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CHAPTER 1

Introduction

Baxter permutations originally arose in a 1964 paper of Glen Baxter [6], an

analyst who was studying the conjecture that every pair of commuting continuous

functions on the unit interval necessarily had a common fixed point. Say f and g

are commuting continuous functions on the unit interval. Then it is equivalent to

show that f and f ◦ g have a common fixed point. If f ◦ g has finitely many fixed

points, {x1, x2, . . . , xN}, then f(g(f(xi))) = f(f(g(xi))) = f(xi) (first equality

because f and g commute under composition, second equality because xi is a fixed

point of f ◦ g). This means that f(xi) is itself a fixed point of f ◦ g, and we get a

permutation w of {1, . . . , N} by saying wi = j if f(xi) = xj .

Baxter showed that such permutations had some necessary conditions. In par-

ticular, N = 2n − 1 had to be odd, w sent odds to odds and evens to evens, the

action of the permutation on the odds completely determined what happened on

the evens, and the induced permutation on the odds could not contain certain sub-

sequences. Over time, the permutations of length n on the odds avoiding certain

subsequences (standardized to a permutation on [n] := {1, 2, . . . , n}) are what have

become known as Baxter permutations, and the larger permutations are called com-

plete Baxter permutations, or w-admissible permutations. A few years later, Boyce

and Huneke ( [13] [36]) independently constructed counterexamples of commuting

continuous functions with no common fixed points.

While the (now disproved) conjecture no longer provided motivation, there was

still some interest in these permutations. Chung, Graham, Hoggatt, and Kleiman

[18] were able to come up with an enumeration by creating a generating tree for

these permutations, algebraically manipulating the resulting recursion relation, and

then magically guessing the correct solution. They found that the number of Baxter

permutations of length n was

(1) B(n) :=

n−1∑
k=0

(
n+1
k

)(
n+1
k+1

)(
n+1
k+2

)(
n+1

1

)(
n+1

2

) .

Shortly thereafter, Mallows was able to refine their recursion to show that the

kth summand gave the number of Baxter permutation with k rises [40], and then

Viennot gave a combinatorial proof of this fact [55].

1
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Since then, numerous other combinatorial objects have been found to be in

bijection with Baxter permutations, some of which provide refined enumeration of

Baxter permutations with respect to other statistics. Cori, Dulucq, and Viennot

made bijections to shuffles of parenthesis systems, and pairs of binary trees satis-

fying a compatiblity relationship [19]. Dulucq and Guibert did work with stack

words and standard Young tableaux of shape 3× n with no consecutive entries in

any row [21], and later to triples of non-intersecting lattice paths [22]. Reading

provided a Hopf algebra structure for ”twisted“ Baxter permutations as part of a

larger work on lattice quotients of the weak order [45], and later gave an intrinsic

description of this Hopf algebra in terms of diagonal rectangulations with Law [38].

There are also connections to plane bipolar orientations and 2-orientations of planar

quadrangulations [23].

All of these combinatorial objects in bijection with Baxter permutations have

a natural involution associated to them, so one natural question would be to count

how many things in each combinatorial family are fixed under this involution.

• In Section 2, Theorem 2.2, we show that the bijections between these

various combinatorial objects are equivariant with respect to the natural

involutions. This means that the number of objects fixed by the natural

involution in each combinatorial family is the same, and that it suffices to

find the enumeration for only one combinatorial family.

• In Section 2, Theorem 2.3, we find the enumeration for one such combi-

natorial family, and show that it is an instance of the Stembridge “q=-1”

phenomenon. Baxter permutations themselves have additional symme-

tries, such as being closed under taking inverses, that are not shared by

the other families.

• In Section 2, Theorem 2.57, we give an overview of all symmetry classes

of Baxter permutations, where the previous result covers Baxter permu-

tations whose permutation matrix is fixed under 180◦ rotation, with The-

orem 2.57 being a new result about those fixed under 90◦ rotation.

As part of this previous work, we came up with a natural q-analog for Baxter

permutations with a fixed number of descents, and wanted to extend it to a natural

q-analog for all Baxter permutations simultaneously. In particular, we wanted

something something analogous to how the q-Narayana numbers can be combined

to come up with a natural q-Catalan number [28]. This led to exploration as to

various ways in which properties of Catalan objects could be extended to Baxter

objects.

One such property is gamma nonnegativity, for a polynomial of degree n with

symmetric coefficient sequence, which asks that it expands nonnegatively in the
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basis {ti(1+ t)n−2i}0≤i≤bn/2c. A motivation for gamma nonnegativity is geometric,

coming from Gal’s conjecture. Gal’s conjecture says that the h-polynomial of any

flag simplicial complex is gamma nonnegative, and it is further conjectured by Nevo

and Petersen that the resulting gamma coefficients are not just positive, but also

the f -vector of some associated simplicial complex [42].

Motivated by Gal’s conjecture, there are a number of families of flag simplicial

spheres and polytopes whose h-vectors are known to be gamma-nonnegative. Many

of them arise from the classification of irreducible crystallographic root systems by

Dynkin diagrams into three infinite families (types A,B, and D) and finitely many

exceptional cases.

In one direction, one can consider the Coxeter complex, which is defined in

terms of the parabolic subgroups of the corresponding Coxeter group. Stembridge

has shown that graded Coxeter cones (and in particular, the Coxeter complex)

are gamma nonnegative, and has given the expansions for the Coxeter complexes

corresponding to the infinite irreducible families and the exceptional cases [53].

We can think of the Coxeter complex for different types as a generalization of the

permutahedron, which is dual to the type A Coxeter complex.

In another direction, we have the associahedron. The associahedron is a poly-

tope that can be described in terms of the triangulations of a regular polygon.

Fomin and Zelevinsky [27] showed that finite-type cluster algebras have the same

Dynkin classification, and associated to each diagram a cluster complex (dual to a

generalized associahedra), for which the classical associahedra corresponds to type

A, and the cyclohedron corresponds to type B. There are a number of results about

gamma nonnegativity related to generalizations of the associahedron.

Postnikov, Reiner, and Williams [44] confirmed Gal’s conjecture for chordal

nestohedra, and computed the gamma vectors explicitly for the infinite families

of the permutahedron, associahedron, and cyclohedron . More recently, work has

been done been done by Nevo and Petersen to realize the gamma vectors of the

Coxeter complexes, the associahedron, and the cyclohedron as the f -vectors of an

associated complex [42]. Aisbett [2] was able to realize the gamma vectors of edge

subdivisions of the cross polytope (which has the flag nestohedra mentioned in

Postnikov, Reiner, and Williams as as special case) as the f -vector of an associated

complex, which was independently proven by Volodin [56] in the dual case of 2-

truncated cubes. Gorsky [33] then confirmed that while the type D associahedra

are not nestohedra for n ≥ 4, then can be realized as 2-truncated cubes, and are

thus gamma nonnegative.

In Section 4, we will extend a number of these results and define a q-analog

of gamma nonnegativity. In particular, the h-vector for many of the combinato-

rially defined complexes can be realized as the descent generating function over
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the underlying combinatorial objects. For many examples, we consider the joint

distribution of these combinatorial objects with respects to descents and a second

statistic (generally analogous to major index for permutations), and derive an ex-

pansion in terms of the polynomials ti
∏N−1−i
k=i (1 + tqka+b) (for some fixed a and

b) whose coefficients are nonnegative polynomials in q.

• In Section 4.2.2, we prove such an expansion exists for the q-Narayana

distribution, corresponding to Catalan objects.

• In Section 4.2.3, we prove that one such expansion exists for a natural

polynomial associated to Baxter objects.

• In Conjecture 4.14, we conjecture that a second expansion exists for the

natural polynomial associated to Baxter objects, which generalizes to an

infinite family of polynomials, and includes the expansion proven for Cata-

lan objects.

• In Sections 4.3 and 4.4, we recall previous results which show the existence

of such an expansion for natural polynomials associated to permutations

and signed permutations.

• In Section 4.5, we give such an expansion for a natural polynomial asso-

ciated to the cyclohedron.

• In Section 4.6, we conjecture that such an expansion exists for a natural

polynomial associated to involutive permutations.



CHAPTER 2

Involutions on Baxter Objects

2.1. Overview

The Baxter numbers are given by

(2) B(n) :=

n−1∑
k=0

(
n+1
k

)(
n+1
k+1

)(
n+1
k+2

)(
n+1

1

)(
n+1

2

) .

We will define

(3) Θk,` =

(
n+1
k

)(
n+1
k+1

)(
n+1
k+2

)(
n+1

1

)(
n+1

2

)
for n = k + ` + 1 to refer to a single summand. The summand Θk,` counts many

things, defined below, and illustrated in the Appendix:

(A): Baxter permutations in Sn with k ascents and ` descents. [18]

(B): Baxter permutations in Sn with k inverse ascents and ` inverse de-

scents.

(C): Twisted Baxter permutations in Sn with k inverse ascents and ` inverse

descents. [38]

(D): Non-intersecting lattice paths from

A1 = (0, 2), A2 = (1, 1), and A3 = (2, 0) to(4)

B1 = (k, `+ 2), B2 = (k + 1, `+ 1), B3 = (k + 2, `),

which we will call (k,`)-Baxter paths. [22]

(E): Standard Young tableaux of shape 3×n with no consecutive entries in

any row, and k instances of (i, i + 1) in the union of the first and third

rows, which we will call (k,`)-Baxter tableaux. [21]

(F): Diagonal rectangulations of size n, where k is the number of times the

interior of the diagonal is intersected vertically, and ` is the number of

times it is intersected horizontally. [38]

(G): Plane partitions in a k × ` × 3 box, which we will call Baxter plane

partitions.

