ® h z*/k! in the element

Zn'g@ (z,T)9) (2.37)

gESh

is the number of solutions in S,, of the equation

h = (a1 b1)(azby) - - (ax by)g, (2.38)

which is precisely the number of k-step walks from the vertex g to the vertex h in the Cayley
graph of .S,, generated by all transpositions. If we then apply the characteristic map ch ® ch
to this element, as in (2.33), we see that the coefficient G, in this case is the generating
function for k-step walks in the Cayley graph from any vertex g with cycle type A to any
vertex h with cycle type p.

As another example, take the operator G to be the generating function H(z) for the
complete symmetric functions. Then G(7) is the power series

zszl_zjb Zz > InTe Ty (2.39)

b=1 = b1 <ba<---<bp

The eigenvalue of this operator acting on the basis elements F) is given by
H(z,J)F\ = ri(2)Fy (2.40)

where
)= J[a-z2(-0)" (2.41)
(ij)eX
The coefficient of 2* in H(z,J) is the operator on C[S,] which acts by multiplication by
every possible product (2.36) subject to the restriction that

by < by <--- < by, (2.42)

where a; < b; by convention. The corresponding walks in the Cayley graph are called
(weakly) monotone walks, and for this choice of operator G(J), the coefficient G, in (2.33)
is the generating function for k-step weakly monotone walks in the Cayley graph from any
permutation with cycle type A to any permutation with cycle type pu. These are precisely
the (nonconnected) monotone double Hurwitz numbers [12].



As a final example we can choose G to be the generating function E(z) of the elementary
symmetric functions to obtain an operator G(J) with combinatorial meaning:

n

Ew,J) = H(lerja) :iwk Z Tor Tos * = Ty, (2.43)

a=1 k=0 b1<b2<---<bk

The eigenvalue of E(w,J) acting on the basis elements F) is given by
E(w, J)Fy = rf(2)Fy (2.44)

where

rY(w) =[] @+ w(j—1). (2.45)
(ijeN
The inner summation in (2.43) is now over strictly increasing sequences of b;’s instead of

weakly increasing sequences. The corresponding walks in the Cayley graph are called strictly
monotone walks, and the coefficient G, becomes the generating function for these walks.

2.4 Fermionic construction of 2-Toda 7-functions

In the following, F denotes the full Fermionic Fock space, Fy the charge N sector, N € Z,
with orthonormal basis elements {|\; N)} labelled by partitions A. The vacuum vector in the
Fn sector is denoted |N) := |0; N). The Fermi creation and annihilation operators, wi,w;r
satisfy the usual anticommutation relations

e 0] =0y, [l =0, [l wfly =0, (2.46)
and the vanishing relations
UIN)=0for j< N -1,  ¢!|N)=0forj>N. (2.47)

The normal ordered product :0;0s - - - Oy: of Fermionic operators is defined so that their
matrix elements in the vacuum state |0) vanish. The KP or 2D Toda flow parameters are
denoted t = (t1,ts,...) and s = (s1, 2, ...) and

t = [4], t; = %tr(Ai) (2.48)

denotes their specialization to the trace invariants of a matrix A. The vertex operators
generating the KP and 2D Toda flows are defined as

Az (b) = e s (2.49)
where
Ji= ) il (2.50)
JEZ

10



More generally,
§ = eliiez Aiipinh]: (2.51)

denotes the GL(o0) group element determining a Z-lattice of 7-functions as vacuum expec-
tation values

7,0 (N t) = (N[3+()g|N), (2.52)
7.0 (N, 8, 8) = (N34 (£)§ 7 (s)| V), (2.53)
In particular, we have the abelian subgroup Cc GL(00) consisting of diagonal operators

of the form

A et
§=C, = e2iez Tivivy: (2.54)
where

pi = el (2.55)

