Math 8680 Feb 17,2021
What remains to be done from our mini-overiew?
The green things below.

Polytopes $\prod_{0}^{7} \quad$ [See Ziegler's "lectures on polytupes"]
DEF'NS: $A \subseteq \mathbb{R}^{d}$ is convex if $\forall a, a^{\prime} \in A$ be points

$$
\begin{aligned}
& \text { it } \forall a, a^{\prime} \in A \text { be points } \\
& \left\{c a+c^{\prime} a^{\prime}: c, c c^{\prime} \geqslant 0, c+c^{\prime}=1\right\} \\
& \subseteq A
\end{aligned}
$$

convex

$$
\begin{aligned}
& \text { The convex hull } \operatorname{conv}(A)=" \text { smallest" cover set } C \supseteq A \\
& :=\bigcap_{\text {convex } C \subset \mathbb{R}^{d}:}^{C \supseteq A} \left\lvert\,=\left\{\begin{array}{l}
\left.\sum_{i=1}^{c} c_{i} a_{i}: \begin{array}{c}
a_{i} \in A \\
c_{i} \geq 0 \\
\sum_{i=1} \sum_{i}=1
\end{array}\right\}
\end{array}\right\}\right.
\end{aligned}
$$

A Confine hyperplane $H=\left\{\underline{x} \in \mathbb{R}^{d}: \underline{a} \cdot \underline{x}=b\right\}$ for some $\underline{a} \neq 0$ $b \in \mathbb{R}$ in \mathbb{R}^{d}
and has two half-spaces $H^{+}=\left\{x \in \mathbb{R}^{d}: \underline{a} \cdot \underline{x} \geqslant b\right\}$

$$
H^{-}=\left\{\underline{x} \in \mathbb{R}^{d}: \underline{a} \cdot \underline{x} \leq b\right\}
$$

A polyhedron $P \subset \mathbb{R}^{d}$ is a finite intersection $P=\bigcap_{i=1}^{s} H_{i}^{+} \quad$ of half-spaces and if it is bounded, it is called a (convex) poly tope.
 not a poly tope
A face $F \subset P$ a polyhedron is an indersecton $F=H \cap P$ where $H^{+} \supseteq P$ $C_{\text {say }} H^{+}$supports P

Faces F have a dimension $\operatorname{dim}(F):=\operatorname{dim}(A f f(F))$

fine hull of $A \subset \mathbb{R}^{d}$
A Aff(A): $=$ afflux a thine spice

$\mathrm{H}^{+} \mathrm{H}$
ϕ empty set is a tace
$\operatorname{dim}(\phi)=-1$
CONVENTion:
$F=P$ is the
(improper) face of P
$\underset{\substack{\text { ocminday } \\ \text { of }}}{\partial P}=\left[\begin{array}{c}\text { proper faces } \\ F \neq P\end{array}\right]$
POLTTOPE FACTS (see Ziegler)

- Apolytope $P=\operatorname{conv}(\{$ vertices of $P\})$
- The pose of faces of P ordered by Faces (P) inclusion has...

- Faces (P) is finite
- Has every maximal chain

$$
\begin{aligned}
& \text { under Coolly } \\
& \text { inclusion order sunset }
\end{aligned}
$$

of the sure length

$$
\begin{aligned}
& \phi \subset F_{0} \subset F_{1} \subset F_{2} \subset \ldots \subset \frac{F_{\text {din }(0)-1}}{4} \subset P_{1}^{\prime \prime} \\
& F_{\text {din }} \\
& F_{-1} \\
& \text { called a facet }
\end{aligned}
$$

- Faces (P) is a graded/ramked poset, vanked by $\operatorname{dim}(F)$, i.e. if $F \ll F^{\prime}$ then $\operatorname{dim}(F)=\operatorname{dim}\left(F^{\prime}\right)-1$.

