Math 8680 March 19, 2021

neither is Cohen-Macaulay

Chen-
Macacalay

Reisner's Thm: $K[\Delta]$ is Cohen-Macaulay (cs a ving)

$$
\Leftrightarrow \quad \tilde{H}_{i}\left(\operatorname{lin} k_{\Delta}(F) ; K\right)=0 \quad \text { if } \quad \begin{aligned}
& i<\operatorname{dim}\left(\lim k_{\Delta}(F)\right)
\end{aligned}
$$

Kee: If \triangle is an Euler complex

$$
\left\{\begin{array}{l}
\text { pure } \\
\tilde{x}\left(\operatorname{lin} k_{\Sigma}(F)\right)=(-1)
\end{array} \operatorname{dim}^{\left(l n k_{\Sigma}(F)\right)}\right.
$$

then $h_{k}(\Delta)=h_{d-k}(\Delta) \forall k$
(Dehn-Sommenille eqns)
DEFIN: An X (graded (comm.) K-algebra R is Gorengtein if it is Cohen-Maccaulay and for some (or any) h. s.o.p. (Q) $)=\left(\theta_{1,}, \theta_{d}\right)$
the quotient $A=R /(\underline{\theta})=A_{0} \oplus A_{1} \oplus \ldots \oplus A_{t}$
satisfies Poincare duality meaning $A_{t} \cong K$
and picking $A_{t} \xrightarrow[\sim]{e V} K$
and $\forall k \leq \frac{t}{2}$, the pairing $A_{k} \times A_{t-k} \stackrel{\rightarrow}{\rightarrow} K$ $(x, y) \mapsto \operatorname{ev}(x y)$
is perfect/nondegeverate
ExAmple: P a simplicial polytope
$\Rightarrow \Delta=\partial P$ has $K[\Delta]$ is Gorenstein

$$
\forall K
$$

THEOREM :
(Stanley 1977) $K[\Delta]$ is Gorenstein \Longleftrightarrow
(Stanley 1977) $K[\Delta]$ is Gorenstein \rightarrow
Δ is an iterated cone over Δ^{\prime} a Gorenstern*/K complex

Examples:
(1)
 is a sphere, So Corenstein ${ }^{k} / K$
so $K\left[\Omega^{\prime}\right]$ is a Gorensteinving

$$
\forall K
$$

and hence also

$$
\begin{aligned}
& \text { d hence also } \\
& \Delta^{\prime \prime}=\text { Cone }\left(\Delta^{\prime}\right)=(5) * \Delta^{\prime}=\underbrace{1}_{3} \cong \mathbb{B}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\Delta^{\prime \prime \prime} & =\operatorname{cone}^{2}\left(\Delta^{\prime}\right) \\
& =\operatorname{cone}\left(\operatorname{cove}\left(\Delta^{\prime}\right)\right)= \\
& =\frac{125}{1256} \cup \frac{2356}{} \cup \frac{1}{3456} \cup 1456
\end{aligned}
$$

have $K\left[\Delta^{\prime \prime}\right], K\left[\Delta^{\prime \prime \prime}\right]$ Gorenstein rings $\forall K$

$$
K\left[\Delta^{\prime \prime}\right]=K\left[x_{s}\right] \otimes K\left[\Delta^{\prime}\right]
$$

(2)

$$
\text { vs. } \Lambda_{2}=
$$

have same \underline{f}-vector $\underline{f}=(1,4,4)$

$$
\underline{h} \text {-vector } \underline{h}=(1,2,1)
$$

with $K\left[\Delta_{n}\right]$ Gorenstein
but $K\left[\Delta_{2}\right]$ is not, since es.

$$
\begin{aligned}
\tilde{X}\left(\operatorname{link}_{1_{2}}\{d\}\right) & =0 \\
& \neq \pm 1 \\
\tilde{X}\left(\operatorname{link}_{\Delta_{2}}\{a\}\right) & = \pm 2 \\
& \neq \pm 1
\end{aligned}
$$

Check $K\left[\Delta_{1}\right] /\left(\theta_{1}, \theta_{2}\right)$

$$
\begin{aligned}
& d-c \int[\theta-a b c d \\
& \begin{array}{l}
1 \\
a-b
\end{array} \left\lvert\,\left[\begin{array}{l}
\theta_{1}=a+c \\
\theta_{2}=b+d
\end{array}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 9 & 0 & 1
\end{array}\right]\right.\right. \\
& K(a, b, c, d) /(b d, a c, a+c, b+d) \\
& \cong K[a, b] /\left(b^{2}, a^{2}\right) \\
& =K-\operatorname{span} \text { of }\left\{1, \left\lvert\, \begin{array}{l}
a, b\left|, a b, \begin{array}{l}
, \\
A_{0}
\end{array}\right| \begin{array}{l}
A_{1} \\
A_{2} \rightarrow K
\end{array}
\end{array}\right.\right.
\end{aligned}
$$

