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The Associahedron

A polytope with many constructions ...

e Triangulations of a polygon
e Exchange graph of a type An1 cluster algebra
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The Cluster Complex

The associahedron has a dual simplicial complex called
the cluster complex.
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The Cluster Complex
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e Vertices: diagonals
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e Simplices: partial @\ /
triangulations < / " />

e Facets: triangulations ‘ N
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Type A Cluster Complex

The cluster complex is constructed via triangulations of
polygons.

The (type A) generalized cluster complex is constructed
via (m+2)-angulations of polygons.
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Type A Cluster Complex

e Vertices: diagonals
e Simplices: partial (m+2)-angulations
e Facets: (m+2)-angulations of an (mn+2)-gon
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Fuss-Catalan Combinatorics

Catalan numbers count the number of
triangulations of an (n+2)-gon.
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Fuss-Catalan numbers count (m+2)-angulations of
an (mn+2)-gon.
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f-Vectors

Component -1 of the f-vector of the type A cluster
complex is
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In other words, this is the number of partial (m+2)-

angulations of an (mn+2)-gon that have i diagonals.
(Przytycki & Sikora, 2000)




f-Vector Example
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h-Vectors

Component i of the h-vector of the type A cluster
complex is

i-1l—_1(ni-1)(r7n) i=0,1,...n1

(Tzanaki, 2005)
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Narayana Numbers

Inthe m = 1 case , component i of the h-vector of the
type A cluster complex is the Narayana number N(n, i).
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Narayana numbers give refinement of the Catalan
numbers. The sum of N(n, i) from i = 0 to n-1 gives the
nth Catalan number.

Narayana Numbers

Thus the h-vector of the type A cluster complex provides
a type A generalization of Narayana numbers.
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Shellability

Although the type A cluster complex is not polytopal,

it is shellable. (Tzanaki, 2005)
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Generalized Associahedron

A polytope that generalizes the associahedron by
Dynkin type.

Constructed as the exchange graph of a Dynkin type
cluster algebra.

Generalized Cluster Complex

The generalized cluster complex generalizes the
associahedron within and across types.
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Properties of the Generalized
Cluster Complex

There exist expressions for the h-vector of the

generalized cluster complex of any type and any m.
(Fomin & Reading, 2006)

The generalized cluster complex of any type and any m is
shellable. (Athanasiadis & Tzanaki, 2007)
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