- Faces (P) is a latfice, meaning $\forall \neq F$ J

$F \vee G:=$ smallest uppor bound for F, G

$$
=\bigwedge_{H \in \text { Faces }} H=\bigcap_{\text {sumne } H} H
$$

$$
H \geqslant F, G
$$

- Faces(P) is contomic , i.e. $F=\bigwedge_{\text {coaboms }} c$ cacams
$c \geqslant F$ i.e. face $F=\bigcap G$ frats G : G2F
- Faces (P) is atomic,
i.e. $F=\bigvee_{a b m s} a$
- When P is simplicial, meaning all (proper)fuces/facets are simplices, then $\Delta:=\partial P=$ boundany frees of P
d-dimil convexhull. of $(d+1)$-points (abstract) simplicial
on vertex set vertices (P)

is an (abstract) simplicial complex

Math 8680 Feb. 19, 2021
The upper bound conjecture
Q: Fixing d, n, hor large can $f_{k}(P)$ be for a d-dimil polytope with $f_{0}(P)=n$ vertices?
PROP: One an restrict attention to simplicial porybopes, (seeGünbawn's) since for every d-polytope Q, \rightarrow a simplicial polybope P
 proof sketch: Apply the following vertex-pulling process af each vertex of Q to obtain P :

where $\in>0$ is small enough that
V^{\prime} crosses no facet hyperplane for face f $F \not F V$. of Q

One can show that Q^{\prime} has exactly these faces:
(a) faces F of Q with $v \notin F$
(b) faces of form $G_{7}^{G * v}$ for faces G of Q not containing v with $G \subseteq F$ a face of Q
cone/pyramid with base G conning" and apex v^{\prime}

Note we get an injection

$$
\left.\{k \text {-faces of } Q\} \longrightarrow \text { we get an injector } \text { \{kaces of } Q^{\prime}\right\}
$$

Now pull every vertex of Q to get P,
and P is simplicial

Note that in a simplicial polytope P $f_{k-1}(P) \triangleq\binom{v}{k}$ where $n=f_{0}(P)$
since $\partial P=\triangle$ is a simplicial complex with
Can we have equality here?
Yes, the $(n-1)$-simplex does

$$
\begin{aligned}
f & =\left(f_{-1}, f_{0}, f_{1}, f_{2}, f_{3}\right) \\
& =(1,4,6,4,1)
\end{aligned}
$$

It can happen for non-simplices that $f_{k-1}(P)=\binom{n}{k}$, in which case we call P a k-neighborly polytopes

PROP: Any d-dim'l cyclic polytope with \because vertices

$$
C(n, d):=\operatorname{conv}\left\{x^{x}\left(t_{1}\right), x\left(f_{2}\right), \ldots, x\left(t_{n}\right)\right\} \subset \mathbb{R}^{d}
$$

where

$$
\underline{x}(t)=\left[\begin{array}{c}
t^{2} \\
t^{2} \\
t^{3} \\
\vdots \\
t^{d}
\end{array}\right] \text { and } t_{1}<t_{2}<\ldots<t_{n}
$$

is simplicial and $\left[\frac{d}{2}\right]$-neighborly

REMARKS:
(1) A d-polytope cannot be $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$-neighborly with out being a simplex, ie. $d=n-1$ (maybe an EXERCISE for the ?)
(2) Motzkin thought maybe all $\left[\frac{d}{2} \int\right.$-neighborly polytopes have same fare poset as $C(n, d)$, but that's vastly false.
(3) HW Exercise 5 is telling us the facial structure of $C(n, d)$ (Gale's evenness criterion)
(4) Points on the curve $\left[\begin{array}{c}t \\ t^{2} \\ t^{3} \\ \vdots \\ t^{-}\end{array}\right]$also come up in
real algebraic geometry (Shapivo-Shapivo conj, e.g.)
proof: If $(C m, d)$ were not simplicial, then
some facet has $\geq d+1$ vertices $\underline{x}\left(t_{1}\right), \underline{x}\left(t_{2}\right), \ldots, x\left(t_{d+1}\right)$
lying on some affine hyperplane $c_{0}+c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{d} x_{d}=0$ in \mathbb{R}^{d}
(ie. $\underline{c} \cdot \underline{x}=-c_{0}$)
giving a nontrivial solution to