Gram mabix for

$$
\left.\left.\begin{array}{l}
A \times A, \rightarrow K \\
a
\end{array}\right] b=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \begin{array}{cc}
\text { non- } \\
\text { singular } \\
\operatorname{er}(a b) & \operatorname{er}\left(b^{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
\operatorname{er}(a) \\
b
\end{array}\right.
$$

$A:=K[a, b, c, d] /(a b c, b d, c d, a+b, b+c+d)$
has K-basis $\left\{\begin{array}{llll}\frac{x^{G}}{1}, & x^{G_{2}}, & x^{G_{3}}, & x^{G_{4}} \\ \mathbb{L}^{-2}\end{array}, d\right\}$
Gram matrix for $A, \times A_{1} \xrightarrow{1} K$ is

$$
\begin{aligned}
& c \\
& c \\
& c\left[\begin{array}{cc}
\operatorname{ev}\left(c^{2}\right) & \operatorname{ev}(c d) \\
d & \operatorname{ev}(c d) \\
e v & \left(d^{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{ev}\left(c^{2}\right) & 0 \\
0 & 0
\end{array}\right] \begin{array}{l}
\text { singular, } \\
\text { not } \\
\text { perfect, }
\end{array} \\
& d^{2}=d \cdot d
\end{aligned}=-d(b+c) .
$$

Piecewise polynomials on fans (Refs: Two papers by Brion on syllabus, Fleming-Kom)
For $\Delta=\partial P$, P a simplicial polytope, we've proven Poincare duality.
How to get the other parts of the Killer package: Hard Lefschelz (HL)

$$
\begin{aligned}
& \text { Hard Lefschelz (HL) } \\
& \text { Hodge-Riemann-Minkowski (HRM) ? }
\end{aligned}
$$

We use a disguised version of $\mathbb{R}[\Delta] \nabla_{0}$ Comes from think of Δ as arising from the $\operatorname{fan} \sum=\underset{\text { face fam }}{F}(P)=\operatorname{Noumal}_{\operatorname{fan}}\left(P^{\Delta}\right)$
The geometric $(\underline{\theta})=\left(\underline{\theta}_{\Sigma}\right)$ becomermuch more natural.
DEFIN: Given a fan $\sum \in \mathbb{R}^{d}$ with

$$
\text { support }\left|\sum\right|=\bigcup_{\text {cones } \sigma \in \Sigma} \sigma
$$

say that $f:\left|\sum\right| \rightarrow \mathbb{R}$ is piecewise polynomial on \sum if
$\forall \sigma \in \sum \exists$ some plynomial function

$$
\begin{aligned}
& f_{\sigma}: \underbrace{\operatorname{Lin}(\sigma)}_{=\mathbb{R} \sigma} \rightarrow \mathbb{R} \\
& =\text { sumalest } \mathbb{R} \text {-ineor subspace } \\
& \text { containings }
\end{aligned}
$$

Examples:
(1) $\sum=\underset{\rho_{2} \text { ios }}{\rho_{1}} \subset \mathbb{R}^{1}$ has this p.p. fon 5 :

Let $R_{\Sigma}:=\{$ all piecerise polynomid functions

$$
f:|\Sigma| \rightarrow \mathbb{R}\}
$$

as a ving (and an \mathbb{R}-algebra) with pointrise t and x

Math 8680 March 22, 2021
EXAMPLES:

has this $f \in R_{\Sigma}$:

Some preliminary observations:
(1) To be well-defined as $f:|\Sigma| \rightarrow \mathbb{R}$, if $\sigma^{\prime} \subset \sigma$ then $\left.f_{\sigma}\right|_{\sigma^{\prime}}=f_{\sigma^{\prime}}$
$\Rightarrow f$ is continuous
$\Rightarrow f$ is completely determined by $\left(f_{\sigma}\right)_{\sigma \text { a maximal core of }} \Sigma$
and the compatibility require d is

$$
\left.\left.f_{\sigma}\right|_{\sigma \cap \sigma^{\prime}} \equiv f_{\sigma^{\prime}}\right|_{\sigma n \sigma^{\prime}} \quad \forall \max \text { ones } \sigma_{,} \sigma^{\prime}
$$

