Spring 2019 #5 (and Spring 2017 # 8, Spring 2016 #8) Describe in terms of radicals all internediate fields between (2 and (2(5/2))  $f:=f_n=e^{2\pi i/n}$ IK=Q(Sn) IK/Q is Galors since  $|K = split_Q(x^{i_2}-i)$  separable ; has be different norts i, s, s<sup>2</sup>,--, s''  $\begin{bmatrix} ? \\ 1 = gcd(x^{(2-1)}, \frac{d}{dx}(x^{(2-1)}) = gcd(x^{(2-1)}, 12x^{(1)}) \end{bmatrix}$  $G = Aut_{(K/Q)} \cong (Z/(2Z))^{\times} = \{\tau, \overline{5}, \overline{7}, \overline{1}\}$ Gal & (12) = 4(3)4(4)  $\left( \begin{array}{c} \sigma(\varsigma) = \varsigma^{\alpha} \end{array} \right) \leftarrow$ ā uniquely defines of G  $= (3-1)(2^{2}-2^{1})$ = 2.2=4. G= 262 ×2627 = V4 Q IK COZ ) H (95)  $\langle \sigma_1 \rangle$ <u>حج</u> K 1



$$G \cong 2/52 \times 2/52 \qquad Q(\{s^3\}) = Q($$

Spring 2018 #7  
Determine all intermediate  
Ate(ds berieven Q and Q(1510)  
G=Aut-(1K/Q) 
$$g = g_{10}$$
  
Q(9)  
 $\cong (Z/10ZL) = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\} \overline{3}^2 = \overline{9} = -\overline{1}$   
 $\cong (Z/4ZL)$   
1  
 $K = Q(5)$   $Q(15)$   
 $H = \langle \sigma_3^2 \rangle$  yrunself.  $|K^{H} = Q(\alpha)^{-1} = Q(5+5^{-1})$   
 $H = \langle \sigma_3^2 \rangle$   $yrunself.  $|K^{H} = Q(\alpha)^{-1} = Q(5+5^{-1})$   
 $H = \langle \sigma_3^2 \rangle$   $Q = (-1)(x^{5+1})$   
 $= (x^{-1})(x^{5}+x^{2}+x^{2}+x^{2}+x^{2})(x^{-1})(x^{-1}-x^{2}+x^{-2}-x^{-1})$   
 $g_1^{D} = (x^{5-1})(x^{5+1})$   
 $= (x^{-1})(x^{4}+x^{2}+x^{2}+x^{2}+x^{2})(x^{-1})(x^{-1}-x^{2}+x^{-2}-x^{-1})$   
 $f = g^{-1} = g$$ 

Spring 2016 #8 Determine all internedicte fields berseen Q and QLSg)

Tuy it; G= Z/27/ ×7/27/

Spring 2019 #6 Those X1+X2+X2+1 is med. In IF3 [x]

It has no linear factors since F3 = 20, 1, -1} has no voots for f(x)= x4+x3+x2+x+1 Onlyneed to show no irred quadratic factors g(x) eff3(x). Mexhod 1: Brate force Ivred guadratics are: (x+) check that f(x) is not X x=+1 drijsible by x+x-1 XTX+1 ×=-1 x2-x-1)

Nechod 2:  $|f f(x) = x^{4} + x^{3} + x^{2} + x + 1$  $=\frac{\chi^{5}-1}{\chi^{-1}}$ has a grad irred factor g(x) in IF3 bi), then a my cost for q(x) would have  $\mathbb{F}_{3}(\alpha) \cong \mathbb{F}_{3}[\times]/(q(\times))$  $= \text{H}_{3^2} = \text{H}_{q}$ & is a nost for x2-1 50 so  $\alpha^{5}=1$ , and  $\alpha\neq 1$  (since  $(f_{3}(\alpha))$  $\neq f_{3}$ ) but  $\alpha \in \mathbb{F}_{q}^{\times} \cong (\mathbb{Z}_{q}^{\times} \otimes \mathbb{Z}_{q}^{\times})$ so its order divides 8. Contradiction.

