Math 5707 Graph theory
 Spring 2013, Vic Reiner
 Acyclic and totally cyclic orientation exercises

Our goal here is to develop deletion-contraction recurrences that let one compute two interesting quantities for an undirected graph: its number of acyclic orientations, and of its totally cyclic orientations.

1. For an undirected multigraph $G=(V, E)$, an orientation ω of G is a choice of one of the two possible directions for each edge ${ }^{1}$ of E, making them all directed arcs.
(a) Explain why the number of orientations of G is $2^{|E|}$.

Say that the orientation ω of G is an acyclic orientation if it contains no directed cycles; in particular, this requires that G have no self-loops. Let ac (G) denote the number of acyclic orientations of G.
(b) Show the complete graph K_{3} has ac $\left(K_{3}\right)=6$ by drawing all 6 of its acyclic orientations.
(c) Explain why $\operatorname{ac}(G)=\operatorname{ac}(\hat{G})$ if \hat{G} is obtained from G by replacing multiple (parallel) copies of edges $\{x, y\}$ with a single copy of $\{x, y\}$:

We now work on developing the deletion-contraction recurrence for $\operatorname{ac}(G)$. Given an undirected multigraph $G=(V, E)$ and a non-loop edge e, fix some acyclic orientation of the deletion $G \backslash e$, and then consider the two possible orientations of e, some of which may make G acyclic. For example, if G and e and $G \backslash e$ are as shown here

[^0]then this acyclic orientation of $G \backslash e$ shown on the left can be extended in the two ways shown to an acyclic orientation of G :

However, the following acyclic orientation of $G \backslash e$, on the left below, can be extended only one way (shown) to an acyclic orientation of G :

Let a_{0}, a_{1}, a_{2}, respectively, denote the number of acyclic orientations of $G \backslash e$ for which 0,1 , or 2 , respectively, out of these possible orientations of e extend it acyclically to all of G. Thus the first example above contributed toward a_{2}, and the second example contributed toward a_{1}.
(d) Prove $a_{0}=0$ and $a_{1}+a_{2}=\operatorname{ac}(G \backslash e)$.
(e) Prove $a_{1}+2 a_{2}=\operatorname{ac}(G)$.
(f) Prove $a_{2}=\operatorname{ac}(G / e)$, where G / e is the contraction of e in G, and therefore why

$$
\begin{equation*}
\operatorname{ac}(G)=\operatorname{ac}(G \backslash e)+\operatorname{ac}(G / e) \tag{1}
\end{equation*}
$$

for any non-loop edge e of G.
(g) Use these initial conditions

$$
\begin{aligned}
& \operatorname{ac}(G)=0 \text { if there are any self-loops in } G, \\
& \operatorname{ac}(G)=1 \text { if there are no edges at all in } G .
\end{aligned}
$$

together with equation (1) to illustrate how you can compute ac $\left(K_{3}\right)$ via recursion on the number of edges.
(h) Use this method to prove more generally that $\mathrm{ac}\left(K_{n}\right)=n$!. Optional: can you also give a second proof that $\operatorname{ac}\left(K_{n}\right)=n$! ?
2. Say that an orientation ω of G is totally cyclic if every directed arc lies in at least one directed cycle. One can show that this is equivalent to the condition that the orientation on each connected component of G is strongly connected: for every pair x, y in V in the same connected component of G, there existed directed paths both x to y and y to x.

Let $\operatorname{tc}(G)$ denote the number of totally cyclic orientations of G. For example, the cycle C_{n} for $n \geq 1$ has $\operatorname{tc}\left(C_{n}\right)=2$; even the loop C_{1} has $\operatorname{tc}\left(C_{1}\right)=2$!

Given an undirected multigraph $G=(V, E)$ and a non-bridge edge e, fix some totally cyclic orientation ω of the contraction G / e, and then consider the two possible orientations of e one could use to extend ω to an orientation of G, some of which may make G totally cyclic. We adopt here the convention for contracting on a loop edge e which says that G / e is the same as the deletion $G \backslash e$ if e is a loop.

Let t_{0}, t_{1}, t_{2}, respectively, denote the number of totally cyclic orientations ω of G / e for which 0,1 , or 2 , respectively, out of these possible orientations of e extend it totally cyclically to all of G.
(a) Prove $t_{0}=0$ and $t_{1}+t_{2}=\operatorname{tc}(G / e)$.
(b) Prove $t_{1}+2 t_{2}=\operatorname{tc}(G)$.
(c) Prove $t_{2}=\operatorname{tc}(G \backslash e)$, where $G \backslash e$ is the deletion of e in G, and therefore why

$$
\begin{equation*}
\operatorname{tc}(G)=\operatorname{tc}(G \backslash e)+\operatorname{tc}(G / e) \tag{2}
\end{equation*}
$$

for any non-bridge edge e of G.
(d) Explain why

$$
\begin{aligned}
& \operatorname{tc}(G)=0 \text { if there are any bridges in } G \\
& \operatorname{tc}(G)=1 \text { if there are no edges at all in } G .
\end{aligned}
$$

and show how one can use these together with equation (2) to compute $\mathrm{tc}\left(C_{n}\right)$ via recursion on the number of edges.

[^0]: ${ }^{1}$ By convention, we even consider self-loops to have two possible orientations!