e.g. in $\operatorname{EXAMPLE} 2$ above,
needed $f_{\sigma}-f_{\sigma}=x_{1} x_{2}-0$ bo vanish

$$
\text { on } p_{1}=r n \sigma^{\prime}=x_{1} \text {-axis }
$$

so needed it to be divisible

$$
\text { by } x_{2}
$$

(2) If we define $f \in R_{\Sigma}$ to be homogeneous of degrees if each f_{G} is a homog. polynomial function of deg on $\ln (\sigma) \quad \forall$ cones $\sigma \in \sum$.
Then we claim that

$$
R_{\Sigma}=\oplus_{d \geqslant 0}\left(R_{\Sigma}\right)_{d}
$$

and this makes R_{Σ} a graded \mathbb{R}-algebra.
In other words,
PROP: $f=\left(f_{\sigma}\right)_{\text {max canes } \sigma} \in R_{\Sigma}$

$$
\text { then }\left(\left(f_{\sigma}\right)_{d}\right)_{\text {maxcones } \sigma} \in\left(R_{\Sigma}\right)_{d} \forall d \text {. }
$$

EXAMPLE: (1)

$$
\begin{aligned}
& \sum{ }^{p_{2}} \rightleftarrows \longrightarrow p_{1}
\end{aligned}
$$

proof: Use the fact that cones σ are closed eider $\mathbb{R}_{2_{0}}$-scaling.
So $\quad\left(f_{\sigma}\right) \in R_{\text {max }} \Sigma$

$$
\begin{aligned}
& \left.\Leftrightarrow\left(f_{\sigma}-f_{\sigma^{\prime}}\right)\right|_{\sigma, \sigma^{\prime}} \equiv 0 \begin{array}{|c}
V \operatorname{cmax} \\
\text { cones } \\
\sigma, \sigma^{\prime} \\
\text { man }
\end{array} \\
& \Leftrightarrow f_{\sigma}(v)-f_{\sigma^{\prime}}(v)=0 \quad \forall v \in \sigma \cap \sigma^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow f_{\sigma}\left(t_{v}\right)-f_{\sigma^{\prime}}\left(f_{v}\right)=0 \\
& \forall \in \in \mathbb{R}_{\geqslant 0} \\
& \forall v \in \sigma \cap \sigma^{\prime} \\
& \text { // } \\
& \sum_{d \geqslant 0}\left[\left(f_{\sigma}\right)_{d}(t v)-\left(f_{\sigma^{\prime}}\right)_{d}(t v)\right] \\
& =\sum_{d \geqslant 0} t^{d}\left[\left(f_{\sigma}\right)_{d}(v)-\left(f_{\sigma}\right)(v)\right] \\
& g(t) \in \mathbb{R}(t) \\
& g(t)=0 \quad \forall \in \in \mathbb{R}_{\geq 0} \quad \Longleftrightarrow\left(\left(f_{\sigma}\right)_{d}\right) \in R_{\Sigma} \forall d \\
& \Leftrightarrow g \equiv 0
\end{aligned}
$$

To make the identification of $R_{\Sigma}=\left(R_{\Sigma}\right)_{0} \oplus\left(R_{\Sigma}\right)_{1} \oplus \ldots$ with $\mathbb{R}\left[\Delta_{\Sigma}\right]$ when \sum is simplicial

$$
\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta \Sigma_{1}}
$$

lefts identify where the x_{i} map to in R_{Σ}. (in $\mathbb{R}\left(O_{\Sigma}\right)$)

DEF'N: GiVen \sum a simplicial fan in \mathbb{R}^{d} with rays $\rho_{n}, \rightarrow \rho_{n}$, define the Couront function $g_{\rho_{i}} \in\left(R_{\Sigma}\right)_{1}$
by $1^{\text {st }}$ choosing vectors v_{n}, v_{n} spanning

$$
\text { so } \rho_{i}=\mathbb{R}_{\geq_{0}} \cdot v_{i}
$$

and then defining $g_{\rho_{i}}\left(v_{i}\right)=1$

$$
g_{p_{i}}\left(v_{j}\right)=0 \text { if } j \neq i
$$

or equivalently $g_{p_{i}} \equiv 0$ on cones $\begin{array}{r}\sigma \not p p_{i}\end{array}$
and imposing piecewise -linearity.
ExAMPLES:
(1) $\sum{ }^{p_{2}} \underset{\operatorname{le}_{1}}{\leftarrow} \rightarrow \operatorname{lo}_{e_{1}} \operatorname{pr}_{r} \subset \mathbb{R}^{?}$
$g p_{n}$

$$
g_{\rho_{2}}
$$

Why "tent" function?