Fall 2018 #9  
Show 
$$x^{5}+y^{7}+2y$$
 is meducible in  $\mathbb{C}[x;y]$   
in  $\mathbb{C}[x;y] = \mathbb{C}[y][x]$   
 $x^{5} + 0 \cdot x^{9} + 0 \cdot x^{2} + 0 \cdot x^{2} + 0 \cdot x + y^{7} + 2y$   
 $= y^{1}(y^{6}+2)$   
in  $\mathbb{C}[y]$   
so Eisenstein applies  
at the prime ideal  
 $(y)$  in  $\mathbb{C}[y]$   
since  $y'(y^{6}+2) \notin (y)^{2}$   
 $(y^{2})$ 

In  $\mathbb{Z}[y][x]$ ,  $x^{5}+y^{7}+11=$  $\chi^{5} + 0.\chi^{7} + 0.\chi + 0.\chi + 0.\chi$ + y<sup>t</sup>+11 in Z(y) take any ivred. Eactor f(x) of y7+11 and we know yt+11 E (f(+)), but not 2 (f(x)) SINCE  $1 = gcd(y^{7}+11, \frac{d}{dy}(y^{7}+11))$ = gcd(y^{7}+11, 7y^{6}) = )

 $F_{a}(12016 \# 7$ Show X4 ( is meducible in Q[x], but reducible in Fp [x] for every prime P f(x)=x"+( in Q(x] =  $\overline{\Phi}_{g}(x)$   $x^{\underline{b}}$ (cheat and say these are say these in  $\overline{\Phi}(x)$ ? alt incd. in  $\overline{\Phi}(x)$ ?  $\chi^{2} - 1 = (\chi^{q} - 1)(\chi^{q} + 1)$  $= (x - i)(x - i) = (x^{2} + i)(x^{4} + i) = 0$   $= (x^{2} + i)(x^{4} + i) = 0$  = 0To show it's irred., show no lin. Eactors by Q root test which says only  $\frac{\pm 1}{\pm 1} = \pm 1$ con be nots, but they're not, For grad. Inclors in Q(x), it's same Z(x) because f(x) is primitive and if x 41 = (x+ax+b)(x+cx+d) in Z(x) a, 5, c, d e71 => bd=+1  $\chi^{4} \in (\chi^{2} + q\chi \pm 1) (\chi^{2} + c\chi \pm 1)$ 

Conversely, 
$$f = J \propto \in \mathbb{F}_{p2}$$
 which  
has order 8, then  $x^{g} = 1$   
but  $x^{q} = \pm 1$ , not  $+1$   
 $s \propto^{q} + 1 = 0$   
 $x \text{ is a nost of an}$   
 $1 \text{ imed. } \underline{1} \text{ inear or quadratic}$   
 $m_{F_{p2}}(x) = q(x)$  that divides  
 $x^{q} + 1$   
 $F_{p2}^{\chi} \cong (\overline{Z}/(p^{2}-1)\overline{Z})^{+}$   
 $x^{q} + 1$   
 $F_{p2}^{\chi} \cong (\overline{Z}/(p^{2}-1)\overline{Z})^{+}$   
 $s \text{ such on a exists } p^{2}-1=0 \text{ mod } g$   
 $p^{2}-1 \equiv \int_{2}^{\infty} 0.2 \equiv 0 \quad \text{fp} \equiv 1 \text{ mod } g$   
 $p^{2}-1 \equiv \int_{2}^{\infty} 0.2 \equiv 0 \quad \text{fp} \equiv 1 \text{ mod } g$   
 $p^{2}-1 \equiv \int_{2}^{\infty} 4.6 \equiv 0 \quad p \equiv 3$   
 $(p-1)(p+1) \quad 4.6 \equiv 0 \quad p \equiv 3$   
 $6.8 \equiv 0 \quad p \equiv 7$ 

Fall 2019 #3 (and Fall 2016 #44)  
? (lassify the Z(i)-modules of cordinality 13  
Fall 2016 #5  
Show the Ideal 
$$I = (13, x+1) \subset Z[x]$$
 is not maximal.  
Z[i] is a PID, so only module M  
over Z(i) which has card 13 is  
certainly fin. genid, so  
 $M = Z[i] \oplus \oplus Z[i]/(\alpha_j) \quad \alpha:eZ[i]$   
 $j=1$   
 $r=0$   
since  
 $\#M = \prod_{j=1}^{+} \# [Z(i]/(\alpha_j)]$   
 $\#M = \prod_{j=1}^{+} \# [Z(i]/(\alpha_j)]$ 

Q: Which X in Z(i) have  $\# \mathbb{Z}[i]/(\alpha) = (3 \mathbb{P})$ We showed in the (or see Chep. 12) that #Z[i]/(x) = N(x) if x=x+iy  $= \chi^2 + \gamma^2$ = (x+iy)(x-iy) r $13 = 2 + 3^{2}$ = (2+3i)(2-3i) $\alpha_1 \quad \alpha_2$ M= Z[i](2+3i) M = Z(i)/(2-3i)are the only two.