5
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Recall that a permutation w = w1 . . . wn ∈ Sn has a descent at position i if

wi > wi+1. A permutation w has an inverse descent at position i if w−1 has a

descent as position i, which is equivalent to i+ 1 appearing to the left of i in w.

Definition 2.1. Baxter permutations are those that avoid the patterns 3-

14-2 and 2-41-3, where an occurrence of the pattern 3-14-2 in a permutation w =

w1 . . . wn means there exists a quadruple of indices {i, j, j+1, k} with i < j < j+1 <

k and wj < wk < wi < wj+1 (and similarly for 2-14-3). Equivalently, it means there

is an instance of the classical pattern 3142 where the elements representing 1 and

4 are adjacent in the original word.

When we only count subsequences with specified adjacencies in the original

word, it is called a vincular pattern. For example, 25314 contains an instance of

the classical pattern 2413, but not the vincular pattern 2-41-3.

For n = 4, there are B(4) = 22 Baxter permutations in S4, with the only

excluded ones being 2413 and 3142.

Twisted Baxter permutations have a syntactically similar definition, being

those that avoid the vincular patterns 2-41-3 and 3-41-2.

Call these larger sets counted by B(n) a set of Baxter objects of order n, and

their subsets counted by Θk,` a set of Baxter objects of order (k,`). Each of these

subsets has a natural involution that preserves k and `:

• Conjugation by the longest permutation w0 for (A), (B), and (C).

• Rotation by 180◦ about a central point for (D) and (F)

• Schützenberger evacuation for (E), which in the special case of a rectan-

gular tableaux with N boxes corresponds to rotating the tableaux 180◦

and then replacing every label i with N + 1− i.
• Taking the complement of a plane partition in the k × l × 3 box for (G).

Since Baxter permutations are closed under taking inverses [38], the map w 7→
w−1 provides an obvious bijection between Baxter objects (A) and (B). There are

known bijections due to Dulucq and Guibert between the Baxter objects (A), (D)

and (E) (see [21], [22]), and also between the objects (B), (C) and (F) due to Law

and Reading (see [38]). We will also show the equivalence of objects (D) and (G).

Chapter 2 is devoted to the proof of the following theorem:

Theorem 2.2. The given bijections between the above 7 classes of Baxter ob-

jects of order (k,`), commute with their respective involutions.

Since the bijections commute with the respective involutions, this means the

number of Baxter objects of order (k,`) fixed under involution is the same for all

7 classes of Baxter objects. Denote this common number Θ	
k,`, and introduce a

q-analogue of Θk,`,
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(5) Θk,`(q) :=

n+ 1

k


q

n+ 1

k + 1


q

n+ 1

k + 2


qn+ 1

1


q

n+ 1

2


q

where n = k + `+ 1, n
k


q

=
[n]!q

[k]!q[n− k]!q
,

[m]!q = [m]q[m− 1]q . . . [1]q,

and

[j]q = 1 + q + . . .+ qj−1.

Theorem 2.3. Θk,`(q) lies in N[q], has symmetric coefficients, and satisfies

[Θk,`(q)]q=−1 = Θ	
k,`.

The proof of Theorem 2.3 is given in Section 2.3, using a result of Stembridge

from the theory of plane partitions.

2.2. Proof of Theorem 2.2

In this section, we will show that the bijections between all our Baxter objects

are equivariant. In each subsection, we will focus on showing the equivariance of

bijections between two or three Baxter objects.

2.2.1. Objects (D) and (G). A plane partition is an array (πi,j)i,j≥1 of non-

negative integers with finitely many non-zero entries that weakly decrease along

rows and columns. The plane partitions inside an a × b × c box are those where

πi,j ≤ c, and πi,j = 0 if i > a or j > b. Its complement in the a × b × c box is

the plane partition given by π′i,j = c− πa−i,b−j for 1 ≤ i ≤ a and 1 ≤ j ≤ b and 0

elsewhere.

Theorem 2.4. There is a bijection between (k, `)-Baxter paths and plane par-

titions in a k × ` × 3 box, which equivariantly takes conjugation by w0 to comple-

mentation of a plane partition. 1

Proof. Each individual lattice path from Ai to Bi naturally corresponds to a

partition λi inside of a k × ` box, (our convention will be to take λi to be the part

of the k × ` box with Ai and Bi as corners that lies above the given lattice path).

1Thanks to Jang Soo Kim for noting this connection.
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(2,0)

(6,4)

(1,1)

(5,5)

(0,2)

(4,6)

Figure 2.1. Example of the map from triples of non-intersecting
lattice paths as in (4) to plane partitions in a k × ` × 3 box, for
k = ` = 4. (Tikz code courtesy of Jang Soo Kim)

The non-intersecting condition is equivalent to requiring λ3 ⊆ λ2 ⊆ λ1, which is

precisely the condition necessary for a triple of partitions to form the layers of a

plane partition when stacked. Additionally, one can see the involution on lattice

paths (which is 180◦ rotation) corresponds to taking λ3 ⊆ λ2 ⊆ λ1 to λc1 ⊆ λc2 ⊆ λc3,

where λc is the complement of λ in the k × ` box, which is the same as taking the

complement of the plane partition in the k × `× 3 box. �

2.2.2. Objects (A), (D), and (E). One fundamental intermediate object in

bijections between Baxter objects is a special sub-class of pairs of binary trees.

A binary tree is a rooted plane tree where every node has at most two children,

denoted the left and right child. A complete binary tree is a binary tree where every

node is either a leaf, or has has exactly two children. Let BTn denote the set of

binary trees with n nodes, and CBT2n+1 the set of complete binary trees on 2n+ 1

nodes.

If we truncate all of the leaves from a complete binary tree on 2n+ 1 nodes, we

are left with a binary tree on n nodes. If we have a binary tree on n nodes, we can

extend it to a binary tree on 2n + 1 nodes by adding leaves to every node with 0

or 1 children. The processes of truncation and extension are clearly inverse to each

other.

Definition 2.5. Let Trunc : CBT2n+1 7→ BTn be the bijection from complete

binary trees on 2n+1 nodes to binary trees on n nodes obtained by truncating leaves,

with inverse map called Extend. Let Trunc×2 : CBT2n+1×CBT2n+1 7→ BTn×BTn
(resp. Extend×2) be the corresponding maps on pairs of trees.
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We call a leaf a left (resp. right) leaf if it is a left (resp. right) child of its

parent.

Definition 2.6. Let code : CBT2n+1 7→ {0, 1}n−1 be the function that reads

off the pattern of left and right leaves in a complete binary tree from left to right

(excluding the left-most left leaf and right-most right leaf) by assigning a 1 to left

leaves and a 0 to right leaves

0

0

1 0

Trunc−−−−→

Figure 2.2. Example of Trunc taking an element of CBT11 with
leaf code 0010 to an element of BT5.

We will mainly be interested in pairs of complete binary trees satisfying a

compatibility relation.

Definition 2.7. Let Twinn ⊂ CBT2n+1 × CBT2n+1 be the set of pairs of

complete binary trees, (TL, TR), where code(TL) is the same as code(TR) if we

interchange 0’s and 1’s. Let T̃winn be the image of Twinn under Trunc×2.

(
,

)

↓

(
,

)

Figure 2.3. Example of map from Twinn to T̃winn for n = 5.

Clearly Twinn and T̃winn are in bijection.
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Definition 2.8 ( [50, §1.2]). Given a word w = w1w2 . . . wn with distinct

letters in N≥1, recursively define a binary tree incr(w) called the increasing binary

tree for w by saying that if w = uxv with x = min{w1, . . . wn}, then incr(w) has

x as its root, incr(u) as its left subtree, and incr(v) as its right subtree. Similarly,

recursively define a binary tree decr(w) called the decreasing binary tree of w by

saying that if w = uxv with x = max{w1, . . . wn}, then decr(w) has x as its root,

decr(u) as its left subtree, and incr(v) as its right subtree.

While this process gives a labelled binary tree, we will only consider incr(w)

and decr(w) to be the underlying unlabelled binary tree.

Definition 2.9. Let Ψ : Sn 7→ BTn×BTn be the map that sends a permutation

w to the pair of binary trees (incr(w),decr(w)).

Theorem 2.10 (Dulucq and Guibert, [21]). Ψ : Baxn 7→ T̃winn is a bijection.

It is known that if w has k ascents and ` descents, then Extend(incr(w)) will

have k + 1 left leaves and `+ 1 right leaves.

Definition 2.11. Say w ∈ Sn is alternating if w1 < w2 > w3 < w4 . . . . Let

AltBax2n denote the set of alternating Baxter permutations of length 2n.

Recall that alternating permutations have the property that incr(w) (resp.

decr(w)) is a complete binary tree if we add a left-most left leaf (resp. right-most

right leaf) [50, Prop. 1.3.14].

Corollary 2.12. The function Ψ is a bijection from alternating Baxter per-

mutations of length 2n to all pairs of complete binary trees with 2n+ 1 nodes each.

Definition 2.13. The natural involution on CBT2n+1 × CBT2n+1 (which has

Twinn as a subset) is taking the mirror reflection of each tree, and then swapping

the two trees (see Figure 2.4).

Proposition 2.14. Ψ equivariantly maps permutations with the action of con-

jugation by the longest element to pairs of twin trees with this involution action.

This proposition is obvious from the definition of Ψ in terms of increasing and

decreasing trees.

The equivalence of Baxter permutations fixed under conjugation by w0 and

triples of non-intersecting of lattice paths fixed under rotation, along with a number

of other Baxter objects fixed under their respective involutions, is given by Felsner,

Fusy, Noy, and Orden [23]. They follow from the fact that the bijections between

the corresponding Baxter objects are all equivariant with respect to the natural

involutions.
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43512

l

( 1

3

4 5

2

,

5

4

3

2

1

)

↓

(
1 0 1

0 ,

0 1 0 1

)

45132

l

( 1

4

5

2

3
,

5

4 3

1 2

)

↓

(
0 1 0 1

, 1

0 1 0

)

Figure 2.4. Map from Baxn to Twinn for n = 5, and the corre-
sponding action under involution.