These are referred to as convolution symmetries in [18], since in a basis consisting of mono-
mials in a complex variable z, the p;’s may be viewed as Fourier coefficients of a function
p(z) € L*(S'), that acts by convolution product. Defining r; as the ratio of consecutive

elements,
rp= P =TT (2.56)
Pi-1
we have [18]
CulA; N) = rA(N)|A; N, (2.57)
where
r(N) =ro(N) T[ rveimss (2.58)
(1.7)EX
H;.V:_Ol p;j it N>0,
ro(N) = 1 it N =0, (2.59)

Since the convolution symmetry operators C’p are diagonal in the orthonormal basis |A; V)

and
(A N[F-10) = (0]74[A; N) = Si(t), (2.60)

the corresponding 7-functions have Schur function expansions

TEF (N, 8) = (N34 (6) G| N) = Zm (2.61)

e TNt 5) = (N34 (£)CA—(s)|N) =D ra(IN)Sa()Sa(s). (2.62)
A

11



This class of 7-functions is referred to in [27] as being of hypergeometric type, since it includes
various multivariable generalizations of hypergeometric functions.
Equivalently, we may define the N-shifted operator

Co(N) = RN, RN = eXaea Trenbity: (2.63)
where R is the shift operator defined by
R|X;N) = [\, N +1). (2.64)
Then TgpP(N ,t) and Tg? Toda( N t,s) may equivalently be expressed as
6P (N, £) = (0134 (£)C,(N)|0) (2.65)
7el (N, t,8) = (034 (£)Cp(N)A-(5)[0). (2.66)

2.5 The abelian group Ap and the intertwining homomorphism 7

If we choose the “twisting” homomorphism G(J) from Section 2.2 to be the generating func-
tion H(z,J) for complete symmetric polynomials in Jucys-Murphy elements, as in (2.39),
it is easily verified that the eigenvalues are given by

H(z, J)Fy = r(0)Fy, (2.67)
where

z z z 1
TE\](O) = H rg-,]i, 7“][-] =1 o (2.68)
(1,7)EX

Forming a product of such elements, with the parameter z replaced by a sequence of distinct
values

z={%}oc1, m (2.69)

and defining
1=
9@' = - Z, 2.70
DI (2.70)

a=1
it follows that .
e X2 0:P(T) H H(za, J), (2.71)
a=1
and hence this operator has eigenvalues
X ORI By = B () Py (2.72)

12



where

A0 =T O =T TT 273

a=1 a=1(i,7)eX 1= <‘7 N Z>Za
Extending this to include the trivial element Py(J) = n = |\|, we have

X0 0P By = ol 70y (2.74)

Let Ap denote the abelian group within A[F] consisting of elements of the form
eXZ0biPi _ pboPo H H(zq4,%), (2.75)

which acts on each centre Z(CI[S,]) via the evaluation at Jucys-Murphy elements as (2.74).
Applying the characteristic map ch ® ch to the “twisted” sum corresponding to multiplication
by the element (2.75) gives

ch ®ch (Z nlg® (ezzogipi(j)g>> = Z egol’\‘r&z](O)SA([X])S,\([y]). (2.76)

9ESn A |A=n

Note that, since the 6;’s may be viewed as the trace invariants of diagonal matrices having
the z,’s as eigenvalues, the first m of these {6,...,0,,} are independent, while the others
are determined in terms of these by the solution of polynomial equations. However, if we let
m — oo and extend {Za}azl,...,m to an infinite sequence of distinct complex parameters that
avoid reciprocals of integers and satisfy the convergence property

Z|za| < 00, (2.77)
a=1

it follows that the infinite product

(o)
2.78
11 =g 219
a=1(i,j)eA

converges, and the t;’s are functionally independent.