To show [=(13, x+1) CZ[x] renot maximal is equivalent to showing Z[x]/I is not a field.

But  

$$Z(x)/(13, x^{2}+1)$$
  
 $\leq Z[x]/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/(x^{2}+1)/$ 

Thm.

≤Z[i]/(13)

= Z[i]/((2+3i)(2-3i)) = Not a maximal ideaSince  $((2+3i)(2-3i)) \rightleftharpoons (2+3i) \rightleftharpoons \mathbb{Z}[i]$ 

Spring 2019 #3 Show the ideal  $I = (19, x^2 + 1) \subset \mathbb{Z}(x)$  is maximal.

Similarly to previous publicity,  

$$I \subset \mathbb{Z}(x)$$
 is maximal  
 $\iff \mathbb{Z}[x]/I$  is a field  
 $II$   
 $\mathbb{Z}[x]/(19, x+1)$   
 $\cong \mathbb{Z}[x]/(x+1)$  (19,  $x+1$ )  
 $\cong \mathbb{Z}[x]/(x+1)$  (19,  $x+1$ )  
 $\cong \mathbb{Z}[x]/(x+1)$  (19,  $x+1$ )  
 $\cong \mathbb{Z}[x]/(19)$  [19 remains prime  
 $IN \mathbb{Z}[x]$   
 $Since (9 \equiv 3 \mod 4)$   
 $(not \equiv 1 \mod 4)$   
Hence (19) is maximal in  $\mathbb{Z}[x]$  since it is a P.I.D.  
and  $\mathbb{Z}[x]/(19)$  is a field.

Fall 2019 # 7  
Describe the prime ideals in k[[x]], k a field  
First recall who the units 
$$k[(x]]^{x}$$
 are,  
then who all the ideals are, then  
the prime ideals.  
 $f(x) = a_{0} + a_{1}x + a_{2}x^{2} + \dots \in k[[x]]$   
is a unit whenever  $a_{0} \in k^{x}$ , since then  
one can write down a formula for  $f(x)^{2}$ :  
 $f(x)^{1} = a_{0} + a_{1}x + a_{2}x^{2} + \dots$   
 $= a_{0}^{-1} \left( \frac{1}{1 + \frac{a_{1}}{a_{0}}x + \frac{a_{2}}{a_{0}}x^{2} + \dots} \right)^{2}$   
 $= a_{0}^{-1} \left( 1 - \left( \frac{a_{1}}{a_{0}}x + \frac{a_{2}}{a_{0}}x^{2} + \dots \right)^{2} + \left( \frac{a_{1}x}{a_{0}}x + \frac{a_{2}}{a_{0}}x^{2} + \dots \right)^{2}$   
which gives a well-defined element of  $k[[x]]$   
Since this is divisible by  $x^{1}$   
 $f(x)^{2}$ 

•

Once we've identified 
$$k[[x]]^{x}$$
, the nonzero, poper  
 $I \subset [e[(x)]]$  can be identified as all  
principal ideals  $(x), (x^{2}), (x^{3}), ...$   
since if I has nonzero element  
 $f(x) = a_{1}x^{d} + a_{d+1}x^{d+1} + ...$   
with  $a_{1} \neq 0$  addieving the smallest such degree  $d$ ,  
then we claim  $I = (x^{d}):$   
Note  $f(x) = x^{d}(a_{1}t a_{d+1}x^{1} + a_{d+2}x^{2} + ...)$   
 $\Rightarrow (f(x)) = (x^{d}) \subseteq I$   
but conversely  $I \subseteq (x^{d})$  by definition of  $d$ .  
The only prime ideal among  $(x), (x^{2}), (x^{3}), ...$   
 $is (x)$  since any  $(x^{d})$  for  $d \ge 2$   
has  $x_{1}^{1}x^{d-1} \notin (x^{d})$   
Note  $(x)$  is prime, since  $k[(x_{1}]/(x) \cong k;$   
 $a$  field, so a domain. Also  $I = (b)$  is prime since  
 $I[x]$  is a domain.

