

The quotient $A = R/(Q) = A_0 \oplus A_1 \oplus ... \oplus A_t$ Satisfies <u>Poincaré duality</u> meaning $A_t \cong K$ and picking $A_t \xrightarrow{ev} K$ and $\forall k \leq \frac{t}{2}$, the pairing $A_{ke} \times A_{45-ke} \xrightarrow{(\cdot, \cdot)} K$ $(x, y) \mapsto ev(xy)$ is <u>perfect</u>/hordegenerate $(x, y) \mapsto ev(xy)$ = D = DP has $K[\Delta]$ is Goronstein $\forall K$

THEOREM: K[D] is Govenstein
$$\iff$$

(Stanley 1977)
 \triangle is an iterated cone over \triangle' a Govenstein*/K
complex

EXAMPLES:
(1)
$$\Delta' = \bigcup_{g \to 3}^{2} \cong \mathbb{B}^{1}$$
 is a sphere,
so Govensteint/K
so $K[\Delta']$ is a Govensteining
 $\forall K$
and hence also
 $\Delta'' = Cone(\Delta') = [s] * \Delta' = \bigcup_{g \to 3}^{2} \cong \mathbb{B}^{2}$

Check
$$K[O_n]/(O_1,O_2)$$

 $d-c$ $[O_1 = a+c [n \circ n \circ]$
 $a-6 [O_2 = b+d [o q \circ 1]$
 $K[a,b,c,d]/(bd,ac,a+c,b+d)$
 $= K[a,b]/(b^2,a^2)$
 $= K-span f [1, [a, b], ab f 1 A - K$

Gram matrix for

$$A_1 \times A_1 \longrightarrow K$$

 $a \qquad b$
 $a \qquad (ev(a^2) ev(ab)) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ non-
 $b \qquad (ev(ab) ev(b^2)) = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ singular

$$\begin{array}{c} \left(\begin{array}{c} \operatorname{check} \left(\left(\begin{array}{c} k \right) \right) / \left(\begin{array}{c} 0 \right), \left(\begin{array}{c} 0 \right), \left(\begin{array}{c} 0 \right) \\ 0 \end{array} \right) \\ \left(\begin{array}{c} 5 \\ 0 \end{array} \right) \\ \left(\begin{array}{c} 5 \\ 0 \end{array} \right) \\ \left(\begin{array}{c} 7 \\ 1 \end{array} \right) \\ \left(\begin{array}{c} 7 \end{array} \right) \\ \left(\begin{array}{c}$$

$$d^{2} = d \cdot d = -d(brc)$$
$$= -bd - bc = 0$$

Precewise polynomials on towns (Rets: Two papers by Brion
on syllabus,
For
$$\Delta = \partial P$$
, P a simplicial polytope,
we've proven Poincaré duality.
How to get the other parts of the Kähler package:
(Hard Lefschelz (HL)
Hodge-Riemann-Minkowski (HRM) ?
We use a disguised version of $R[\Delta]$?
Comes from think of Δ as arising from
the fam $\Sigma = F(P) = \mathcal{N}(P^{\Delta})$
face from town to more verture.
DEFIN: Given a fam $\Sigma \subset R^{d}$ with
support $|\Sigma| = \bigcup \sigma$
cover ste Σ
Say that $f: |\Sigma| \longrightarrow R$ is
precevise polynomial on Σ if

$$\forall \sigma \in \Sigma$$
 \exists some polynomial function
 $f_{\sigma} : Lin(\sigma) \longrightarrow \mathbb{R}$
 $= \mathbb{R}\sigma$
 $= \text{smallest } \mathbb{R}-\text{linear subspace}$
 $\operatorname{contribuing } \sigma$

Let
$$R_{\Sigma} := \begin{cases} all \text{ piecewise} \\ polynomial \\ functions \\ f: [\Sigma] \rightarrow R \end{cases}$$

as a ring (and an IR-algebra)
with pointwise t and x

e.g. in EXAMPLE 2 above,
needed
$$f_6 - f_{67} = x_1 x_2 - 0$$
 to variable
on $p_1 = cn \sigma' = x_1 - axis$
so needed it to be divisible
by x_2

(o make the identification of
$$R_{\Sigma} = R_{\Sigma} \otimes R_{\Sigma} \otimes$$