Since the image under the characteristic map ch of the centre Z(C[S,]) is precisely the
homogeneous degree n part of the ring A of symmetric functions, the map ch can be extended
to a linear isomorphism

ch: @D Z(C[S,]) — A, (2.79)

n>0
which we can compose with the Fermionization map
A — F 0

(2.80)
Sx = |A;0)

13



to get a linear isomorphism

5: P z(Cls.) = Fo
n=0 . (2.81)

The linear action of the group Ap on each of the summands Z(C[S,]), extends to a diagonal
action on the domain of the map §. We also have an action of the group of convolution
symmetries C on the codomain of the map §. We now define a map Z: Ap — C between
these actions for which § is the intertwining map.
Restricting ourselves to a set of parameters {za}azl

1
— ¢7Z, (2.82)
Za

we can define the homomorphism by

I: .Ap — é 583
eXiz00iPi |y djez Tj:ij;: = ép([z]); ( ‘ )
where
el [T IHk 11= kza it j >0,
pi(lz]) = eh = e if j =0, (2.84)

% Iy H2=j+1(1 —kz,) if j <O,

300 — S S In(1 - kz,)  if 5 >0,
T, =< jby if j =0, (2.85)

0o+ > S In(l = kza) i j <0,

i pillE) e, ﬁ _1 (2.86)

T pia(lz]) s 1=z
It follows that
Coap|; 0) = €™M (0)[2;0), (2.87)

where TLZ](O) is defined in (2.73).
We then have the following:

Theorem 2.2. The map §: €D, >, Z(C[S,]) — Fo intertwines the multiplicative action
of the group Ap on D, >, Z(C[Sy]) with the linear action of the group C on Fy via the
homomorphism I: Ap — C.

14



Proof. This follows from the fact that, up to scaling, the linear map § takes F into |\;0)
and these are, respectively, eigenvectors of the automorphism of Z(C[S,,]) defined by multi-
plication by e>=0*F and I (e>=0'") which, as given by (2.74) and (2.87), have the same

eigenvalue eto"“r[;](O). O
Remark 2.3. Note that on the intermediate space A of the composition

5: @ 2(ClSn)) = A — Fo, (2.88)

n>0

multiplication by Py(J) € Ap corresponds to the Eulerian operator

Z k;Pk Z Tim— 83: (2.89)

while multiplication by P;(J) € Ap corresponds to the cut-and-join operator of [11, 12, 13, 21],

Z<z+j 0 +ijP, o > (2.90)
- 7/+ y . .
! Fy 0P, i+ T OP,0P;

Remark 2.4. Alternatively, the homomorphism Z: Ap — C may be defined by

S0 0Py (Xien (T30 0 Ty M) i) (2.91)

where the sum Zizl k? is defined for j < 0 by interpr(?ting it as a polynomial in j of degree ¢ + 1.
Thus, multiplication by P;(J) € Ap corresponds, on C, to the operator

ST E) gl (2.92)

JEZ k=1

3 Examples

3.1 Double Hurwitz numbers

Following Okounkov [26], for a pair of parameters (f3, q), we choose

olw®

8i(j+1)

. . - 1
ry=qel®,  py=qlerUTN 5= pigres. (3.1)

(The choice p; is used in [26]; the choice p; fits more naturally with the conventions of
Theorem 2.2. For N = 0, which is the only case needed, the two 7-functions coincide. The
relationship between the two for general N is indicated below.) It follows that

ra(N) = g2V V=D ENW1) Al BN o cont, (3.2)



where

()
1
conty = P;(cont(N)) = (j—1i)= 3 Z Ai( A — 20+ 1), (3.3)
(4,7)EX 1=1
or
N
FA(N) = ra(N)gFe's | (34)
Defining
j .
= > bl for ke N N =Y wpl, (3.5)
JEZ JEZ

the convolution symmetry elements corresponding to p and p are
C, = e Fitpls C; = C’pqéﬁegN. (3.6)
The Fourier coefficients of the element p(z) of Ly(S') are thus given by
pj = o na+ 552 (3.7)
Summing, we obtain an elliptic #-function
e e’z B
S el = SR U g (250 (3.8)
: : q q 2
JEZ JEZ

Under the homomorphism (2.83), the element of Ap mapping to C’p is thus

T:ematb b O (3.9)

The corresponding 2D Toda 7-functions are
72D RN, 8) = (N34 () CA(s) ) (3.10)
72D TN, 8, 5) = (N]3: (6)C5A()[N) = = €5 720 (N ¢, 5). (3.11)