Theorem 2.15 (Dulucq and Guibert, [21]). There is a bijection between el-

ements of Twinn with k + 1 left leaves and ` + 1 right leaves, and (k,`)-Baxter

paths.

Proposition 2.16. The above bijection equivariantly takes the natural involu-

tion on Twinn to rotation by 180◦ on triples of non-intersecting lattice paths.

Proof. Given a pair of twin trees (TL, TR), the first path (resp. third path)

arises from reading the internal nodes of TL (resp. TR) in infix order, recording

whether they are left or right children of their parents. The middle path is deter-

mined by code(TL), which by the twin condition encodes the same information as

code(TR). It is not hard to see that the effect on this encoding of taking the mirror

reflections of TL and TR and swapping them will be exactly the same as taking a

rotation by 180◦ on triples of non-intersecting lattice paths. �

Felsner, Fusy, Noy, and Orden [23] have additionally shown the bijections to

a number of other Baxter objects are also equivariant. One interesting Baxter

family not included are Baxter tableaux, or 3 × n standard Young tableaux with

no consecutive entries in the same row, which we will now look at.

Cori, Dulucq, and Viennot [19] begin by working with a larger set of objects,

counted not by B(n), but by c2n, where cn = 1
n+1

(
2n
n

)
is the Catalan number.

Definition 2.17. Let Y
(k)
n be the language of all words in {1, 2, . . . , k} such

that each letter appears exactly n times, and for any prefix of the word, i appears
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at least as often as i + 1. These are exactly the Yamanouchi words for standard

Young tableaux of a k × n box2.

A Yamanouchi word for a standard Young tableau is a word where the ith letter

indicates which row of the tableau i appears in.

Example 2.18. Let Pz,z be the language of well-formed parenthesis systems on

the letters {z, z̄}. If we think of 1’s as being z’s (corresponding to left parentheses)

and 2’s as being z’s (corresponding to right parentheses), we can see that Pz,z

corresponds to ∪n≥0Y
(2)
n .

Evacuation can be defined for general standard Young tableaux, but in the

special case of rectangular shape, it takes a particularly nice form.

Definition 2.19. Given a standard Young tableaux T of square shape with N

boxes, let evac(T ) be the Young tableaux we get by rotating T by 180◦, and then

replacing each label i with N + 1− i.

This action also takes a nice form on the corresponding Yamanouchi words.

Definition 2.20. If x = x1x2 . . . x3n−1x3n ∈ Y (3)
n , then let

evac(x) = (3− x3n)(3− x3n−1) . . . (3− x2)(3− x1).

Example 2.21. evac(112323) = 121233

We introduce an intermediate object, consisting of certain shuffles of two paren-

thesization systems.

Definition 2.22. Let Shuffle2n be the set of all shuffles of Pa,ā and Pb,b̄ of

length 2n such that for every prefix ending in b, the number of a’s is strictly greater

than the number of ā’s.

Example 2.23. abb̄bāaāab̄ā ∈ Shuffle10

Theorem 2.24 (Cori, Dulucq, Viennot [19]). There are bijections between

AltBax2n, Shuffle2n, and pairs of complete binary trees with 2n+ 1 nodes each.

In particular, each set has c2n objects.

The bijection β : AltBax2n → Shuffle2n will later be recalled in Definition 2.30.

Later, Dulucq and Guibert showed that there was an additional bijection to a

special class of Yamanouchi words.

2They are also referred to as stack words, as they encode the permutations that can be sorted
with k − 1 stacks [32].
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Definition 2.25. Let Y
(3)
n (22) be the subset of Y

(3)
n consisting of Yamanouchi

words avoiding the consecutive pattern 22 (corresponding to Young tableaux with

no consecutive entries in the middle row). Let Y
(3)
n (11, 22, 33) be the subset of Y

(2)
n

consisting of Yamanouchi words avoiding the consecutive patterns 11, 22, or 33

(corresponding to Baxter tableaux, which have no consecutive entries in any row).

Theorem 2.26 (Dulucq and Guibert [21]). There is a bijection between Shuffle2n

and Y
(3)
n (22). This bijection is given by the map that sends α = α1α2 . . . α2n ∈

Shuffle2n to f(α) = Φ(α1)Φ(α2) . . .Φ(α2n), where

Φ(a) = 1

Φ(b) = 21

Φ(ā) = 23

Φ(b̄) = 3

Example 2.27.

Φ( a b b̄ b ā a ā a b̄ ā )

= 1 21 3 21 23 1 23 1 3 23

It is not immediately clear that all of the maps are necessarily equivariant

with respect to their natural involutions. We will show that the original bi-

jections of Cori, Dulucq, and Viennot on the objects counted by c2n (AltBax2n,

Shuffle2n, CBT2n+1 ×CBT2n+1, Y
(3)
n (22)) are equivariant with respect to their in-

volutions. Then an equivariant bijection from the Baxter tableaux (or equivalently,

Yamanouchi words in Y
(3)
n (11, 22, 33)) to Twinn is obtained by restricting the equi-

variant bijection from Yamanouchi words in Y
(3)
n (22) to all pairs of complete binary

trees.

CBTn × CBTn oo
Ψ // AltBax2n

oo β // Shuffle2n
oo f // Y (3)

n (22)

Baxn oo
Extend×2◦Ψ// Twinn oo //?�

OO

Y
(3)
n (11, 22, 33)

?�

OO

Figure 2.5. Diagram indicating the maps between objects
counted by c2n, and their restriction to Baxter objects.

Lastly, we show that the bijection between the Twinn and Baxn is equivariant,

making the composite map from Baxter tableaux to Baxter permutations equivari-

ant.

First, we note that it is trivial to check that the map from Baxter permutations

to alternating Baxter permutations of length 2n equivariantly takes conjugation by
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w0 on Sn to conjugation by w0 on S2n. The map Ψ sends a Baxter permutation w

of length n to a pair of twin trees in Twinn,
(

incr(w),decr(w)
)

, equivariantly. But

by Corollary 2.12, Ψ−1 will equivariantly map this to AltBax2n. So it suffices to

check that the map from AltBax2n to Y
(3)
n (22) is equivariant.

Proposition 2.28. An equivalent formulation for the Baxter condition on per-

mutations of length n says that for every p ∈ [n − 1], we can either write the

permutation as

π = π′pπ−π+(p+ 1)π′′ or π = π′(p+ 1)π+π−pπ
′′,

where the (possibly empty) subsequence π− (resp. π+) consists of values less than

p (resp. greater than p+ 1).

Example 2.29. For π = 5671342 ∈ Bax7 and p = 4, we have π′ = ∅, π+ = 67,

π− = 13, and π′′ = 2.

The proof of this is straighforward, and left to the reader.

This allows us to construct a map from AltBax2n to Shuffle2n, which is in fact

the bijection referred to in Theorem 2.24.

Definition 2.30. Let β : AltBax2n 7→ Shuffle2n be the map defined as follows:

Given a π ∈ AltBax2n, for each p ∈ [2n − 1], look at the relative order of p

and p + 1, whether π− is empty, and whether π+ is empty. We call this triple of

information the type of p (with respect to π). If β(π) = α, for each of these 8

types, there are two possible strings of length two that αpαp+1 could be, listed in

the figure below. Starting with α1 = a, we can recursively construct α by noting

that only one of the two choices for αpαp+1 will be consistent with what we already

know αp must be.

Type π αpαp+1

Type 1 π′ p ∅ ∅ p+ 1 π′′ aā or bā

Type 2 π′ p ∅ π+ p+ 1 π′′ ab or bb

Type 3 π′ p π− ∅ p+ 1 π′′ āā or b̄ā

Type 4 π′ p π− π+ p+ 1 π′′ āb or b̄b

Type 5 π′ p+ 1 ∅ ∅ p π′′ ab̄ or bb̄

Type 6 π′ p+ 1 ∅ π− p π′′ āb̄ or b̄b̄

Type 7 π′ p+ 1 π+ ∅ p π′′ aa or ba

Type 8 π′ p+ 1 π+ π− p π′′ aa or ba

Figure 2.6. Relations between π ∈ AltBax2n, α ∈ Shuffle2n,
incr(π), and decr(π).
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Example 2.31. As a working example, we will start with π = 2314 ∈ AltBax4.

For p = 1, we see that p+1 occurs before p, π+ is non-empty, and π− is empty.

This means p = 1 is type 7, and so α1α2 is either aa or ba. But since a shuffle word

has to start with a, we know α1α2 = aa.

For p = 2, we see that p occurs before p + 1, and that π+ and π− are both

empty. This means p = 2 is type 1, and so α2α3 is either aā or bā. Only the first

case is consistent with us previously finding α2 = a, so α3 = ā.

For p = 3, we see that p occurs before p+1, π− is non-empty, and π+ is empty.

This mean p = 3 is type 3, and so α3α4 is either āā or b̄ā. Only the first choice is

consistent with α3 = ā, so α4 = ā.

Thus, we see that β(2314) = aaāā.

Since this map is a bijection, as knowing the type for each αpαp+1 uniquely

determines α, knowing the type for each p is enough to recover what the original

alternating Baxter permutation is.

Thus, we will find it convenient to encode elements of AltBax2n and Shuffle2n

as words of length n on the letter set {1, 2 . . . , 8}, where the pth letter indicates the

type of p in w (resp. the type of αpαp+1).