$$
\underbrace{\left[\begin{array}{cccc}
1 & t_{1} & t_{1}^{2} & \cdots
\end{array} t_{1}^{d}\right.} \begin{array}{cccc}
1 & t_{2} & t_{2}^{2} & \cdots \\
t_{2}^{d} \\
\vdots & \vdots & & \\
1 & t_{d+1} & t_{d+1}^{2} & \cdots \\
t_{d+1}^{d}
\end{array}]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{d}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

invertible, Vandermonde matrix with $t_{1}<t_{2}<. .<t_{d+1}$ set $=\prod_{1 \leq i \leq j \leq d+1}\left(t_{j}-t_{i}\right) \neq 0 . \quad$ Contradiction
To show $C(n, d)$ is $\left[\frac{d}{2}\right]$-neighborly, gives any

$$
F=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n\} \text { ic } 2 k \leq d
$$

cell find an affine function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
with $f\left(\underline{x}\left(f_{i}\right)\right)=0$ for $\bar{i} \in F$
 $\left.f\left(x\left(t_{i}\right)\right)>0\right\}$ same sign for $i \notin F$

We CLAM: This $f(\underline{x})$ does it:

Note $f(\underline{x})$ is affine-linear $\mathbb{R}^{d} \rightarrow \mathbb{R}$

- $f(\underline{x}(t))$ is a polynomial int, of degree of degree d because the t^{d} wefficient is a nonvanishing Voundemonde determinant
- Were extribited d roots already due to due to repeated matrix columns, namely $t=t_{i_{n}}, t_{i}+\epsilon, \ldots, t_{i_{k}}, t_{i k}+t$ $t_{n}+1, t_{n}+1, \ldots, t_{n}+d-2 k$

i.e. $f\left(\underline{x}\left(t_{i}\right)\right)>0$ for $i \notin F=\left\{i_{1},-i_{k}\right\}$

Hence
Motzkin conjectarced:

$$
(U B C)^{\text {tzekin conjectorred: }} f_{k}(P) \leqslant f_{k}(C(n, d))
$$

$\forall d$-polytopes with n vertices.

COROUARY: Any cyclicpolytope $C(n, d)$
(or any $\left[\frac{d}{2} \int\right.$-neighborly simpoliciat
has $f_{k-1}(C(n, d))=\binom{n}{$ be definition of } for $0 \leq k \leq\left[\frac{d}{2}\right]$
and $h_{k}(C(n, d))=\binom{(n-d)+k-1}{k}$ for $0 \leq k \leq\left[\frac{d}{2}\right]$
proof: We saw that when we have two sequences, with d fixed,

$$
\begin{aligned}
& \underline{f}=\left(f_{-1}, f_{0}, f_{1}, \ldots\right) \\
& \underline{h}=\left(h_{0}, h_{1}, h_{2}, \ldots\right)
\end{aligned}
$$

related by $\sum_{k=0}^{\infty} f_{k-1}\left(\frac{t}{1-t}\right)^{k}=\frac{\sum_{k=0}^{\infty} h_{k} t^{k}}{(1-t)^{d}}$
then f and h have the unrtriangnlar relation for $\underline{h}(\Delta), f(\Delta)$ of $(d-1)$-dime $\left(h_{0}, h_{1}, h_{j}\right)$ pi cal exmplexfor all j.

$$
\text { - dime simplicial wimple }\left(h_{0}, h_{1,}, h_{j}\right) \text { vs. }\left(f_{-1}, f_{0}, f_{j-1}\right)
$$