The generating function for the double Hurwitz numbers [26]

Fo,(t,8) = Zq Z .ZHurb/\,u Py(t)P,(s), (3.12)

IAl= W\

which counts only simply connected branched coverings of CP?, is then the logarithm
Fe,(t,s) = In ( 72D Toda ), s)) (3.13)
of - o
e (0, t,8) =) gy % > " Covi(A, 1) PA(t)Pu(s), (3.14)

n=1 b=0 = A\p
[Al=|pl=n

where n is the number of sheets in the covering, b is the number of simple branch points in
the base, A and p are the ramification types at 0 and oo, and Covy(A, ) is the total number
of such coverings.
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3.2 Monotone double Hurwitz numbers

Consider the Harish-Chandra-Itzykson-Zuber (HCIZ) integral

In(z, A, B) = / e~=NuUAVIE) gy ]ﬁk il ZNaij)lSi’jSN (3.15)
o v (a)A(b)

€U(N)

where du(U) is the Haar measure on U(N), A and B are a pair of diagonal matrices with
eigenvalues a = (ay,...,ay), b = (by,...,by) respectively, and A(a), A(b) are the Vander-
monde determinants. Defining

Fn = m In (Zy(z, A, B)), (3.16)

it was shown in [12] that this admits an expansion

Fv= 23 S RO 17

g=0 n=0

Ait=n
), L) <N

where H ¢(A, 1) is a monotone double Hurwitz number, which equals the number of transitive
r-step monotone walks in the Cayley graph of .S,, from a permutation with cycle type A to
one with cycle type p and

r=29—2+L\)+ (1) (3.18)

It is also well-known that the HCIZ integral Zy(z, A, B) is, within the normalization factor
1

o (N) = ———, (3.19)
[Tizo #!
equal to the 2D Toda 7-function 7HC%(V, t,s) with double Schur function expansion [17,
Appendix A]
r&P(N)In(z, A, B) = THC% (N t,8) Zre"p (t)Sx(s), (3.20)
(SN
where
ex _ZN)l)\l . .
PN = , (V= [[ V+i-0, (321
k') N >
< k=0 ) M) (3,9)EX

evaluated at the parameter values

t=[4, s=[B] (3.22)



This may be expressed as the fermionic vacuum state expectation value

T (N [A], [B]) = (N3 ([A) Cexpy-(IBNIN) = (0134 ([A]) Cexp(N)F-([B])I0)  (3.23)

where
C’exp — e ?io(jln(*ZN)*ln(j!))iijji (3'24)
C’exp(]\[) — eje-n((G+N) 1H(—ZN)—1H((j+N)!))Z¢j¢;1‘ (3.25)

The convolution group element C’exp(N ) is the image, under the homomorphism Z: Ap — C,
of the element

¢ IENPI) X2 CEP(T) o mn(=NPI) B (Z1 /N, ) (3.26)
T (e NI (=1 /N, F)e DD ) - oy (N), (3.27)

3.3 Mixed double Hurwitz numbers

The mixed monotone Hurwitz numbers are defined in [13] as the number of r-step walks in
the Cayley graph of S,, from a permutation with cycle type A to one with cycle type u, subject
to the restriction that the first p < r steps form a weakly monotone walk, and the last » — p
steps are unrestricted. This case has a generating function that is obtained by composing
the group element (3.9) in Ap corresponding to the ordinary double Hurwitz numbers with
the one (3.26) corresponding to the monotone ones. Applying the homomorphism Ap to the
product therefore gives the product of the convolution group elements

I( MO +BRUT) === PO() f (1 /N, j)) = maPHBR G (N, (3.28)

It follows that the factor r,(/N) that enters in the double Schur function expansion of the
corresponding mixed double Hurwitz number generating function is given by the product of
the ones for these two cases,

(—zN)

TA(N) = q%N(N_l)egN(NQ_l)qp\‘eﬁNP\\eﬁCont,\ — .
k=0 kl) Noy

(3.29)