Example 2.32. For π = 2314, as p = 1 was the type 7, p = 2 was the type 1,

and p = 3 was the type 3, we would encode this element as 713.

Theorem 2.33. The bijection between AltBax2n and Y
(3)
n (22) is equivariant

with respect to conjugation by w0 and evacuation.

Proof. The bijection of Dulucq and Guibert from AltBax2n to Y
(3)
n (22) is

a composition of a map β from AltBax2n to Shuffle2n and the previously defined

f from Shuffle2n to Y
(3)
n (22). So we need to show that if f(β(w)) = x, then

f(β(w0ww0)) = evac(x).

We note that the elements in the intermediate set, Shuffle2n, have no natural

involution associated to them. However, we can define an involution on Shuffle2n

by mapping it bijectively to a set with a natural involution, doing an involution

there, and then mapping it back.

This gives us two possible ways of defining an involution on Shuffle2n that

are not obviously the same. One option is α 7→ β(w0β
−1(α)w0), induced from

AltBax2n. The other is α 7→ f−1(evac(f(α)), induced from Y
(3)
n (22). Proving

equivariance is equivalent to showing that these two induced involutions are the

same.

First, we describe the involution on Shuffle2n induced from conjugation by w0

on the alternating Baxter permutations.

If we know what type p is in the original word π, we can readily figure out the

type of n− p in the involuted word, π̂ = w0πw0, as:
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• p appears before p+ 1 in π iff n− p appears before n+ 1− p in π̂.

• π− is empty iff π̂+ is empty.

• π+ is empty iff π̂− is empty.

Thus, if p is of type 1,2,3,4,5,6,7,8 in the original word, then n − p will be of

type 1,3,2,4,5,7,6,8 (respectively)

This means that the involution on Shuffle2n induced from AltBax2n corresponds

to reversing the encoded word, swapping 2’s and 3’s, and swapping 7’s and 6’s.

Example 2.34. The encoded word for π = 2314 is 713, so the encoded word

for w0πw0 = 1423 should be 216. Sure enough, in 1423, p = 1 is of type 2, p = 2 is

of type 1, and p = 3 is of type 6.

Now, we consider the relationship between Shuffle2n and Y
(3)
n (22). Say we have

f(α) = a. Each of the 2n letters of α corresponds to one of the 2n instances of 1

and 3 in a, and additionally keeps track of whether or not that instance of 1 or 3

is preceded by a 2.

Let α̂ = f−1(evac(f(α)), representing the involution on Shuffle2n induced by

Y (3)(22).

Proposition 2.35. α̂2n+1−p corresponds to a 1 (resp. 3) if and only if αp

corresponds to a 3 (resp. 1).

Proof. Doing evacuation on a Yamanouchi word corresponds to reversing the

word, and swapping 1’s and 3’s. So if the pth occurrence of either a 1 or a 3 in

x ∈ Y (3)(22) is a 1 (resp. 3) the (2n + 1 − p)th occurence of either a 1 or a 3 in

evac(x) will be a 3 (resp. 1). So if α̂ = f−1(evac(f(α)), then α̂2n+1−p will be either

ā or b̄ (resp. a or b). �

Proposition 2.36. The 1 or 3 in α̂2n+1−p will be preceded by a 2 if and only

if αp+1 corresponds to something that is preceded by a 2.

This easily follows from the fact that evacuation reverses the word.

Say we know whether αp corresponds to a 1 or a 3, and what αp+1 is. There

are 8 different cases, and for each case there are two possibilities for what αpαp+1

could be (depending on whether or not the 1 or 3 in αp is preceded by a 2 or not).

One can see that these are exactly the 8 different types from Figure 2.2.2.

Example 2.37. Say we know that αp corresponds to a 1, that αp+1 corresponds

to a 1, and αp+1 is preceded by a 2. Then αpαp+1 could be ab or bb, corresponding

to type 2.

By Proposition 2.35, we can determine whether α̂2n−p and α̂2n+1−p correspond

to 1’s or 3’s. By Proposition 2.36, we can also determine whether α̂2n+1−p is
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preceded by a 2 or not. Thus, we can determine which of the 8 different cases from

Figure 2.2.2 α̂2n−pα̂2n+1−p corresponds to. One can check case-by-case that we get

the same correspondence as before.

Example 2.38. Say we know that αpαp+1 is of type 2 as in the previous

example. Then αp corresponding to a 1 means α̂2n+1−p corresponds to a 3. And

αp+1 corresponding to a 1 means α̂2n−p corresponds to a 3. Finally, αp+1 being

preceded by a 2 means α̂2n+1−p is preceded by a 2. Thus, α̂2n−pα̂2n+1−p could be

āā or b̄ā, corresponding to type 3.

�

Corollary 2.39. The bijection between Twinn and Baxn is equivariant.

Corollary 2.40. Let n = k+ `+ 1. The bijection from (k,`)-Baxter permuta-

tions to (k,`)-Baxter tableaux is equivariant with respect to conjugation by w0 and

evacuation.

Remark 2.41. Although it is not our primary interest, the following corollary

also allows us to count how many alternating Baxter permutations of length 2n and

standard 3× n Young tableaux avoiding 22 are fixed under evacuation.

Corollary 2.42. The number of alternating Baxter permutations of length 2n

fixed under conjugation by w0 and the number of 3 × n standard Young tableaux

with no consecutive entries in the middle row fixed under evacuation are both equal

to cn, the Catalan number.

Proof. We have an equivariant bijection between pairs of complete binary

trees and these two objects, so it suffices to count how many pairs of complete

binary trees are fixed under their involution. The involution on pairs of trees is

given by reflecting each tree horizontally and then swapping the order of the pair.

So a pair fixed under involution is completely determined by the first tree, and it is

clear that each complete binary tree yields a pair fixed under involution (by pairing

a tree T with a reflected copy of itself). So there are as many pairs of complete

binary trees fixed under involution as there are pairs of complete binary trees, of

which there are cn.

�

In Figure 2.7, one can see that the original alternating Baxter permutation is

fixed under conjugation by w0, and that the right tree is the mirror image of the

left tree.
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Figure 2.7. Map from alternating Baxter permutations of length
2n to pairs of complete binary trees with 2n+ 1 nodes.

2.2.3. Objects (A) and (B). Next, we show the equivalence of objects (A)

and (B), using the following fact.

Proposition 2.43 (Law and Reading [38], Corollary 4.2). A permutation w

lies in Baxn if and only if w−1 lies in Baxn.

If one were dealing with regular pattern avoidance, this would be trivial, be-

cause a permutation w contains an instance of 2413 (resp. 3142) if and only if

w−1 contains an instance of 3142 (resp. 2413). However, one has to do some extra

work to check that the analogous statement holds when one has the extra adjacency

conditions of vincular patterns.

Proposition 2.44. The map w 7→ w−1 gives a bijection between Baxter per-

mutations with k descents and Baxter permutations with k inverse descents that

commutes with conjugation by w0.

Proof. Conjugation by w0 commutes with w 7→ w−1, since w−1
0 = w0. �

While this result on its own is elementary, it is important because the previous

Baxter families all had statistics that naturally corresponded to ascents/descents,

while the remaining Baxter families all have statistics that will correspond to inverse

ascents/inverse descents.

2.2.4. Objects (B) and (C). There is another class of Baxter objects known

as twisted Baxter permutations. While Baxter permutations avoid the patterns 3-

14-2 and 2-41-3, twisted Baxter permutations avoid the patterns 3-41-2 and 2-41-3.

Even though the two pairs of patterns look similar, it is not immediately obvious

that they should be so closely related. Section 8 of Law and Reading’s paper [38]
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provides a bijection between the two that relies on looking at fibers of the lattice

congruence Θ3412 on the weak order for Sn, as we next explain.

Definition 2.45. For w ∈ Sn, let Inv(w) be the set of inversions, or pairs

(wi, wj) with 1 ≤ i < j ≤ n such that wj < wi. We say that u ≤ v in the weak

order if Inv(u) ⊆ Inv(v).

Theorem 2.46 (Corollary 3.1.4, [10]). The covering relations for the weak

order on Sn come precisely from the pairs of permutations that differ only in two

adjacent entries.

We need the following proposition, which follows immediately from Proposition

8.1 in their paper.

Definition 2.47. A 3-14-2 → 3-41-2 move on a permutation is an action

that takes an instance of the pattern 3-14-2, and switches the adjacent entries

in the middle so the subsequence corresponds to an instance of the pattern 3-

41-2. That is to say, if w = w1 . . . wn has an instance of 3-14-2 corresponding

to the subsequence wiwjwj+1wk, then a 3-14-2 → 3-41-2 move would send w to

w1 . . . wj−1wj+1wjwj+2 . . . wn.

Proposition 2.48. Given a twisted Baxter permutation, it will be the maximal

element in its fiber over Θ3412, the corresponding Baxter permutation will be the

unique minimal element, and the fiber will consist of all permutations attainable

from the twisted Baxter permutation by making any sequence of (3-14-2 → 3-41-2)

moves.

Corollary 2.49. The number of twisted Baxter permutations of length n with

k inverse descents is equal to the number of Baxter permutations of length n with

k inverse descents.

Proof. The moves that get us from a twisted Baxter permutation to a Bax-

ter permutation will never change the number of inverse descents. Swapping the

elements playing the role of 1 and 4 in adjacent positions will never change the

relative order of i and i+ 1 for any i. �

Corollary 2.50. A twisted Baxter permutation and its corresponding Baxter

permutation are each fixed under conjugation by w0 if and only if their common

fiber is fixed under conjugation by w0.