Wherewill other square free monomials yo?
DEFN: For any cone $\sigma \in \sum$ a simplicial fan,

$$
\begin{aligned}
& g_{\sigma}:=g_{i_{1}} \cdot g_{i_{2}} \cdots g \rho_{i_{k}} \quad \text { if } \sigma \text { has rays } \\
& \rho_{i_{11},} i_{i_{2},-\rho} \rho_{i_{k}} \\
& \text { so } \sigma=\mathbb{R}_{30} v_{i_{1}}+\ldots+\mathbb{R}_{30} v_{i_{k}}
\end{aligned}
$$

Note that g_{σ} is supported on the star of σ :

$$
\operatorname{star}_{\Sigma}(\sigma)=\bigcup_{\substack{\text { cones } \\ \sigma \\ \sigma} \sigma} \sigma^{\prime}
$$

means $\left.g_{\sigma}\right)_{\tau} \equiv 0$ if $\tau \nsupseteq \sigma$
EXAMPLE:

because

$$
\begin{aligned}
& \text { because } \\
& \left.g_{\rho_{1}}\right|_{\sigma}=x_{1},\left.g_{\rho_{2}}\right|_{\sigma}=x_{2} .
\end{aligned}
$$

Math 8680 March 24,2021
PROP: When σ is a maximal ane in \sum a simplicial fan, ute $\operatorname{dm}(\sigma)=k$, then $\left.g_{\sigma}\right|_{\sigma}$ is the unique polynomial function on $\operatorname{Lin}(\sigma)$ of degreek, up to a nonzero scalar, that vanishes on $\partial \sigma$, and divides any other such polynomial function.
Specifically $\left.g_{\sigma}\right|_{\sigma}=c \cdot l_{1} l_{2} \cdots l_{k}$ for $c \in \mathbb{R}-\{0\}$ where $l_{i}(x)$ are (near functions defining the face hyperplanes of σ.

proof: In fact, if σ has $\rho_{i_{1}},-, p_{i k}$ as rays
 where $l_{i}(x)$

$$
\left.\begin{array}{ll}
\text { And then } \\
g_{\rho_{3}} & =c_{\sigma} l_{3}(x)
\end{array} \quad g_{\sigma}\right|_{\sigma}=c_{1} \cdots c_{k} l_{1}(x) \cdots l_{k}(x)
$$

And any polynomial $f\left(x_{,},-, x_{k}\right)$ on $\operatorname{Lin}(\sigma)$ that vanishes on $\partial \sigma$ must vanish each of the hyperplanes defined by $l_{j}(x)=0$
Hence f is divisible by $l_{j}(x)$ for $j=1,2-, k$ ExRruse! so f is dcusible by $\underbrace{l_{1}(x) \cdots l_{k}(x)}_{=\left.\vec{c} \cdot g_{\sigma}\right|_{\sigma}}$

Now well use this to set up a shortexacterg. parallel to one sse sow for $\mathbb{R}[\Delta]$ or $k[\Delta] \ldots$...
Recall for any subcomplex $\Lambda^{\prime} \subset \Delta$, we had a surjection
and when we specialized to $\Delta^{\prime}=\Delta-\{F\}$ for $F a$
we had identified the kevel of π maximal force
of \triangle

$$
\underset{f(x) \cdot x^{F}}{\longrightarrow}\left(\underline{x^{F}}\right)^{\text {We had }} \longrightarrow K[\Delta] \xrightarrow{\pi} \longrightarrow K[\Delta-\{F\}] \rightarrow 0
$$

$$
\begin{aligned}
& \text { is short erect } \\
& \text { as K-vedrar } \\
& \text { specs }
\end{aligned}
$$ as K-vedires

$f\left(x_{j}\right) \quad K\left[x_{j}\right]_{j \in F}$

$$
f\left(x_{3}, x_{4}\right) k\left[x_{3}, x_{4}\right]
$$

$$
\begin{aligned}
& K[\Delta] \xrightarrow{\pi} K\left[\Delta^{\prime}\right] \text { since } I_{\Delta^{\prime}} \supseteq I_{\Delta} \\
& K\left[\begin{array}{l}
\prime \prime \\
\hline
\end{array}\right) I_{\Delta} \quad K[\underline{x}] / I_{\Delta^{\prime}}
\end{aligned}
$$

