Active learning exercise on
 Stirling numbers of the second kind Vic Reiner, Math 4707, Monday Oct. 10, 2011

For positive integers n, k with $1 \leq k \leq n$, the Stirling number of the second kind $S(n, k)$ is the number of ways to partition a set of n labelled elements, such as $\{1,2, \ldots, n\}$, into k unlabelled nonempty blocks.

For example, listing partitions as lists of blocks with dashes between them (and suppressing set brackets and commas), one has

$$
\begin{aligned}
S(4,2)=7= & \left.\left\lvert\, \begin{array}{rrr}
123-4, & 124-3, & , 134-2, \quad 234-1, \\
& 12-34, & 13-24, \\
14-23
\end{array}\right.\right\} \mid, \\
S(3,1)=1= & |\{123\}|, \\
S(3,2)=3= & |\{12-3, \quad 13-2, \quad 23-1\}|, \\
S(3,3)=1= & |\{1-2-3\}| .
\end{aligned}
$$

One can create a triangle of the numbers $S(n, k)$ similar to Pascal's triangle for the binomial coefficients $\binom{n}{k}$, starting like this:

$n \backslash k$	1	2	3	4	5
1	1				
2	1	1			
3	1	3	1		
4	$?$	7	$?$	$?$	
5	$?$	$?$	$?$	$?$	$?$

1. Compute the remaining entries $S(4,1), S(4,3), S(4,4)$. in the $n=4$ row of the above table.
2. Explain why for all n, one has
(a) $S(n, 1)=1=S(n, n)$,
(b) $S(n, n-1)=\binom{n}{2}$,
(c) $S(n, 2)=\frac{2^{n}-2}{2}=2^{n-1}-1$.
(d) Use parts (a),(b),(c) to check your answers for the $n=4$ row of the table, and use them to fill in almost all of the entries in the $n=5$ row, except $S(5,3)$.
(e) Explain why $S(5,3)=\binom{5}{3,2}+\frac{1}{2}\binom{5}{2,2,1}$, and use this to fill it in.
3. Decreeing that $S(n, k)=0$ unless $1 \leq k \leq n$, explain why for $n \geq 2$,

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k) .
$$

Use this to re-compute the $S(5,3)$ value from exercise 2(e).

For each fixed $k \geq 1$, define an (ordinary) generating function for the sequence $S(k, k), S(k+1, k), S(k+2, k), \ldots$

$$
\begin{aligned}
f_{k}(x) & :=\sum_{n=k}^{\infty} S(n, k) x^{n} \\
& =S(k, k) x^{k}+S(k+1, k) x^{k+1}+S(k+2, k) x^{k+2}+\cdots
\end{aligned}
$$

4. Using the formulas for $S(n, 1), S(n, 2)$ in exercise 2(a,c), show that (a)

$$
\begin{aligned}
f_{1}(x) & =S(1,1) x^{1}+S(2,1) x^{2}+S(3,1) x^{3}+\cdots \\
& =\frac{x}{1-x}
\end{aligned}
$$

(b)

$$
\begin{aligned}
f_{2}(x) & =S(2,2) x^{2}+S(3,2) x^{3}+S(4,2) x^{4}+\cdots \\
& =\frac{x^{2}}{(1-x)(1-2 x)}
\end{aligned}
$$

5. Show using the recurrence in exercise 3 that for $k \geq 2$,

$$
f_{k}(x)=\frac{x}{1-k x} \cdot f_{k-1}(x)
$$

and use this to deduce that

$$
f_{k}(x)=\frac{x^{k}}{(1-x)(1-2 x)(1-3 x) \cdots(1-k x)} .
$$

In order to derive a summation formula for $S(n, k)$, it is helpful to consider a closely related number $\hat{S}(n, k)$, defined to be the number of ways to partition $\{1,2, \ldots, n\}$ into k labelled blocks.

Alternatively, $\hat{S}(n, k)$ is the number of ways to places balls labelled $1,2, \ldots, n$ into k boxes labelled box 1 , box $2, \ldots$, box k, in such a way that no box ends up empty.

For example, using dashes to separate balls in box i from box $i+1$,

$$
\begin{aligned}
& \hat{S}(4,2)=14=\left|\left\{\begin{array}{lll}
123-4, & 124-3, & 134-2, \\
4-123, & 3-124, & 2-134, \\
12-234, \\
12-34, & 13-24, & 14-23, \\
34-12, & 24-13, & 23-14
\end{array}\right\}\right| \\
& \hat{S}(3,3)=6=\left|\left\{\begin{array}{lll}
1-2-3, & 1-3-2, & 2-1-3, \\
2-3-1, & 3-1-2, & 3-2-1
\end{array}\right\}\right|
\end{aligned}
$$

6. Describe a simple relation between the numbers $\hat{S}(n, k)$ and $S(n, k)$.
7. Write down as a function of n and k how many ways there are to put balls labelled $\{1,2, \ldots, n\}$ into the k labelled boxes if ...
(a) there are no restrictions about boxes being empty or not,
(b) one insists that box i must be empty,
(c) one insists that boxes i and j must both be empty,
(d) one insists that boxes $i_{1}, i_{2}, \ldots, i_{j}$ must all be empty.
8. We claim that one has the following summation formula for $\hat{S}(n, k)$:

$$
\begin{equation*}
\hat{S}(n, k)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n} \tag{1}
\end{equation*}
$$

(a) Check that the formula (1) gives the correct answer for $\hat{S}(4,2)$.
(b) What formula for $\hat{S}(n, 2)$ does (1) give when you plug in $k=2$?
(c) Prove formula (1) (Hint: Why is problem 7 relevant?)
(d) Use (1) and Exercise 6 to derive a summation formula for $S(n, k)$.