Proof. Since the fibers of this congruence can be described as the orbit of all

possible (3-14-2 ↔ 3-41-2) moves, conjugation by w0 will map fibers to fibers. �
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4567123

4561723

4516723 4561273

4156723 4516273

4156273

4152673

4125673

Figure 2.8. Fiber of the congruence θ3412 with the Baxter per-
mutation 4567123 as its maximal element, and the twisted Baxter
permutation 4125673 as its minimal element.

2.2.5. Objects (C) and (F).

Definition 2.51. A diagonal rectangulation of size n is a subdivision of an n×n
square into n rectangles (with lattice points for corners) such that the interior of

every rectangle intersects a fixed diagonal of the square.

Figure 2.9. A diagonal rectangulation of size n = 4

We next check to see that the bijection between twisted Baxter permutations

and diagonal rectangulations given in Section 6 of Law and Reading [38] preserves

the indicated statistic, and will equivariantly take conjugation by w0 to 180◦ rota-

tion. We again have the intermediate object of pairs of twin trees.

The map from twisted Baxter permutations to pairs of twin trees used by Law

and Reading is equivalent to w 7→ Extend×2(w−1) (they respectively call these

the upper and lower planar binary trees). Conjugation by w0 on twisted Baxter

permutations will correspond to the same involution on pairs of trees defined in

Definition 2.13. Also, if a twisted Baxter permutation w has k inverse ascents, w−1
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will have k ascents, and incr(w−1) will have k left leaves (excluding the left-most

one), preserving the statistic.

A diagonal rectangulation is made by gluing the two trees together. In particu-

lar, one draws the trees so that all the leaves are evenly spaced on the lowest level,

and all intersections make right angles. Then the twin tree condition guarantees

that if we turn the left tree upside-down, it will match up with the right tree to

form a diagonal rectangulation (see Figure 2.10).

It is then obvious that the involution on pairs of trees corresponds to 180◦

rotation on diagonal rectangulations, and that k left leaves in the left tree (excluding

the left-most one) will correspond to the k vertical intersections with the interior

of the diagonal.

w = 3124, w−1 = 2314

l

( 1

2

3

4

,

4

3

2 1

)

↓

(
,

)

l

Figure 2.10. Map from twisted Baxter permutations to diagonal rectangulations

2.3. Proof of Theorem 2.3

By Theorem 2.2, if we want to count the number of objects fixed under in-

volution for any Baxter object, we only have to find the number of objects fixed

under involution for one family of Baxter objects. This is easiest for Baxter plane

partitions. MacMahon gave a closed formula for the generating function of plane

partitions inside a box, weighted by number of boxes.
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Theorem 2.52 ( [51],Theorem 7.21.7). Fix a, b, and c, and let |π| be the total

number of boxes in a plane partition. Then

(6)
∑
π

q|π| =
∏

i=1,...,a
j=1,...,b
k=1,...,c

[i+ j + k − 1]q
[i+ j + k − 2]q

where π runs over all plane partitions that fit in an a× b× c box.

We will write the above sum as M(a, b, c; q). One can check that for Baxter

plane partitions, this gives the previously defined q-analogue of Θk,`.

Corollary 2.53.

(7) M(k, `, 3; q) =
∑
π

q|π| =

n+ 1

k


q

n+ 1

k + 1


q

n+ 1

k + 2


qn+ 1

1


q

n+ 1

2


q

= Θk,`(q)

where π runs over all plane partitions that fit in a k × `× 3 box.

In particular, this tells us that Θk,`(q) is indeed a polynomial with symmet-

ric, non-negative integer coefficients, which is not immediately obvious from the

definition.

Additionally, we have the following theorem of Stembridge.

Theorem 2.54 (Stembridge, Example 2.1, [52]). The number of self-complementary

plane partitions that fit inside an a× b× c box is M(a, b, c;−1).

By setting a = k, b = `, and c = 3, we get the following result.

Theorem 2.55. Θ	
k,` = [Θk,`(q)]q=−1

Although Theorem 2.55 follows from Stembridge’s result without any further

computation, it turns out that it agrees with formulas for Θ	
k,` given previous by

Felsner, Fusy, Orden, and Noy [23], after correcting one of the cases of their formula,

and applying a hypergeometric summation, as we explain next.

Theorem 2.56.

(1) If k and ` are odd, then Θ	
k,` = 0

(2) If k and ` are even, with k = 2κ and ` = 2λ, then for N = κ+ λ,

Θ	
2κ,2λ =

∑
r≥0

2r3

(N + 1)(N + 2)2

(
N + 2

κ+ 1

)(
N + 2

κ− r + 1

)(
N + 2

κ+ r + 1

)

=

(
N+1
κ

)(
N+1
κ+1

)(
N
κ

)
(N + 1)

(8)
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(3) If k is odd and ` is even3, with k = 2κ+1 and ` = 2λ, then for N = κ+λ,

Θ	
2κ+1,2λ = Θ	

2κ,2λ

+
∑
r≥1

(λ− r + 1)r(r + 1)(2r + 1)

(κ+ 2 + r)(N + 1)(N + 2)2

(
N + 2

κ+ 1

)(
N + 2

κ− r + 1

)(
N + 2

κ+ r + 1

)
(9)

=

(
N+1
κ

)(
N+1
κ+1

)(
N+1
κ+1

)
(N + 1)

(4) If k is even and ` is odd, with k = 2κ and ` = 2λ+ 1, then

Θ	
2κ,2λ+1 = Θ	

2λ+1,2κ,

which is the same as (9) with κ and λ switched.

Before embarking on the proof, we review the approach used by Felsner, Fusy,

Orden, and Noy. They counted non-intersecting triples of lattice paths as in (4)

fixed under rotation. The rotation will be about the point (k2 ,
`
2 ), and a rotationally

invariant Baxter path will be uniquely determined by what it does below the line

x+ y = k+`
2 . In [23], the authors show that all rotationally invariant Baxter paths

arise from triples of lattice paths from A1, A2, and A3 to specific points below the

line x + y = k+`
2 , which depend on the parity of k and `, and also a parameter

r. These triples of lattice paths can be counted by the Gessel-Viennot-Lindstrom

lemma [31], and they obtain their formula by summing the resulting expressions

over all possible parameters r for k and ` of fixed parity, resulting in the first parts

of (8) and (9).

Proof of Theorem 2.56.

Proof of Assertion 1. When k and ` are both odd, one can easily see Θ	
k,` = 0. In

terms of rotationally invariant lattice paths, the central point of rotation will have

two non-integral coordinates. In order for the path from A2 to meet up with itself

upon rotation, it would have to go through this point, but lattice paths always have

at least one integral coordinate. One can also look at the plane partition model,

where the k×`×3 box has an odd number of boxes, so the size of any plane partition

in that box must have opposite parity of its complement. Correspondingly, we check

that [Θk,`(q)]q=−1 = 0. In this case, the denominator of (5) only has one factor

of 1 + q, coming from

n+ 1

1


q

, whereas the numerator will have two factors of

(1 + q), coming from each of

n+ 1

k


q

and

n+ 1

k + 2


q

.

3This case corrects Proposition 7.4, part iii in Felsner, Fusy, Orden, and Noy
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Proof of Assertion 2. When k = 2κ and ` = 2λ are both even, the resulting

summation in (8) is (after factoring out a constant) the hypergeometric series

5F4

2 2 2 −κ, −λ

1 1 κ+ 3 λ+ 3

∣∣∣∣∣∣ 1
 ,

where we recall that

rFs

a1 a2 . . . ar

b1 b2 . . . bs

∣∣∣∣∣∣ z
 =

∞∑
n=1

(a1)n . . . (ar)n
(1)n(b1)n . . . (bs)n

zn,

for (x)n = x(x+ 1) . . . (x+ n− 1).

This can be evaluated using the formula for a well-poised 5F4 [5, (4.4.1) p.27],

5F4

a 1
2a+ 1 c d e

1
2a 1 + a− c 1 + a− d 1 + a− e

∣∣∣∣∣∣ 1
(10)

=
Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− c− d− e)
Γ(1 + a)Γ(1 + a− d− e)Γ(1 + a− c− e)Γ(1 + a− c− d)

.

By choosing a = c = 2, d = −κ, and e = −λ, one can check this gives (8).

Proof of Assertion 3. When k = 2κ+ 1 is odd and ` = 2λ is even, the summation is

(again, after factoring out a constant) the hypergeometric series

4F3

3, 5/2, 1− λ, −κ;

3/2, λ+ 3, κ+ 4

∣∣∣∣∣∣ 1
 .

This can also be evaluated using (10), but with choice of parameters a = 3, c = 1−λ,

d = −κ, and e = 2 (note that as e = 1 + a− e, the 5F4 reduces to a 4F3), and one

can check that this gives (9).

Proof of Assertion 4. We exploit natural symmetry that forces Θ	
k,` = Θ	

`,k.

�

2.4. Other Symmetry Classes

It is clear that if w = w1w2 . . . wn is a Baxter permutation, then wnwn−1 . . . w1

and (n+1−w1)(n+1−w2) . . . (n+1−wn) will also be Baxter permutations, and we

previously mentioned that w−1 will also be a Baxter permutation. These actions

correspond to reflecting the permutation matrix for w horizontally, vertically and

across a diagonal (respectively), so Baxter permutations have the full action of

the dihedral group of a square acting on them. In the previous section, we were

considering how many Baxter permutations were fixed under 180◦ rotation of the

permutation matrix. While the other dihedral actions on Baxter permutations do
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not seem to correspond to any natural actions on other Baxter objects, we can still

ask how many Baxter permutations are fixed under each action.

The horizontal and vertical reflections are not interesting, because other than

when n = 1, no permutation will ever be fixed by those actions.

Baxter permutations fixed under reflection across the diagonal correspond to

self-involutive Baxter permutations, and these have previously been considered.