3.4 Determinantal matrix integrals as generating functions

Following [17, Appendix A], we can obtain a new class of combinatorial generating functions
that generalize the case of the HCIZ integral as follows. Choose a pair («,q) of (real or
complex) parameters, with o not a positive integer, and define

(00) {M ifj > 1,

. 3.30
€ 1 if 7 <0, (3:30)
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where
(a)j =ala+1)---(a+j—1) (3.31)

is the (rising) Pochhammer symbol. Then

(a,9) (j—a) g -
o) _ P ) = (3.32)
J pga 9 1 ifj <o,
and
Py e _ [ (=)~ () if > 1, (3.3
! ! 0 if 7 <0.
For any N € N, let
Clag)(N) 1= 5w T vy (3.34)
be the corresponding shifted convolution symmetry group element.
We then have, for /(\) < N,
Clag(NIX;0) =™ (V)| X;0) (3.35)
where v )
a, o (a, — Q)
) =g N T e = e (3.36)
(4,7)EX A
with
N-1 1 N—-1 (1-a),
T(a Q)(N> _ p§a,Q) _ qu(N—l) - J (337)
7=0 7=0 J:
and
176))
(@) =] Jla—i+ 1), (3.38)
i=1
the extended Pochhammer symbol corresponding to the partition A = (A1, ..., Ayn)-
For N € N*, we have the 2D Toda chain of 7-functions
Tey (N1 £:8) = (014 (8) Clagy (N)7-(5)[0) = Y 757 (V) S5 (6)Sa(s), (3.39)

A

evaluated at the parameter values (3.22). As shown in [17], this is just the matrix integral

Tew. (VL [AL[B]) = r§™ P (N) / det(Iy — qUAUTB)N=du(U) (3.40)
’ UEU(N)
. (det(l — qaibj)lgi’jSN)a_l
A(a)A(b) (3.41)
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We now use the other construction to derive an interpretation of this as a combinato-
rial generating function. Evaluating the generating function for the elementary symmetric
polynomials at the Jucys-Murphy elements

n

Ew,J) =[]0+ wd.) (3.42)
a=1
defines an element of Ap. Applying the product
qz\ "o
(-&)" B D) Ew,7) (3.43)
to the orthogonal idempotent F, we obtain
qz\ (1/w)a
=) H E Fy =N LRy 3.44
(-%) HG D Ew DB =" T E (3.44)
Specializing to the values
1
z /N, w=g—r, 4], s=[B] (3.45)

and choosing ¢(\) < N, we obtain the same eigenvalue, within a normalization factor, as in
(3.35), namely

o Py (N —a)y P (N)
= _ _ _ _ A AL T
(a(§ 1) HEUN DB = ), J)F = M52 o P
(3.46)
Under the homomorphism Z: Ap — C, we thus have
Py C’a N
<q (% _ 1)) H(—1/N,J)E(~1/(N — a),J) v ré(“;f)((N)) (3.47)

Applying the product ¢ H(z, J)E(w, J) to the conjugacy class sum C therefore gives

¢ H(z, J)E(w,J)Cx = Y _ 2w Y ¢MNE (N, p)Cy, (3.48)

k,1=0 o
where, similarly to the mixed double Hurwitz numbers, Ej;(A, ) is the number of (k+1)-step
walks in the Cayley graph of S,, starting at a permutation with cycle type A and ending at
a permutation of cycle type p which obey the condition that the first k steps form a weakly
monotone walk, and the last [ steps form a strictly monotone walk.
Applying the map ch ® ch to desn n!g® (qPOH(z, J)E(w, J)g) gives

o0

D nlg@ (¢"H(z, J)E(w,J)g) = > 2w’y qNEpi(A ) Pa(t) Pu(s)
gESn k=0  |\=|ul=n
=Y Pz, w)8a(t)S)(s), (3.49)
[A|l=n
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where

_ 1+ —dw
ra(z, w) = H T (3.50)
(4,5)€X
and hence o)
a BY 11\ A
(G0 (Fws) = oo

Therefore, in the limit N — oo, the matrix integral (3.40) is the generating function for the
number of weakly-monotonic-then-strictly-monotonic double Hurwitz numbers.

