
Math 5707 Graph theory

Spring 2013, Vic Reiner

Acyclic and totally cyclic orientation exercises

Our goal here is to develop deletion-contraction recurrences that let
one compute two interesting quantities for an undirected graph: its
number of acyclic orientations, and of its totally cyclic orientations.

1. For an undirected multigraph G = (V,E), an orientation ω of G is a
choice of one of the two possible directions for each edge1 of E, making
them all directed arcs.

(a) Explain why the number of orientations of G is 2|E|.

Say that the orientation ω of G is an acyclic orientation if it contains
no directed cycles; in particular, this requires that G have no self-loops.
Let ac(G) denote the number of acyclic orientations of G.

(b) Show the complete graph K3 has ac(K3) = 6 by drawing all 6 of
its acyclic orientations.

(c) Explain why ac(G) = ac(Ĝ) if Ĝ is obtained from G by replacing
multiple (parallel) copies of edges {x, y} with a single copy of {x, y}:
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We now work on developing the deletion-contraction recurrence for
ac(G). Given an undirected multigraph G = (V,E) and a non-loop
edge e, fix some acyclic orientation of the deletion G \ e, and then
consider the two possible orientations of e, some of which may make G
acyclic. For example, if G and e and G \ e are as shown here
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1By convention, we even consider self-loops to have two possible orientations!
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then this acyclic orientation of G\ e shown on the left can be extended
in the two ways shown to an acyclic orientation of G:
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However, the following acyclic orientation of G \ e, on the left below,
can be extended only one way (shown) to an acyclic orientation of G:
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Let a0, a1, a2, respectively, denote the number of acyclic orientations of
G\e for which 0, 1, or 2, respectively, out of these possible orientations
of e extend it acyclically to all of G. Thus the first example above
contributed toward a2, and the second example contributed toward a1.

(d) Prove a0 = 0 and a1 + a2 = ac(G \ e).

(e) Prove a1 + 2a2 = ac(G).

(f) Prove a2 = ac(G/e), where G/e is the contraction of e in G, and
therefore why

(1) ac(G) = ac(G \ e) + ac(G/e)

for any non-loop edge e of G.

(g) Use these initial conditions

ac(G) = 0 if there are any self-loops in G,

ac(G) = 1 if there are no edges at all in G.

together with equation (1) to illustrate how you can compute ac(K3)
via recursion on the number of edges.

(h) Use this method to prove more generally that ac(Kn) = n!.
Optional: can you also give a second proof that ac(Kn) = n! ?
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2. Say that an orientation ω of G is totally cyclic if every directed arc
lies in at least one directed cycle. One can show that this is equivalent
to the condition that the orientation on each connected component of
G is strongly connected: for every pair x, y in V in the same connected
component of G, there existed directed paths both x to y and y to x.
Let tc(G) denote the number of totally cyclic orientations of G. For

example, the cycle Cn for n ≥ 1 has tc(Cn) = 2; even the loop C1 has
tc(C1) = 2!
Given an undirected multigraph G = (V,E) and a non-bridge edge

e, fix some totally cyclic orientation ω of the contraction G/e, and then
consider the two possible orientations of e one could use to extend ω
to an orientation of G, some of which may make G totally cyclic. We
adopt here the convention for contracting on a loop edge e which says
that G/e is the same as the deletion G \ e if e is a loop.
Let t0, t1, t2, respectively, denote the number of totally cyclic orien-

tations ω of G/e for which 0, 1, or 2, respectively, out of these possible
orientations of e extend it totally cyclically to all of G.

(a) Prove t0 = 0 and t1 + t2 = tc(G/e).

(b) Prove t1 + 2t2 = tc(G).

(c) Prove t2 = tc(G \ e), where G \ e is the deletion of e in G, and
therefore why

(2) tc(G) = tc(G \ e) + tc(G/e)

for any non-bridge edge e of G.

(d) Explain why

tc(G) = 0 if there are any bridges in G,

tc(G) = 1 if there are no edges at all in G.

and show how one can use these together with equation (2) to compute
tc(Cn) via recursion on the number of edges.