Take $f_{k}=\binom{n}{k}$ for $k=0,1,2, \ldots, n$ (50 this is $f_{k}(c(n, d))$ only for $k \leq(d / 2])$
and then $\sum_{k=0}^{\infty}\binom{a}{k}\left(\frac{t}{1-t}\right)^{k}=\sum_{k=0}^{n}\binom{a}{k}\left(\frac{t}{1-t}\right)^{k}=\left(1+\frac{t}{1-t}\right)^{n}$

$$
\begin{aligned}
& =\frac{1}{(1-t)^{n}}=\frac{1}{(1-t)^{d}} \frac{1}{(1-t)^{n-d}} \\
& =\frac{1}{(1-t)^{d}}(1-t)^{-(n-d)} \\
& =\frac{1}{(1-t)^{d}} \sum_{k=0}^{\infty}(-t)^{k}\binom{-(n-d)}{k} \\
& =\frac{1}{(1-t)^{d}} \sum_{k=0}^{\infty} t^{k} \cdot\binom{(n-d)+k-1}{k}
\end{aligned}
$$

Hence $h_{k}(C(n, d))=\binom{(n-d)+k-1}{k}$ for $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$.
Where are we?

Fans, normal fans, face fans \& polar duals
To shell a simplicial polytope's boundary, weill order its facets by a (inear functional on vertices of its polar dual polytope!
DEF'N: Given a polytope $P \in \mathbb{R}^{d}$ and a (proper) boundary face $G \nsubseteq P$, let $N_{p}(G):=\left\{\right.$ (near functional $f \in\left(\mathbb{R}^{d}\right)^{*}$:
(closed) normal cone of P at G

$$
\begin{aligned}
& \left\{\sum_{p}^{\text {spent }}(G):=\left\{\begin{array}{c}
\text { same except not achieved on } \\
\text { any } p \in F \not F G \text { in } P
\end{array}\right\}\right. \\
& \text { (relatively normal }
\end{aligned}
$$

cone of P at G

EXAMPLE:

Math 8680 Feb 24, 2021
PROP: If G a face of P has facets containing G being $\left\{F_{1}, \ldots, F_{s}\right\}$ with

$$
\begin{aligned}
& F_{i}=\underbrace{\left\{\underline{x} \in \mathbb{R}^{d}: f_{i}(\underline{x})=b_{i}\right\}}_{H_{i}} \cap P\left(\mathbb{R}^{d}\right)^{*}, H_{i}^{+}=\left\{\underline{x} \in \mathbb{R}^{d}:\right. \\
& \left.f_{i}(x) \leqslant b_{i}\right\} \\
& \text { then } N_{P}(G)=\mathbb{R}_{\geqslant 0} \cdot f_{1}+\ldots+\mathbb{R}_{\geqslant_{0}}-f_{s} \\
& =\text { cone spanned by } \\
& \left\{f_{1}, \frown f_{3}\right\} \text { m }\left(\mathbb{R}^{d}\right)^{*} \\
& N_{p}^{\text {pen }}(G)=\mathbb{R}_{>0} \cdot f_{1}+\ldots \mathbb{R}_{70} \cdot f_{s}
\end{aligned}
$$

(half): At least both inclusions 2 are not hard:
$\mathbb{f} f=\sum_{i=1}^{s} c_{i} f_{i}$ with $c_{i}>0$, then then any $p \in P$, has

$$
f(p)=\sum_{i=1}^{s} \underbrace{c_{i}}_{>0} \underbrace{f_{i}(p)}_{\leq b_{i}} \text { whee equality } \Leftrightarrow{\underset{p e}{ }}_{F_{i}}
$$

$\leq \sum_{i=1}^{s} c_{i} b_{i}$ with equality \Leftrightarrow

$$
p \in F_{n}, \ldots, F_{s}
$$

$$
\Leftrightarrow p \in G
$$

DEF'N: A polyhedral cone $C \subset \mathbb{R}^{d}$ (or $\left.\left(\mathbb{R}^{d}\right)^{*}\right)$ is a finite mtersection of linear half spaces

$$
\begin{aligned}
& C=\bigcap_{i=1}^{\infty} H_{i}^{+} \text {where } H_{i}^{+}=\left\{x \in \mathbb{R}^{d}: f_{i}(x) \geqslant 0\right\} \\
& \text { for some } f_{i} \in\left(\mathbb{R}^{d}\right)^{*}
\end{aligned}
$$

$$
(\text { so } 0 \in C \text { always })
$$

It's called pointed if it wrentains no lines though O.