PROP: For σ a maximal cone in \sum a simplicial fan, (Brion'ac
S1.2) \quad say with rays $\rho_{1},-\rho_{s}$ for σ, one has a short exact sequence of \mathbb{R}-vector spaces

$$
\begin{aligned}
& 0 \rightarrow\left(g_{0}\right) \longrightarrow R_{\Sigma} \xrightarrow{\text { pres }} R_{\Sigma-\{0\}} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}\left[x_{1}-x_{5}\right]
\end{aligned}
$$

proof: The previous PROP actually told no that ked $\left(R_{\Sigma} \xrightarrow{\text { res }} R_{\Sigma-\{\sigma\}}\right)=\left(g_{\sigma}\right)$ and the other part of the PROP gave us the iso. $\mathbb{R}\left[x_{1},-, x_{s}\right] \rightarrow\left(g_{\sigma}\right)$

$$
\begin{aligned}
& \left.x_{1}, \ldots, x_{s}\right] \\
& \left.f\left(x_{1}, \rightarrow x_{s}\right) \mapsto f\left(g_{\rho_{1},-9}\right) g_{\rho_{s}}\right) \cdot g_{\sigma}
\end{aligned}
$$

Were still missing sunjectovity of $R_{\Sigma} \xrightarrow{\text { res }} R_{\Sigma}-\{\sigma\}$.
Given some $f=\left(f_{I}\right)$ well -defined on every
sub cone $\sigma_{I}:=\mathbb{R}_{20}$
 subowne $\sigma_{I}:=\mathbb{R}_{20} \rho_{i_{1}+\ldots+}$

$$
f_{I}\left(x_{I}\right) \quad \text { for } \begin{aligned}
I & =\left\{i_{1}, i_{k}\right\} \\
& \not \subset\{1,2,-s\}
\end{aligned}
$$

then we can define f as a polynomial on $\operatorname{Lin}(\sigma)$:

$$
\begin{aligned}
& f\left(x_{1,-,} x_{3}\right)=\sum_{I \subsetneq\{1,2, s\}}(-1)^{s-1-\# I} f_{I}\left(x_{I}\right) \\
& \text { ecg. } s=3 \\
& f\left(x_{1}, x_{2}, x_{3}\right):=f_{12}\left(x_{1}, x_{2}\right)+f_{13}\left(x_{1}, x_{3}\right)+f_{23}\left(x_{3}, x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)\right) \\
& +f_{\phi}(\{0\}) \\
& \text { ecg. on } x_{1}-x_{2} \text { plane ur have } \\
& f\left(x_{1}, x_{2}, 0\right)=f_{12}\left(x_{1}, x_{2}\right)+f_{13}\left(x_{1}, 0\right)+f_{23}\left(x_{2}, 0\right) \\
& \frac{-f_{1}\left(x_{1}\right)-f_{2}\left(x_{2}\right)}{-f_{3}(0)} \\
& -f_{3}(0) \\
& +f_{p}([0])
\end{aligned}
$$

Math Sleso March 26, 2021
some corollaries:

COR 1: For any simpticial fan $\sum \subset \mathbb{R}^{d}$ and any subtan $\Sigma^{\prime} \subset \Sigma$, the restriction map $R_{\Sigma} \xrightarrow{\text { res }} R_{\Sigma^{\prime}}$ sujjects.
poof: Repeatedly remove maxima woes $\sigma \mathrm{m} \Sigma-\Sigma^{\prime}$ with suijectrity at each step from the previous result ${ }^{\text {a }}$

Σ

$$
=\Sigma^{\prime}=\sum-\left\{\sigma, \sigma^{\prime}\right\}
$$

ORR 2: Given \sum a simplicial fum in \mathbb{R}^{d} with rays $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$

Billera'89)
consider the ring homomorphism

$$
\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \xrightarrow{\varphi} R_{\Sigma} g_{\rho_{i}}=\text { tent/ courant }
$$

Then it will induce a ing isomonphism

$$
\mathbb{R}\left[\Delta_{\Sigma}\right]=\underset{\substack{\text { Stanley- } \\ \text { Reisnerving }}}{\mathbb{K}[\underline{x}] / I_{\Delta}} \xrightarrow{\sim} R_{\Sigma}
$$

proof: $1^{\text {st }}$ note that if G is a non-face of ${ }_{\Sigma}$

$$
\left\{_{\{1,2,-2}\right\}
$$

then $x^{G}=\prod_{j \in G} x_{j} \stackrel{\varphi}{\longleftrightarrow} \prod_{j \in G} g_{\rho_{j}} \xlongequal{ } \equiv$ lg devin of λ_{Σ} and $g_{\rho_{j}}$ is supported on $\operatorname{sta} \mathbb{N}_{\varepsilon}\left(\rho_{i}\right)$.
so $I_{\Delta}=\left(X^{G}\right)_{G \text { nam-fare }}<\operatorname{ker} \varphi$ and φ descends to a sing homom.