DEFIN: Given
$$\sum a$$
 simplicial fam in \mathbb{R}^d
with vays $p_{n_2} \rightarrow p_n$, define
the common function $g_{p_i} \in (\mathbb{R}_{\sum})_1$
by 1°t choosing vectors $v_{i_1} \rightarrow v_n$ spanning
 $p_i = \mathbb{R}_{\geq 0} \cdot v_i$
and then defining $g_{p_i}(v_i) = 1$
 $g_{p_i}(v_i) = 0$ if $j \neq i$
or equivalently $g_{p_i} \equiv 0$ on cones
 $\sigma \neq p_i$
and imposing piecewise -linearity.
(PL-vess)
EXAMPLES:
 $g_{p_i} = p_i = p_i$
 $g_{p_i} = p_i$
 $g_{p_i} = p_i = p_i$
 $g_{p_i} = p_i$
 g

Where ill other square free monomials
$$g = ?$$

 $D \in F : N:$ For only cone $\sigma \in \mathbb{Z}$ a simplicial fam,
 $g_{\sigma} := g_{pi_1} \cdot g_{pi_2} \cdots g_{pi_k}$ if σ has rays
 $P_{i_1,j} p_{i_2,-j} p_{i_k}$
 $s_0 \sigma = R_{s_0} v_{i_1} + \dots + R_{s_0} v_{i_k}$
Note that g_{σ} is supported on the star of σ :
 $star_{\sigma}(\sigma) = \bigcup \sigma'$
 $cones$
 $\sigma' = \sigma$
 $means$ $g_{\sigma} \Big|_{\tau} = 0$ if $\tau \neq \sigma$
 $C \times AIMPLE:$
 $M P^2$
 P_1
 P_2
 P_4
 P_5
 P_1
 P_1
 P_1
 P_1
 P_2
 $g_{\sigma'} = x_{i_2}$
 $g_{\sigma'} = x_{i_3}$
 $g_{\sigma'} = x_{i_3}$

Math 8680 March 24, 2021
PROP: When
$$\sigma$$
 is a unservice one in Σ a simplicial fun,
ufth $dm(\sigma)=k$, then $g\sigma|_{\sigma}$ is the unique polynomial
function on $Lin(\sigma)$ of degreek up to a nonzero scalar,
that vanishes on $\partial\sigma$, and divides any other such
polynomial function.
Specifically $g\sigma|_{\sigma} = c \cdot l_{1} l_{2} \cdots l_{k}$ for $c \in (\mathbb{R} - i\sigma)$
where $l_{i}(x)$ are (inear functions defining the
funct hyperplanes of σ .
 $P_{1}(\sigma) l_{2}^{2} = n_{k}$
 $g_{\sigma}|_{\sigma} = c \cdot l_{1}(x) l_{2}(x) l_{3}(x)$

proof: In fact, if
$$\sigma$$
 has $Pi_{1,3-}$, Pi_{k} as rows
then $g_{pi_{3}}|_{\sigma} = c_{j} \cdot l_{j}(x)$ for some $c_{i} \in \mathbb{R} - \{0\}$
 $a_{j}|_{\sigma}^{2} l_{j}(x) = c_{j} \cdot l_{j}(x)$ for some $c_{i} \in \mathbb{R} - \{0\}$
 $a_{j}|_{\sigma}^{2} l_{j}(x) = c_{j} \cdot l_{j}(x)$
 $f_{j}|_{\sigma}^{2} c_{j} \cdot l_{j}(x)$ $g_{\sigma}|_{\sigma} = c_{i} \cdot c_{k} \cdot l_{j}(x)$
And any polynomial $f(x_{i,j-3}x_{k})$ on $(in(\sigma))$
 $dhat$ vanishes on $\partial \sigma$ must vanish
each of the hyperplanes defined by $l_{j}(x)=0$
Hence f is divisible by $l_{j}(x)$ for $j = l_{j}^{3} - j_{k}$
 $f_{j}(x) = c_{j}^{2} g_{\sigma}|_{\sigma}$

Now we'll use this to set up a short exact seq.
perallel to one we saw for
$$[R[D] \sim K[D] \dots$$

Recall for any subcomplex $\Delta' \subset \Delta$,
we had a surjection
 $K[D] \xrightarrow{TT} K[\Delta']$ since $[y] \supseteq [D]$
 $K[X]/ID$
and when we specialized to $\Delta' = \Delta - \{F\}$ for Fa
we had identified the kornel of T
 $principal ideal$
 $0 \longrightarrow (XF) \longrightarrow K[D] \xrightarrow{T} K[\Delta - \{F\}] \longrightarrow 0$
 $f(X_{j}) \xrightarrow{YF} A$
 $f(X_{j}) \xrightarrow{YF} A$

proof: The previous PROP actually bold us that ker $(R_{\Sigma} \xrightarrow{res} R_{\Sigma} \cdot ro3) = (g_{\sigma})$ and the other part of the PROP gave as the iso. $R[x_{i,j-1}, x_{s}] \xrightarrow{-1} (g_{\sigma})$ $f(x_{i,j-1}, x_{s}) \xrightarrow{-1} f(g_{\rho_{1}}, g_{\rho_{s}}) \cdot g_{\sigma}$