Bousqet-Mélou came up with enumerative formulas for the number of fixed-point

free self-involutive Baxter permutations of length 2n, which has the surprisingly

simple closed formula bn = 3·2n−1

(n+1)(n+2)

(
2n
n

)
, as well as refined enumeration with

respect to various statistics [11]. Later, Fusy used planar maps to give a com-

binatorial proof of the enumeration for bn, as well as a closed-form multivariate

enumeration for all self-involutive Baxter permutations [12].

The last remaining conjugacy class of dihedral actions on Baxter permutations

is the one corresponding to 90◦ rotations, which we now consider.

Theorem 2.57. The number of Baxter permutations of length n fixed under

90◦ rotation of its permutation matrix is 2mCm (where Cm is the Catalan number)

if n = 4m+ 1, and zero otherwise.

To prove this, we will recall and extend the method of generating tress orig-

inally used by Chung, Graham, Hoggat, and Kleiman to enumerate all Baxter

permutations.

2.4.1. Generating Tree for Classes of Permutations. Say we have a fam-

ily of permutations that is closed under removing the largest entry. Then every

permutation in the family of length n arises uniquely from taking a permutation of

length n− 1 in the family, and inserting the letter n into an admissible position.

Definition 2.58. We say that the generating tree of a family of permutations

closed under removing the largest entry is the tree whose nodes are the permutations

in the family, and the parent of each node is the permutation obtained by removing

the largest entry.

In many cases, one can obtain enumeration results by analyzing this tree.

The family of permutations avoiding some set of classical patterns in always

closed under taking any subword (in particular, removing the largest element), so

we can construct a generating tree.

Example 2.59. Consider the set of permutations that avoid the classical pat-

tern 231. It is not hard to see given a 231 avoiding permutation, the only place one

can insert a new largest label into a permutation and still avoid the pattern 231 is

immediately to the left of a left-to-right maxima or at the end of the permutation.
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1

21

321

4321 3214

213

4213 2143 2134

12

312

4312 3124

132

4132 1432 1324

123

4123 1423 1243 1234

Figure 2.11. The beginning of the generating tree for 231-
avoiding permutations.

We say that wi is a left-to-right maxima of w if wi > wk for all k < i. So the

number of children a permutation has in the generating tree depends only on this

statistic.

Furthermore, inserting a new largest label has a predictable effect on the num-

ber of left-to-right maxima of the resulting permutation. If a permutation has k+1

left-to-right maxima, then it will have k+1 children with 2, 3, . . . , k+2 left-to-right

maxima.

Thus, an abstract tree with nodes labelled by integers that has root 1 and the

property that every node k + 1 has children labelled 2, 3, . . . k + 2 will be isomor-

phic to the generating tree for 231 avoiding permutations. This tree is known as

the Catalan tree [57], and is known to have rank sizes corresponding to the Cata-

lan numbers. See Figures 2.4.1 and 2.4.1 for the generating tree of 231 avoiding

permutations, and the associated Catalan tree.

Similarly, we could consider permutations that avoided the classical pattern

132. In this case, the places where we could insert a new largest label are immedi-

ately to the right of a right-to-left maxima (where we say that wi is a right-to-left

maxima of w if wi > wk for all k > i) or at the beginning of the permutation.

We again have the same predictable effect on number of right-to-left maxima by

inserting a new largest label into a fixed permutation in all possible ways, and we

again get a generating tree isomorphic to the Catalan tree.

2.4.2. Generating Tree for Baxter permutations. Baxter permutations

are given by a vincular pattern, where we have adjacency issues to consider, so it

is not immediately obvious that they are closed under removing the largest label.

Lemma 2.60. If w is a Baxter permutation, and we remove its largest label,

then the result is still a Baxter permutation
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2 3 4

3
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2 3 4

4

2 3 4 5

Figure 2.12. The beginning of the Catalan tree

1

21

321

...
...

...
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231

...
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...
...

213

...
...

...

12

312

...
...

...

132

...
...

...
...

123

...
...

...

Figure 2.13. The beginning of the generating tree for Baxter permutations

Proof. Say w = w1 . . . wn is a Baxter permutation, and we remove wi = n to

get w̄ = w1 . . . ŵi . . . wn. If w̄ is not a Baxter permutation, then WLOG say there

is an instance of 2− 41− 3. That means there is a subsequence 1 ≤ i1 < i2 < i3 <

i4 ≤ n with i1, i2, i3, i4 6= i, wi3 < wi1 < wi4 < wi2 , and i2 is adjacent to i3 in ŵ.

The only way i2 can be adjacent to i3 in ŵ is if i2 + 1 = i3, or if i3 + 2 = i+ 1 = i2.

In the first case, the subsequence i1, i2, i3, i4 would be an instance of 2−41−3 in w,

a contradiction of our assumption. In the second case, the subsequence i1, i, i3, i4

would be an instance of 2− 41− 3 in w, again a contradiction. �

Therefore, every Baxter permutation of length n uniquely arises from taking a

Baxter permutation of length n− 1 and inserting n into an admissible position.

The admissible places where we can insert a new largest label into a Baxter

permutation are immediately to the left of a left-to-right maxima, and immediately

to the right of a left-to-right maxima.
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·312·4·8·7·56·

·9·31248·7·56· ·312·9·48·7·56· ·312·4·9·8·7·56· ·312·4·8·9·7·56· ·312·4·87·9·56· ·312·4·87569·

Figure 2.14. Branching of generating tree at w = 31248756, with
insertion points marked.

(i, j)

(1, j + 1) (2, j + 1) . . . (i, j + 1) (i+ 1, j)(i+ 1, j − 1) . . . (i+ 1, 1)

Figure 2.15. Rule for generating tree isomorphic to Baxter permutations

The resulting Baxter permutation will also have a predictable number of left-

to-right and right-to-left maxima. Say w has left-to-right maxima x1 < x2, . . . <

xi = n and right-to-left maxima n = yj > yj−1 > . . . > y1. If we insert n + 1 to

the left of xk, the resulting permutation will have left-to-right maxima x1 < . . . <

xk−1 < n + 1, and right-to-left maxima n + 1 > n = yj > . . . > y1. If we insert

n + 1 to the right of yk, the resulting permutation will have left-to-right maxima

x1 < x2 < . . . xi = n < n+ 1, and right-to-left maxima n+ 1 > yk−1 > . . . > y1.

This means that the number of children a given Baxter permutation has (and

how many children those children will have, and so on) is entirely encoded by

the number i of left-to-right maxima, and the number j of right-to-left maxima.

Thus, the tree with root (1, 1), and the property that every node (i, j) has children

(1, j+1), (2, j+1), . . . (i, j+1), (i+1, j), (i+1, j−1), . . . (i+1, 1) will be isomorphic

to the generating tree for Baxter permutations.

Corollary 2.61. Baxter permutations have the same number of descents as

inverse descents.

Proof. If n is inserted to the left of a left-to-right maxima, then either n+ 1

is being added to the front of the word, or it is being inserted into an ascent. In

either case, the resulting permutation will have one more descent than the original

one. But since n is always the rightmost left-to-right maxima, n + 1 is being
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(1, 1)

(1, 2)

(1, 3)
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(2, 1)

(1, 2)
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(2, 2)

...
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...

(3, 1)

...
...

...

Figure 2.16. The beginning of the generating tree isomorphic to
the one on Baxter permutations.

inserted to the left of n, so we are also creating one new inverse descent. Similarly,

n+ 1 being inserted to the right of a left-to-right maxima creates no new descents

nor inverse descents. Since the act of inserting a new largest label preserves the

difference between number of descents and number of inverse descents, and the

base of our generating tree has the same number of descents as inverse descents, all

permutations in the generating tree have the same number of descents as inverse

descents. �

2.4.3. Generating Tree for Baxter permutations fixed under 180◦ ro-

tation. First, let us consider the generating tree of all Baxter permutations fixed

under 180◦ rotation.

A permutation w of length n being fixed under 180◦ rotation means that if

wi = j, then wn+1−i = n + 1 − j. Also, by the same logic we used to see that

we could remove n from a Baxter permutation and still be a Baxter permutation,

we can see that we can remove 1 from a Baxter permutation (and decrease all

remaining labels by one) and still be a Baxter permutation.

Combining these two things, we can see that if we remove n and 1 (and then

decrease all the labels by 1) from a Baxter permutation fixed under 180◦ rotation,

then we will still have a Baxter permutation fixed under 180◦ rotation. So again,

we can construct a generating tree.

Note that in this case, we are removing two entries at a time, so we will have

separate generating trees for when n is even and when n is odd. We will use the

convention that the generating tree for n even has the empty permutation ∅ of

length 0 as its root, with children 12 and 21.

We already have a combinatorial rule for when we can insert a new largest entry

into a Baxter permutation and still be a Baxter permutation, so now we come up
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1

321

54321 45312 41352 14325

123

52341 25314 21354 12345

Figure 2.17. Generating Tree for Baxter permutations of odd
length fixed under conjugation by the longest element

∅

21

4321 3412 1324

12

4231 2143 1234

Figure 2.18. Generating Tree for Baxter permutations of even
length fixed under conjugation by the longest element

with a combinatorial rule for when we can insert a new smallest entry into a Baxter

permutation and still be a Baxter permutation. By inserting a new smallest entry,

we mean that we increase all the labels in the existing permutation by 1, and then

insert a new entry with label 1, so that if the original permutation was a standard

permutation of n letters on [n], then the result will be a standard permutation on

[n+ 1].

Lemma 2.62. Inserting a new smallest label into position j into a permutation

is equivalent to rotating the permutation matrix 180◦, inserting n into position

n+ 1− j, and then rotating the permutation matrix 180◦ again.

Consequently, given a Baxter permutation w, the admissible places we can in-

sert a new smallest label are immediately to the left of a left-to-right minima, or

immediately to the right of a right-to-left minima.

