$$Math Proportion Teb 17, 2021$$

$$What remains to be done from our mini-overview?$$

$$The green things below.$$

$$\Delta purthonable$$

$$h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$K[\Delta] Cohon-Macaulayness ochicle("te") h(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) \ge 0$$

$$H_{\Delta}(\Delta) = h_{\Delta}(\Delta)$$

$$H_{\Delta}(\Delta) \ge 0$$

$$H_{\Delta$$

A hyperplane
$$H = \{x \in \mathbb{R}^{d} : a \cdot x = b\}$$
 for some $a \neq a$
and has bus half-spaces $H^{\dagger} = \{x \in \mathbb{R}^{d} : a \cdot x \ge b\}$
 R^{2} $H^{\dagger} = \{x \in \mathbb{R}^{d} : a \cdot x \ge b\}$
 $H^{-} = \{x \in \mathbb{R}^{d} : a \cdot x \ge b\}$
 $H^{-} = \{x \in \mathbb{R}^{d} : a \cdot x \ge b\}$
 $A polyhedness $P \subset \mathbb{R}^{d}$ is a finile intersection
 $P = \bigcap_{x = 1}^{\infty} H^{\dagger}_{i}$ of half-spaces
and if it is bounded, it is called a (convex) polytope.

 $A force F \subset P$ a polyhedness is an indersection $F = H \cap P$
(say H^{\dagger} support $P$$

Math 8680 Feb. 19,2021 The upper bound conjecture Q: Fixing d, n, how large can fie (P) be for a d-dimil polytope with f (P)=n vertices ? PROP: One can restrict attention to simplicial polytopes, see Grünbauws) since for every d-polytope Q $\exists a simplicial polytope P$ "Gonvex polytope having $f_0(P) = f_0(Q)$ and $f_1(P) \ge f_1(Q)$ $\forall k$. ss.2poof sketch: Apply the following vertex-pulling process at each vertex of Q to obtain P: \mathbb{Q}' replace v \sim $V = V + \in \sum_{\text{fracts}}^{n}$ where 620 is small enough that V' crosses no facet hyperpolane for facets F=V. Gı 0 5 G G**1 G2

One can show that Q' has exactly these faces: (a) faces F of Q with v&F (6) faces of form G*v' for faces G of Q not containing V with GSF a face of Q cone/pyramid antrining with base G and apex v' Note we get an injection {k-frees of Q] ~ {k-frees of Q'] F →) F if v∉F Gxv' for any facet Gof F ifveF Now pull every vertex of Q to get P, and Pissimplicial B Note that in a simplicial phytope P, $f_{k-1}(P) \leq \binom{n}{k}$ where $n = f_0(P)$ since $\partial P = \Delta$ is a simplicial complex with n vertices Can we have equality here? n=tu/ Yes, the (n-1)-simplex does $f_{=}(f_{-1}, f_{0}, f_{1}, f_{2}, f_{3})$ =(1, 4, 6, 4, 1)

REMARKS: 1) Ad-polytope cannot be ([-2]+1)-neighborly with out being a simplex, i.e. d=n-1 (maybe on EXERCISE for the?) 2 Motzkin thought maybe all 125-neighborly polytopes have some face poset as C(n,d), but that's vastly false. (3) HW Exercise 5 is telling us the facial structure of C(n,d) (Galers evenness criterion) (4) Points on the curve $\begin{pmatrix} t \\ t^2 \\ t^3 \\ \vdots \\ t^4 \end{pmatrix}$ also come up in real algebraic geometry (Shapno-Shapito Conj, e.g.)

proof: If
$$C(n,d)$$
 were not simplicial, then
some facet has $\geq dr1$ vertices $\chi(t_1), \chi(t_2), \dots, \chi(t_{d+1})$
lying on some affine hyperplane $c_0 + c_1 \chi_1 + c_2 \chi_{d-1} + c_d \chi_d = 0$ in \mathbb{R}^d
(i.e. $c_0 \cdot \chi = -c_0$)
giving a nortainal solution to
 $\begin{pmatrix} 1 & t_1 & t_1^2 & \cdots & t_d^d \\ 1 & t_2 & t_2^2 & \cdots & t_d^d \\ \vdots & \vdots & \vdots \\ 1 & t_{det} & t_{det}^d \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$
invertible, Vandermonde metrix with $t_1 < t_2 < \cdots < t_{d+1}$
 $det = TT(t_1 - t_1) \neq 0$. Contradiction
 $I \leq i < j \leq dH1$
To show $C(n,d)$ is $[\chi_1]$ -neighborhy, given any
 $F = \{i_n, i_{2,-1}, i_k\} \subset \{i_{1,2}, \dots, n\}$ with $2k \leq d$
with $f(\chi(t_1)) = 0$ for $i \in F$
 $f(\chi(t_1)) \geq 0$ of same sign for $i \notin F$

We CLAIM: This f(x) does it:

$$f(x) = det \begin{pmatrix} 1 & 1 & 1 & 1 \\ x_1 & Z & Z & X_1 \\ x_2 & X(fi_1) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) & X(fi_1fi_1) \\ X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) & X(fi_1fi_1) \\ X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1fi_1) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) \\ X(fi_1re) & X(fi_1re) & \cdots & X(fi_k) & X(fi_1re) \\ X(fi_1re) & X(fi_1re) & X(fi_1re) & X(fi_1re$$