We ve still missing surjectivity of
$$R_{\Sigma} \xrightarrow{res} R_{\Sigma}$$
-tof.
Given some $f = (f_{I})$ well-defined on every
subcone $G_{I} := B_{0}\rho_{i_{1}}$...t
 $f_{I}(X_{I})$
 $f_{I}(X_{I})$

Math 8680 March 26, 2021

Sime
CORDILARIES:

$$COR 1:$$
 For any supplicial fan ΣCR^{d}
and any subtain $\Sigma' C\Sigma$,
the restriction map R_{Σ} res.
 $picol:$ Repeatedly remove maximal area on $\Sigma - \Sigma'$
with surjectuity at each step from the previous
 $PSult B$
 $\Sigma - I \sigma^{2} = \Sigma - I \sigma \sigma^{2}$
 $\Sigma' = \Sigma - I \sigma \sigma^{2}$
 $\Sigma' = \Sigma - I \sigma \sigma^{2}$
 $CR 2:$ Given Σ a surplicial fam in IR^{d}
with range $\rho_{A}, \rho_{A-1}, \rho_{A}$
 $R[x_{1}, -, x_{n}] \stackrel{P}{\longrightarrow} R_{\Sigma}$
 $X_{i} \stackrel{P}{\longmapsto} g\rho_{i} = tent/coursant$
 $R[\Omega_{\Sigma}] = K[\Sigma]/I_{\Sigma} \stackrel{Q}{\longrightarrow} R_{\Sigma}$

proof: 1st note that if G is a non-face of
$$\Delta_{\Sigma}$$

 $[1,3,-5^n]$
then $X^G = TTx; \xrightarrow{\varphi} TT g; \xrightarrow{\varphi} TT g; \xrightarrow{\varphi} g; \xrightarrow{\varphi} g$
 $j \in G g; \xrightarrow{\varphi} g g; \xrightarrow{\varphi$

Hence by the <u>5-lemma</u>, the middle vertical mop is an R-vedor space isomorphism, and a ving isomorphism. B This isomorphism interacts well with the Low elements $(Q_{\Sigma}) = (Q_{f_{1}, \dots, Q_{f_d}})$ where f_{n, \dots, f_d} (see cover client below) were an (R-basis for (Rd)* and $O_{f} := \sum_{j=1}^{n} f(v_{j}) \cdot x_{j}$ 1=1 for fe(1Pd)* where VI, V2, -, Vn were chosen to span vays pi, ps, _, pn ofS i.e. p;= R20. V; This raises the point that, uside R5, we have the $|g|_{obal}$ polynomial functions mapping to an $f: \mathbb{R}^d \to \mathbb{R}$ Resubalgebra $\simeq \mathbb{R}[f_1, f_2, -, f_d]$ We'll regard Rz as a module over this monlyebra A

$$\frac{PROP:}{PROP:} Given any f \in (\mathbb{R}^{d})^{*} \text{ the ring isomorphism} \\ \frac{IR(\Delta_{\Sigma}] \stackrel{\varphi}{\longrightarrow} R_{\Sigma}}{IR(\Delta_{\Sigma}] \stackrel{\varphi}{\longrightarrow} R_{\Sigma}} \\ \frac{V_{i}}{IR} \stackrel{\gamma}{\int} \stackrel$$

Since (D) is PL on Z
and fishinger globally,
and they agree on all VIS-2VM,
they carriede. B
REMARK: Some Hopkins acked a good question, prompting this correction

$$\Delta \vec{z} \cdot \vec{s}^{-2}$$

PS ^{N'S}
PS ^{N'S}
 $\Delta \vec{z} \cdot \vec{s}^{-2}$
 $P_{2} \cdot \vec{r}_{2}$
 $\vec{z} \cdot \vec{r}_{2} \cdot \vec{r}_{2}$
 $\vec{r}_{3} \cdot \vec{r}_{4}$
 $\vec{r}_{5} \cdot \vec{r}_{5}$
 $\vec{r}_{5} \cdot \vec{r}_{5} \cdot \vec{r}_{5} \cdot \vec{r}_{5} \cdot \vec{r}_{5}$
 $\vec{r}_{5} \cdot \vec{r}_{5} \cdot \vec{$