This proof makes it clear that if we can insert n into position i of w, then we

can insert 1 into position n + 1 − i of w0ww0. So if w is fixed under conjugation

by the longest element, then we can insert n + 1 into a position if and only if we

can insert 1 into the complementary position. However, we need to check to make

sure that we can still insert 1 into a complementary position after we have inserted

n+ 1.
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(i, j)

(1, j + 2) (2, j + 1) . . . (i, j + 1) (i+ 1, j)(i+ 1, j − 1) . . . (i+ 2, 1)

Figure 2.19. Rule for generating tree isomorphic to Baxter per-
mutations fixed under conjugation by longest element.

If i is less than n/2, then the complementary place we want to insert 1 will

be shifted right by 1. If i is greater than n/2, then the complementary place we

want to insert 1 will still be n+ 1− i. In either of these cases, the act of inserting

n will not affect being able to insert 1 into the complementary position, because

the combinatorial rule for inserting 1 depends on things being left-to-right and

right-to-left minima, and inserting a new largest label will not affect that.

As a kind of boundary case, we have the situation where n is even and i = n/2,

so we are inserting n + 1 into the middle of the word. Then we could insert 1

either immediately to the left or right of n + 1 and still have a permutation fixed

under conjugation by the longest element. However, exactly one of these choices

will correspond to a Baxter permutation.

WLOG, say we inserted n+1 to the right of a left-to-right maxima, wn/2. Then

wn/2+1 will be a right-to-left minima, even after we insert n+ 1. So we can insert 1

to the left of wn/2+1, which will be immediately to the right of n+ 1. This means

that wn/2 > wn/2+1, or else the subword wn/2(n + 1)1wn/2+1 would be a copy of

the vincular pattern 2−41−3. Thus, if we inserted 1 on the other side of n+ 1, we

would be making a subword that was an instance of the forbidden vincular pattern

3− 14− 2.

Now, we want to make an isomorphic generating tree that doesn’t require us

to keep track of the permutation in full, analogous to what we did with all Baxter

permutations.

Again, we only need to keep track of the number of left-to-right and right-to-

left maxima. Each of these corresponds to a place where we can insert n+ 1, and

then we know there will be a complementary place we can insert 1 to stay fixed

under conjugation by the longest element. We know how inserting n+ 1 will affect

the number of left-to-right and right-to-left maxima. Inserting 1 will in general not

create any new left-to-right or right-to-left maxima, except in the case where we

are adding 1 to the beginning or end of the word. Thus, we get the branching rule

as seen in Figure 2.4.3.
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(1, 1)

(1, 3)

(5, 1) (2, 3) (2, 2) (3, 1)

(3, 1)

(1, 3) (2, 2) (3, 2) (5, 1)

Figure 2.20. Isomorphic generating Tree for Baxter permuta-
tions of odd length fixed under conjugation by the longest element

(0, 0)

(1, 2)

(1, 4) (2, 2) (3, 1)

(2, 1)

(1, 3) (2, 2) (4, 1)

Figure 2.21. Isomorphic generating Tree for Baxter permuta-
tions of even length fixed under conjugation by the longest element

In principle, one could try and analyze this branching rule to come up with

an algebraic formula for the number of Baxter permutations fixed under conju-

gation by the longest element. While it may give a refined enumeration for the

number of Baxter permutations fixed under conjugation by the longest element

with a given number of left-to-right and right-to-left maxima, it is unlikely that

the resulting expression for the entire set would be as elegant as the “q = −1′′

formula in Theorem 2.3. In practice, this is more of a stepping stone to the case

of Baxter permutations fixed under 90◦ rotation, where the rules for insertion are

more technical, but the resulting branching structure has a transparent formula.

2.4.4. Generating Tree for Baxter permutations fixed under 90◦ ro-

tation. For a permutation to be fixed under 90◦ rotation, it is equivalent to say

that if wi = j, then wj = n + 1 − i, wn+1−i = n + 1 − j, and wn+1−j = i. If

we consider the cycle structure of this permutation, in general it makes a 4-cycle

(i, j, n+ 1− i, n+ 1− j). If this were to degenerate into a smaller cycle, we would

have that i = n + 1 − i. This forces to n = 2i + 1 to be odd, and it also forces

i = j, which means it actually degenerates to a single central fixed point. Thus, a

permutation fixed under this action must have length 4m or 4m+ 1.
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1

41352

296357418 672159834 761258943 816357492

25314

294753618 349852167 438951276 814753692

Figure 2.22. Start of generating tree for Baxter permutations
fixed under 90◦ rotation.

If w is a Baxter permutation of length n with k descents, then by Corollary 2.61,

w−1 will have k descents, and w0w
−1 will have n− 1− k descents. So for a Baxter

permutation to be fixed by this action, we must have k = n− 1− k, which implies

that n must be odd, and along with our previous observation must be n = 4m+ 1.

Thus, a Baxter permutation fixed under 90◦ rotation will consist of a single central

fixed point, and four cycles of the form (i, j, n+ 1− i, n+ 1− j).
In particular, for n > 1, such a permutation will have a four cycle of the form

(1, j, n, n + 1 − j), which means the permutation starts with j, has n in the jth

position, 1 in the (n + 1 − j)th position, and n + 1 − j at the end. We already

know that we can remove n and 1 from a Baxter permutation and still be a Baxter

permutation. It’s not hard to see that we can also remove the first element or the

last element from a Baxter permutation and still be a Baxter permutation. So if

we take a Baxter permutation fixed under 90◦ rotation and the remove the largest

label, the smallest label, the first label, and the last label, then we will still have

a Baxter permutation, and it will still be fixed under 90◦ rotation. Thus, we can

create a generating tree, with the identity permutation on 1 element as the root

In order to create a four cycle, we have to come up with a combinatorial rule for

when we can insert a letter at the beginning (resp. end) of a Baxter permutation,

and still have it be a Baxter permutation. To insert a letter j at the beginning of a

permutation w of length n, we mean that we increase all the labels greater than or

equal to j in w by 1, and then prepend j, so the result is a standard permutation

on [n+ 1].

Lemma 2.63. Inserting j at the end of a word is equivalent to rotating the

permutation matrix 90◦ clockwise, inserting n into position n + 1 − j, and the

rotating the permutation matrix 90◦ counter-clockwise.

Similarly, inserting j at the beginning of a word is equivalent to rotating a

permutation matrix 90◦ counter-clockwise, inserting n into position j, and then

rotating back 90◦ clockwise.
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Consequently, we can insert j at the end (resp. beginning) of a Baxter permu-

tation and still have it be a Baxter permutation if and only if all entries smaller

than j appear to the left (resp. right) of j, or if all entries bigger than j− 1 appear

to the right (resp. left) of j − 1.

Note that inserting j at the end (resp. beginning) of Baxter permutation can

possibly decrease the number of right-to-left (resp. left-to-right) maxima, as any

previous left-to-right (resp. right-to-left) maxima that was less than j will no longer

be one after j is inserted at the end (resp. beginning).

Theorem 2.64. For a Baxter permutation fixed under 90◦ rotation, for every

admissible position we can insert a new largest label and still have a Baxter permu-

tation, it is also possible to insert a new smallest label, a new beginning label, and a

new final label so that the result is a Baxter permutation fixed under 90◦ rotation.

Proof. Without loss of generality, assume we are inserting n to the right of

a right-to-left maxima. The procedure for when we can insert n + 1 to the left of

a left-to-right maxima is the same, except we reverse the order of the word, follow

the procedure for inserting n + 1 to the right of a right-to-left maxima, and then

reverse the order of the resulting word.

Say w is a Baxter permutation of length n fixed under 90◦ rotation, with a right-

to-left maxima at wj . This means that we could insert n+1 into position j+1, and

by Lemma 2.62 we could also insert 1 into position n− j, and by Lemma 2.63 we

could insert n− j at the end or j + 1 at the beginning. Specifically, since we know

that we’d be inserting n + 1 to the right of a left-to-right maxima, we know that

wn+j−1 must be a right-to-left minima, and that all entries larger than j appear to

the left of j, and that all entries smaller than n− j appear to the left of n− j. We

also know that as a left-to-right maxima, wj must be at least n− j, since there are

n− j things to its right that must be smaller.

But we need to check that we can perform all four insertions sequentially in a

way so that the result is a Baxter permutation fixed under 90◦ rotation with a new

four cycle added.

We will seperately consider the cases with j + 1 < n/2, and j + 1 > n/2. Note

that since n has to be odd, we don’t have to deal with the special case of j+1 = n/2.

First, suppose j + 1 < n/2. We insert j + 1 at the beginning first, which

increases any labels that were j + 1 or higher by 1. So now, we want to insert

n + 1 − j at the end. We have to check that all labels less than n + 1 − j are to

the left of n + 1 − j. Since in the original permutation we had that all labels less

than n − j were to the left of n − j, when we add 1 to all labels j + 1 or higher,

we will have that all labels less than n + 1 − j (except possibly j + 1) are to the
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left of n+ 1− j. But since we add j + 1 to the beginning of the word, it will also

certainly be to the left of n+ 1− j. So we may insert (n+ 1− j) at the end.

We now have a permutation of length n + 2, which will still be fixed under

180◦ rotation. So by the previous section, if we can insert a new largest label into

some position, we know we can insert a new smallest label into the complementary

position. The (j + 1)st entry in this permutation will be wj + 2, as inserting two

smaller labels increased its label by 2, and inserting a label at the beginning shifted

it right by one. We need to check that this is still a right-to-left maxima. The

only thing we did that could have changed this is inserting n + 1 − j at the end.