Fall 2018 #6  
Drow the ring 
$$M_n(k) = k$$
 for a field k  
has no proper 2-sided idents.  
Let's check that any non-zero 2-sided  
ideal  $J \subseteq M_n(k)$  actually contains  $1 = I_n$   
 $= \begin{bmatrix} n & 0 \\ 0 & 1 \end{bmatrix}$   
Given any nonzero matrix  $A = (a_{ij}) \in J$ ,  
assume the entry  $a_{ij} \neq 0$ . Then J also  
contains  $I \in A \in I_{i,n} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$  for each  
 $m = I_{a,b} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ .  
where  $E_{a,b} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ .  
Hence J contains  
 $\begin{bmatrix} n & 0 \\ 0 & 0 \end{bmatrix} + \dots + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = I_n$ .

Spring 2018 #6  
Show 
$$I = (x,y) \subset k[x,y,z]$$
 for katield  
is not a principal ideal.  
Suppose  $I = (x,y) = (f(x,y,z))$  was principal.  
Define for  $g(x,y,z) = \sum_{a,b,c} g_{abc} x^{a}y^{b}z^{c}$   
its minimum & maximum degrees  
mindeg $(g) := \min \{a+b+c: g_{abc} \neq o\}$   
mixedeg $(g) := \max \{a+b+c: g_{abc} \neq o\}$   
and note mindeg $(fg) = \min deg(f) + \min deg(g)$   
invedeg $(fg) = \max deg(f) + \min deg(g)$   
since k is a freed (so fabc  $g_{apt} \neq o$  if  
fabc,  $g_{apt} \neq o$ )  
Since fe  $I = (x,y)$ , one has mindeg $(f) \ge 1$ .  
Then since  $x \in (k, y) = I = (f)$   
implies  $x = f \cdot g \implies 1 = \min deg(f) + \max deg(g)$   
ove concludes that mindeg $(g) = \max deg(f) + \max deg(g)$   
ove concludes that mindeg $(g) = \max deg(f) + \max deg(g)$   
 $i.e.gek^{x}$  and  $f = g \cdot x$  is associate b  $x$   
Simbarly  $y \in (x,y) = I = (f)$  shows  $f$  is associate by.  
But then  $x, y$  are associates, which is false.

This equivalent to obving that  

$$k[x,y,z]/T$$
 is a field  
 $\binom{1}{k[x,y,z]}/(x,y,z) \cong k$ , a field.

Spring 2016 #49  
Prove that the sel of nilpotent elements in  
a commutative virg is an ideal.  
For Ra commutative virg  
and I := { all nilpotent elements,  
i.e. a eR such that  
J Ne {1,2,...} with a<sup>N</sup>=0  
one has 
$$\forall a, b \in I$$
 and reR  
that  $\exists N, with a^{N} = 0$   
N<sub>2</sub> with  $a^{N_2} = 0$   
So ra eI because (ra) = r a  
Rammutative = r^N.0=0  
and atbEI because  
(atb) NitN2 =  $\sum_{k+l=N+N_2}^{(N,tN_2)} a^k b^l = 0.$ 

Spring 2016 #7  
Give a prescription for a formula for an  
isomorphism (for integers 
$$m, n > 1$$
)  
 $Z/m \oplus Z/n \longrightarrow Z/ged(in, n) \oplus Z/lem(in, n)$   
If one factors  $m = p_1^{a_1} \cdots p_r^{a_r}$   
 $n = p_1^{a_1} \cdots p_r^{a_r}$   
for some list of distinct primes  $p_{1, \dots, p_r}$   
and  $a_i, b_j \in \{0, 1, 2, \dots, g\}$ , then  
Chinese Remainder Theorem gives isomorphisms  
 $Z/m \oplus Z/n \longrightarrow \bigoplus Z/p_k^{a_{k_r}} \oplus Z/p_k^{b_{k_r}}$   
 $Z/ged[in, n) \oplus Z/ken(m, n) \longrightarrow \bigoplus Z/p_k \oplus Z/p_k^{b_{k_r}}$   
Hence it suffices to exhibit for each k an isomorphism  
 $Z/p_k^{a_{k_r}} \oplus Z/p_k^{b_{k_r}} \longrightarrow Z/p_k^{min(a_{k_r}b_k)} \oplus Z/p_k^{mar(a_{k_r}b_k)}$   
which is efforer  
 $(\overline{x}, \overline{y}) \longmapsto (\overline{x}, \overline{y})$  if  $a_{k_r} = b_k$   
or  $(\overline{x}, \overline{y}) \longmapsto (\overline{y}, \overline{x})$  if  $a_{k_r} = b_k$