3.5 A further example: multimonotone paths

In a recently posted paper by Alexandrov et al [1], a further class of functions, denoted
Z(homy (8,1, . . . U |[PY, ..., p®), with structure similar to the generating function for Hur-
witz numbers was studied. These depend on a set of m+1 parameters (s, u1, ..., u,), and are
expressible as sums over k-fold products of Schur functions Hle Sx(p™), whose coefficients
are products of functions of the individual parameters (s, uy,...,u,), which are themselves
content products of the type (2.23). For k = 1 or 2, it follows from their definition that
these are KP and 2D Toda 7-functions of hypergeometric type; for £ > 2 they have no such
interpretation.
The k = 2 case is defined by the double Schur function expansion

Z(Q,m)(sa Uy aumlp(l)a p(2)> - Z TE\S’UM.”’um)S)\(p(l))S)\(p(2))7 (352)
A

where

Tf\s,uh.-.,um) — SlM H H (Ua +17— ]) (353)

a=1(ij)ex

and the k = 1 case is obtained by setting p® = (1,0,0,...). Although similar in form to the
simple and double Hurwitz number generating functions, no combinatorial interpretation of
these was given in [1]. The case Z1) is just the well-known partition function of the
[tzykson-Zuber 2-matrix model [19] with exponential coupling, which has long been known
to be a 2D-Toda 7-function [15, 16, 17], with the resulting divergent Schur function expansion
interpreted as a multi-Borel sum.

The combinatorial significance of Zs,,) for all m € N7 is very easily understood in our
approach. To express this example in the notational conventions above, it is convenient to
define slightly different expansion parameters

q:= (—1)mSHua, Wo = —1/Uuy, a=1,...,m, (3.54)
a=1
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and denote

Z(Q,m)((L wi, - - - aw’m|p(1)7 p(Q)) = Z(Z,m) (Sa Ui, .- - 7um|p(1)7 p(2)) (355)
The diagonal double Schur function expansions for Z(g}m)(q, wr, ..., wy|p™, p?) may then
be re-expressed as a double series over products Py(p"))P,(p®) of power sum symmetric
functions via the Frobenius character formula (2.3), and further developed as multiple Taylor

series in the variables (p,wy, ..., wpy):

~ n nd, dm

I S S 01| R R
n=0 dl,dz,

I\\M

(3.56)

E/(\Z’dl""dm) in this series have a simple combinatorial meaning. They are the

The coefficients
number of paths in the Cayley graph of S,, generated by transpositions (ab), a < b, starting
from an element in the class sum C) and ending at one in the class sum C),, related by
multiplication by a product of transpositions of the form

(aaby) -+ (aaba), d:=» di, (3.57)

in which the b;’s are strictly monotonically increasing within each successive segment of
length d;, starting at (a1b;).

(q7 ----- wm)

To see this, just note that the reparametrized content product 7y appearing in

the diagonal double Schur function expansion

Zomy (g wi, ..., we|p?) ZT el gy (pM)Si(p®), (3.58)

is
fgq,wl,.., g H H (14 wa(j —1)). (3.59)
a=1 (ij)eX
From the discussion in Section 2.3, this is just the product of the eigenvalues of the generating

functions of the elementary symmetric functions, expressed in terms of the Jucys-Murphy

elements,
n

E(we, ) = [ [(1 + waJ), (3.60)

a=1
and each of these generates strictly monotonic paths. The element G(J) € A[Fy] used to de-
fine the “twist” in this case is therefore the product ¢"*7) [T"_, E(w,, J), whose eigenvalues
T&q’wl’ W) i the F\ basis

¢ [ Ewa, T)Fx = 70 Fy (3.61)
a=1
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are given by (3.59). The multimonotone Cayley path interpretation follows from the discus-

sion of the last example in Section 2.3.
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