Some painted cones: in \mathbb{R}^{2},

A pointed cone C is called a simplicial cone if

$$
\begin{aligned}
& \text { A pointed cone } C \text { is called a simplicial cone if } \\
& \exists\left(v_{1},-v_{3}\right) \text { sit. } C=\mathbb{R}_{20} \cdot v_{1}+\mathbb{R}_{20} \cdot v_{2}+\ldots+\mathbb{R}_{20} \cdot v_{s} \text { for some }\left\{v_{1, \ldots,}, v_{s}\right\} \subset \mathbb{R}^{d} \\
& \text { linearinndependent ? }
\end{aligned}
$$

lInear independent?

 all pointed cones M \mathbb{R}^{2}
are simplicial
In \mathbb{R}^{3}, here's a non simpliciad

a simplicial cone $m \mathbb{R}^{3}$
A fan $\sum_{i}^{\prime}=\left\{C_{i}\right\}$ in \mathbb{R}^{d} is a colledron of cannes C_{i} which is closed under taking faces/subcones and has $C_{i} \cap C_{j}$ is a face of each C_{i}, C_{j}, Say \sum is a complete fan $\left(\right.$ in $\left.\mathbb{R}^{d}\right)$ if $\bigcup_{i} C_{i}=\mathbb{R}^{d}$

EXAMPLES

is a complete fan in \mathbb{R}^{2}
(2.) A non-complete ($\operatorname{su} b-) \tan$ in \mathbb{R}^{2}

ρ_{4}

$$
\begin{gathered}
\sum^{\prime}=\left\{\rho_{1}, \rho_{2}, \rho_{2}, \rho_{4}, \rho_{5}\right. \\
\left.c_{4}, c_{5}\right\}
\end{gathered}
$$

- face fan $F(P) \subset \mathbb{R}^{d}$
a complete $::=\left\{\right.$ woes C_{F} though each fan proper face $F \nsubseteq P\}$
ie. $C_{F}:=\sum_{\substack{\text { verobes } \\ v \in F}} \mathbb{R}_{30}-v$

- normal fun

$$
\begin{aligned}
& N(P):=\left\{N_{P}(G): \begin{array}{l}
\text { won } \\
\text { empty } \\
\\
\text { faces } G \neq \phi \\
\text { of } P
\end{array}\right\}
\end{aligned}
$$

- polar polybope

$$
\begin{aligned}
& \left.p^{\Delta}:=\left\{f \in\left(\mathbb{R}^{d}\right)^{*}: f(p) \leq 1 \quad \forall p \in p\right\}\right\} \\
& \subset\left(\mathbb{R}^{d}\right)^{*}
\end{aligned}
$$

Math 8680 Feb. 26, 2021
p
$N(P)$ a compleftimin $\left(\mathbb{R}^{4}\right)^{*}$

$N_{p}(v)$
polar polybape

$$
\begin{aligned}
& P^{\Delta}:=\left\{f \in\left(\mathbb{R}^{d}\right)^{*}: f(p) \leq 1 \quad \forall p \in P\right\} \\
& \subset\left(\mathbb{R}^{d}\right)^{*}=\left\{f \in\left(\mathbb{R}^{d}\right)^{*}: f(v) \leq 1\right. \\
& \\
& \forall \text { verbices veP }\}
\end{aligned}
$$

FACES:

- $\left(P^{\Delta}\right)^{\Delta}=P$
- The face poses Faces $(P) \xrightarrow{\sim}$ Faces $\left(P^{0}\right)$ are in bijection

$$
\left.\begin{array}{rl}
F \longmapsto & {\left[f \in\left(\mathbb{R}^{d}\right)^{*}:\right.} \\
& f(p)=1 \quad \forall p \in F \\
& f(p)<1 \quad \forall p \notin F
\end{array}\right\}
$$

with

$$
\begin{aligned}
& F \subseteq G \\
& \operatorname{in} P
\end{aligned} \Leftrightarrow F^{*} \supseteq G^{*}
$$

i.e. Faces $\left(P^{\Delta}\right)$ is the opposie/dual poses of Free (P)

Example:

$$
\begin{aligned}
& P=n-c u b e \text { in } \mathbb{R}^{n} \\
& Q_{n} \\
&= {[-1,+1]^{n} } \\
&= \operatorname{conv}\left\{ \pm e_{1}+e_{2} t \ldots e_{n}\right\} \\
&=\bigcap_{i=1}^{n}\left\{x_{i} \leq 1\right\} \\
& \quad \cap \bigcap_{i=1}^{n}\left\{x_{i} \geq-1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& P^{\Delta}=\text { cross-polytopef }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
&=\operatorname{conv}\left\{ \pm x_{1}, \pm x_{1}, \ldots x_{n}\right. \\
&=\bigcap\left\{ \pm x_{1} \pm x_{2} \pm \ldots \pm x_{n} \leq 1\right\}
\end{aligned}
\end{aligned}
$$

$\operatorname{dim} P=d$

- P is simplicial
all facets/fnces are rimplices; so every facet has exactly d vertices
egg.
$P=$
ก
\mathbb{R}^{3}
$\Leftrightarrow P^{\Delta}$ is simple
every vertex v lies on exactly de d edges
(or on exactly d face equivalently
p^{Δ}

simple

REMARK: Changing the choice of O in
interior of P does change P^{Δ} in $\left(R^{d}\right)^{*}$, but doesn't affect the comb. stmeture of P^{Δ} or $F(P)$ or $F\left(P^{\Delta}\right)=N(P)$
ie. Faces $(P)=$ Faces $(P \Delta)^{O P P}$ are all pose unchanged
egg.

$$
Q_{2}=(-2,+2]^{2}
$$

$Q_{2}^{\infty}=$ coss polytope

In general, p^{Δ} changes by a projective transformation in $\left(I R^{d}\right)^{*}$

Weill need one further fact:
LEMMA: In a polytope P, if a vertex r has edge neighbors $\left.\begin{array}{c}\left(\begin{array}{c}\text { see } \\ \text { seller's } \\ \text { cell h } \\ \text { chic }\end{array}\right)\end{array}\right)\left\{v_{1}, v_{2}, \ldots v_{s}\right\}$, then

$$
\begin{aligned}
& \left\{v_{1}, v_{2},-v_{5}\right\}, \text { then } \\
& P \subset \underbrace{\mathbb{R}_{30}\left(v_{1}-v\right)+\ldots+\mathbb{R}_{30}\left(v_{5}-v\right)}_{\text {called the vertex cone of } P \text { at } v}
\end{aligned}
$$

COROLCARY: if $h \in\left(\mathbb{R}^{d}\right)^{k}$
has $h(v) \neq h\left(v^{\prime}\right) \forall$ vertices v of P, then \exists a pique h-maximizing vertex $v_{\text {max }}$ of P, and every other vertex v of P has a path

$$
\begin{aligned}
& \quad v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{l-1} \rightarrow v_{l}^{\prime \prime} \\
& v_{\text {It }}^{\prime \prime} h\left(v_{i}\right)>h\left(v_{i-1}\right) \quad \forall i \geq 1 \quad v_{\text {max }}
\end{aligned}
$$