Hence Motzkin conjectured: $f_{k}(\mathcal{P}) \leq f_{k}(\mathcal{C}(u,d))$ $\forall d$ -polytopes with n vertices. (UBC

$$(OBOLIARCT: Any ajclic polytope C(n,d)
(or any [12]-neighbor of polytope)
has $f_{k-1}(C(n,d)) \stackrel{s}{=} (h) for 0 \le k \le [12]$
and $h_{k}(C(n,d)) \stackrel{s}{=} (h-d) + k-1) for 0 \le k \le [12]$
and $h_{k}(C(n,d)) \stackrel{s}{=} (h-d) + k-1) for 0 \le k \le [12]$
and $h_{k}(C(n,d)) \stackrel{s}{=} (h-d) + k-1) for 0 \le k \le [12]$
 $proof: We saw that when we have two sequences, with differed)
 $f \stackrel{s}{=} (f_{-1}, f_{0}, f_{n}, --)$
 $h \stackrel{s}{=} (h_{0}, h_{1}, h_{2}, -)$
related by $\stackrel{\infty}{\longrightarrow} f_{k-1} (\frac{+}{1+k})^{k} = \sum_{\substack{l=0 \\ l=0}}^{\infty} h_{lk} t^{k}$
then f and h have the untriangular velation for
 $h(\Delta), f(\Delta)$ of $(d-1) - divid supplicial complex for all j.
 $(h_{0}, h_{1}, h_{2}, -, h_{1}) (s, (f_{1}, f_{0}, -, f_{1}))$
Take $f_{h} \stackrel{s}{=} (h)$ for $k = 0, 1, 2, ..., n$ (so this is $f_{k}(C(n,d))$)
and then $\sum_{\substack{k=0 \\ l=0}}^{\infty} (h) (\frac{+}{1+k}) \stackrel{s}{=} \sum_{\substack{l=0 \\ l=0}}^{n} (h) (\frac{+}{1+k}) \stackrel{s}{=} (\frac{1}{(1+k)}) (\frac{+}{1+k})^{n}$
 $= \frac{1}{(1+k)^{n}} \stackrel{s}{=} (-1)^{n} (\frac{1}{(1+k)^{n}})$
 $= \frac{1}{(1+k)^{n}} \stackrel{s}{=} (-1)^{n} (h) \stackrel{s}{=} (h-1)^{n} (h-1)^{n}$
 $= \frac{1}{(1+k)^{n}} \stackrel{s}{=} (-1)^{n} (h-1)^{n} (h-1)^{n}$$$$$

Hence
$$h_k(C(n,d)) = \binom{(n-d)+k-1}{k}$$
 for oske [d].
Where are ve?
 $\Delta = \partial (\frac{m}{m}) \Rightarrow \Delta shellable}$
 $h_k(\Delta) = h_k(\Delta)$
 $h_k($

Mach 8650 Feb 24, 2021
PROP: If G a face of P has facets containing G
being
$$|F_1, ..., F_5|$$
 with
 $F_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\} \cap P$, $H_i^{t-}\{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 H_i $f_i \in (\mathbb{R}^d)^T$, $f_i(x) = b_i$
 H_i $f_i(x) = b_i$
 H_i $f_i(x) = b_i$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 H_i $f_i(x) = b_i$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 H_i $f_i(x) = b_i$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 H_i $f_i(x) = b_i$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$
 $f_i = \{x \in \mathbb{R}^d : f_i(x) = b_i\}$

A four Zi = { Ci} in Rd is a collection of ours Ci which is closed under taking faces/subcones and has CinCijisaface of each Ci, Cj, Say Z is a complete for (in IRd) if UCi=Rd

- non-complete (sub-)fan in R² $\sum = \{ [2], p_n, p_2, p_3, p_4, p_5, \dots, p_{n-1}, p_{n-1}$ \dot{C}_{1} , C_{2} , \dot{C}_{3} , \dot{C}_{4} , \dot{C}_{5} is a complete fam in R² $C_{v_1}C_{\overline{v}}$ Every d-dimil polytope P C IR, containing the origin in its interior has three related objects ...

• face fan
$$F(P) \subset \mathbb{R}^{d}$$

a complete $:= \sum \operatorname{cones} C_{F} \operatorname{through} \operatorname{each}_{P}$
 fan $\operatorname{proper face}_{F \cong P}$
 $\operatorname{I.e.}_{F} := \sum \mathbb{R}_{\geq 0} \cdot \vee$
 $\operatorname{waters}_{V \subseteq F}$
 $\operatorname{e6.}_{[1]} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \mathbb{R}^{2}$ ver_{F}
 $\operatorname{e6.}_{[1]} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \mathbb{R}^{2}$ ver_{F}
 $\operatorname{e6.}_{[1]} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \mathbb{R}^{2}$ ver_{F}
 ver_{F}
 $\operatorname{e6.}_{[1]} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \mathbb{R}^{2}$ ver_{F}
 ver_{F}
 $\operatorname{e6.}_{[1]} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \mathbb{R}^{2}$ ver_{F}
 $\operatorname{ve$

REMARK: Changing the choice of 9 in interior of P does change Ps in (Rd)* but doesn't affect the comb. structure of P^D or F(P) or F(P^D)=N(P) i.e. Faces $(P) = Faces (P^{A})^{opp}$ are all unchanged poset

We'll need one further fact:
USMMA: In a polytope P, favertex v has edge neighbors

$$(3 \text{ seeder's})$$
 $1v_{1,1}v_{2,1-3}v_{3}$, then
 $P \subset v + [R_{\geq 0}(v_{1}-v) + ...+R_{\geq 0}(v_{5}-v)]$
called the vertex core of P at v
 $V = V$ of V v_{1} v_{2} v_{3} v_{4} v_{5} v_{5}