$$
\mathbb{R}\left[D_{\Sigma^{\prime}}\right] \xrightarrow{\varphi} R_{\Sigma}
$$

Now compare the two short exact sequences: for a choice of max cone $\sigma \in E$ with corr. facet $F \in \Delta_{\Sigma}$

Hence by the 5-lemma, the middle vertical mop is an \mathbb{R}-vector space isomorphism, and a ring isomorphism. 图
This isomorphism interacts well with the l.soop. lInear

$$
\left.\left(\underline{Q}_{\Sigma}\right)=\left(\theta_{f_{1,}, \ldots,} \theta_{f_{d}}\right) \text { where } f_{n, \rightarrow,} f_{d} \stackrel{(\text { see }}{\text { connection }} \text { below) }\right) ~ \text { were an } \mathbb{R}-\text { oasis }
$$ for $\left(\mathbb{R}^{d}\right)^{*}$

$$
\begin{aligned}
& \text { and } Q_{f}:=\sum_{j=1}^{n} f\left(v_{j}\right) \cdot x_{j} \\
& \text { for } f \in\left(\mathbb{R}^{d}\right)^{*}
\end{aligned}
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ were chosen bo span rays $p_{1}, \rho_{2},-, \rho_{n}$

$$
\text { i.e. } p_{j}=\mathbb{R}_{30} \cdot v_{j} \text { of } \sum
$$

This raises the point that, inside R_{Σ},
we have the $\{$ global polynomial functions? mapping to an

$$
A: \quad \therefore \quad \mathbb{R}\left[f_{1}, f_{2}, \ldots, f_{d}\right] \quad \text { No } \mathbb{N}_{-1}
$$

Weill regard R_{Σ} as a module over this susoangebra A

PROP: Given any $f \in\left(\mathbb{R}^{d}\right)^{*}$ the ring isomorphism

$$
\mathbb{R}\left[\Delta_{\Sigma}\right] \xrightarrow{\varphi} R_{\Sigma}
$$

sends $Q_{f}=\sum_{j=1}^{n} f\left(s_{j}\right) \cdot x_{j} \stackrel{\varphi}{\longmapsto} f$

$$
\mathbb{R}\left[\nabla_{\Sigma}\right]_{1}
$$

$$
\hat{A}
$$

and here sends

$$
\begin{aligned}
& \mathbb{R}[\underline{\theta}] \\
& =\mathbb{R}\left[\theta_{f_{n},}, \theta_{f_{d}}\right]
\end{aligned} \rightarrow A=\begin{gathered}
\text { global } \\
\text { pophonnic } \\
\text { finembins } \\
\text { on } \sum
\end{gathered}
$$

$$
\begin{aligned}
\frac{\text { proof: }}{\theta_{f}}=\sum_{j=1}^{n} f\left(v_{j}\right) \cdot x_{j} & \stackrel{\varphi}{\longmapsto} \varphi\left(\theta_{f}\right)=\sum_{j=1}^{n} f\left(v_{j}\right) g \rho_{j} \\
\operatorname{nas} \varphi\left(\theta_{f}\right)\left(v_{i}\right) & =\sum_{j=1}^{n} f\left(v_{j}\right) \underbrace{g_{j}\left(v_{i}\right)}_{\delta_{i j}} \text { for } i=l_{j,-n} \\
& =f\left(v_{i}\right)
\end{aligned}
$$

Trice $\varphi\left(\theta_{f}\right)$ is PL on \sum and f is line or globally,
and they agree on all $v_{1},-, v_{n}$,
they comcide. 造
ROMARK: Sam Hopkins asked a good question, prompting this correction

REMARK: Of:'s looked ven noucanonical, like they depend on the choice
 of v_{i} spanning rays p_{i}
But replacing v_{i} by $c_{i} v_{i}$ with $c_{i} \in \mathbb{R}-\{0\}$ has the effect in $\mathbb{R}\left[\Delta_{\Sigma^{i}}\right]$ of scaling variable x_{i} by $\frac{x_{i}}{c_{i}}$