However, since wj ≥ n− j, we have wj + 2 ≥ n+ 2− j, so adding n+ 1− j will not

keep it from being a right-to-left-maxima. Thus, we can insert a new largest label

into position j + 2, and also a new smallest label into the complementary position

(n+ 1− j).
After all of these steps, we will now have j + 2 in the first position, n + 4 in

position j + 2, 1 in position (n + 4) − (j + 2), and (n + 2 − j) at the end, which

creates the desired four cycle.

Now, suppose j + 1 > n/2. Again, we insert j + 1 at the beginning. Now, we

want to insert n − j at the end. Inserting j + 1 will not affect any labels n − j or

smaller, so we will still have that all labels less than n− j are to the left of n− j.
Again, we have a permutation of length n + 2 fixed under 180◦ rotation, so it

suffices to show we can place a new largest label, and it will automatically follow

that a new smallest label can go in the complementary position. Consider the

(j+ 1)st entry of this permutation, which was originally wj . We claim this is still a

right-to-left maxima. The only thing that could have changed this fact is inserting

n − j at the end. Since wj ≥ n − j, this label would at least be increased by 1

when we inserted n− j. It could possibly also be increased by 1 when we inserted

j+ 1, but what’s important is that the (j+ 1)st entry is at least n+ 1− j, and thus

having n− j at the end will not prevent it from being a left-to-right maxima.

After all of these steps, we will now have j + 3 in the first position, n + 4 in

position j+3, 1 in position (n+4)− (j+3), and n+1− j at the end, which creates

the desired four cycle.

�

Now, we want analyze how doing these four insertions changes the number of

left-to-right and left-to-right maxima.

Lemma 2.65. If w is a Baxter permutation fixed under 90◦ rotation, then w

has the same number of left-to-right and right-to-left maxima. In particular, if w

has left-to-right maxima in positions x1 < x2 < . . . < xj and right-to-left maxima

at positions yj < yj−1 < . . . < y1, and we do a four cycle insertion corresponding to
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being able to insert a new largest label to the right of wyi(or to the left of wxi
), then

the resulting Baxter permutation fixed under 90◦ rotation will have i+1 left-to-right

maxima and i+ 1 right-to-left maxima.

Proof. We note that wj < wi if and only if j appears to the left of i in w−1 if

and only if i appears to the left of j in w0w
−1. Thus, if w = w0w

−1, we have a right-

to-left maxima in position j if and only if j is a left-to-right maxima (and similarly,

a left-to-right maxima in position j if and only j is a right-to-left maxima). So if

w is fixed by this action, it must have the same number of right-to-left maxima as

left-to-right maxima.

Additionally, this gives a bijection between right-to-left maxima that were orig-

inally in w that are later killed by n + 3, and left-to-right maxima that are killed

by the j + 2 or j + 3 at the beginning of the word. Similarly, there is a bijection

between right-to-left maxima originally in w that are later killed by the final entry,

and left-to-right maxima originally in w later killed by 1.

Since 1 always ends up on the interior of the word, it will never be a left-to-right

maxima, and so the final entry will also never kill anything that was originally a

right-to-left maxima. Since we (WLOG) did an insertion corresponding to putting

a new largest label to the right of wyi , n + 3 will kill the right-to-left maxima

wyi , . . . wyj . Thus, we will have i + 1 right-to-left maxima; the new right-most

entry, the i− 1 original right-to-left maxima not killed by n+ 3, and n+ 3.

�

We now have enough information to analyze the generating tree for Baxter

permutations fixed under rotation by 90◦ degrees. If a Baxter permutation fixed

under rotation by 90◦ degrees has i+ 1 left-to-right maxima and i+ 1 right-to-left

maxima, then it will have 2i+2 children. There will be i+1 children with number of

left-to-right (and right-to-left) maxima being 2, 3, . . . i+2 corresponding to inserting

a new largest label to the left of a left-to-right maxima, and i + 1 children with

number of left-to-right (and right-to-left) maxima being 2, 3, . . . i+2 corresponding

to inserting a new largest label to the right of a right-to-left maxima.

Thus, this generating tree is almost like the Catalan tree, except each parent

with label i + 1 has two (not one) children with a label between 2 and i + 2, and

our root will have label 1. This implies that the number of elements of a given rank

m must be 2mCm. See Figure 2.4.4.

2.4.5. Remarks. The fact that this enumeration has such an elegant closed

formula means that it is likely that there is an underlying combinatorial bijection.

However, as with Chung, Graham, Hoggat, and Kleiman, the method of generating

trees does not make such an interpretation transparent.
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Figure 2.23. The beginning of the doubled Catalan tree

Additionally, one might hope that it is possible to extend our previous “q=-

1” result for Baxter permutations fixed under 180◦ rotation to an instance of the

cyclic sieving phenomenon. That is to say, finding a polynomial f(q) where gives

an enumeration of Baxter permutations (perhaps with respect to some statistics),

f(−1) counts how many of these Baxter permutations are fixed under 180◦ rotation,

and f(i) = f(−i) counts how many of them are fixed under 90◦ rotation. However,

the natural candidate of Θk,`(q) does not work, and it does not appear that it can

be easily modified to give such a result.

2.4.6. Other Conjectures. Asinowski, Barequet, Bousquet-Mélou, Mansour,

and Pinter studied equivalence classes of floorplans (ie, tiling a rectangle by smaller

rectangles) that never have four corners meet [3]. They considered an equiva-

lence relations on the “rooms” of the floorplan, and showed the equivalence classes

corresponded to Baxter permutations. They also considered an equivalence corre-

sponding to the segments on the interior of a floorplan, and showed that equivalence

refined the equivalence on rooms, and that the equivalence classes were in bijection

with 2 − 14 − 3 and 3 − 41 − 2 avoiding permutations. They also showed that for

a given floorplan, the Baxter permutation corresponding to the room equivalence

class and the permutation avoiding 2 − 14 − 3 and 3 − 41 − 2 coming from the

segment equivalence class could naturally be combined to form a complete Baxter

permutation.

So in some sense, the corresponding permutation avoiding 2−14−3 and 3−41−2

is the ’missing’ part of the Baxter permutation, and the family of permutations

avoiding 2− 14− 3 and 3− 41− 2 may be of some interest. Asinowski, Barequet,

Bousquet-Mélou, Mansour, and Pinter gave an enumeration formula for this family

of permutations.

Theorem 2.66 (Asinowski, Barequet, Bousquet-Mélou, Mansour, and Pinter).

The number an of permutations of length n avoiding the patterns 2 − 14 − 3 and

3− 41− 2 is given by
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an =

b(n+1)/2c∑
i=0

(−1)i
(
n+ 1− i

i

)
B(n+ 1− i)

where B(n) is the number of Baxter permutations of length n.

Unfortunately, the signs mean that we don’t get a sum that is graded with

respect to a statistic like descents, as we had for Baxter permutations. It would be

nice to have some of nonnegative enumerative formula for these permutations.

One can check that this family of permutations is closed under all reflections

and rotations of the corresponding permutation matrix. So again, we can ask how

many of these permutations are fixed under certain actions.

For 180◦ rotation, there does not appear to be any nice formula.

For reflection across a diagonal (corresponding to taking the inverse of a per-

mutation), we have some interesting conjectures.

Conjecture 2.67. Let GDn be the set of Grand Dyck paths, or words of length

2n with exactly n 0’s and n 1’s. Then the number of self-involutive permutations

avoiding the patterns 2− 14− 3 and 3− 41− 2 is the number of Grand Dyck paths

that avoid the consecutive sequences 101 and 010 (zig-zag avoiding).

This comes from an apparent match with OEIS entry A078678.

Conjecture 2.68. The number of fixed-point free self-involutive permutations

of length 2n avoiding the patterns 2− 14− 3 and 3− 41− 2 is equal to the number

of permutations of length n avoiding the patterns 2− 14− 3 and 3− 41− 2.

We can also consider 90◦ rotation.

Conjecture 2.69. Consider all rooted trees with positive integer weights on

the nodes, so that the weight of a parent is equal to the sum of the weights of its

children, and the weight of a tree is the weight of its root.

Then the number of permutations of length 4k or 4k + 1 avoiding the patterns

2− 14− 3 and 3− 41− 2 fixed under 90◦ rotation is equal to the number of trees of

weight k.

This comes from an apparent match with OEIS entry A118376.

Unfortunately, there is no clear intuition for why any of these conjectures should

be true, other than numerical evidence.



CHAPTER 3

Hoggatt Numbers

3.1. Definitions

The formula (5) gives a meaningful q-analog for Θk,`, and we would like to ex-

tend it to a q-analog for Baxter numbers. A natural way in which one can generalize

is inspired by placing Baxter numbers within the family of Hoggatt sums [24].

LetM(k, `,m) be the number of plane partitions that fit in a k×`×m box, which

we will call the MacMahon numbers. Via MacMahon’s plane partition formula given

in (6), these can be simply expressed as

(11) M(k, `,m) =

∏m−1
i=0

(
k+`+m−1

k+i

)∏m−1
j=1

(
k+`+m−1

j

) .
We also consider a natural q-shift of MacMahon’s formula,

(12) M(k, `,m; q) = qm(k+1
2 )
∑
π

q|π|,

where we sum over all plane partitions π in a k×`×m box. Note thatM(k, `,m; 1) =

M(k, `,m).

Definition 3.1. We will call

H(m)
n =

∑
k+`=n−1

M(k, `,m)

the Hoggatt sum (of level m),

H(m)
n (q) =

∑
k+`=n−1

M(k, `,m; q)

the q-Hoggatt sum (of level m), and

H(m)
n (q, t) =

∑
k+`=n−1

M(k, `,m; q)tk

the (q, t)-Hoggatt sum (of level m).

3.1.1. Level 1: Subsets. For m = 1, the MacMahon numbers are

M(k, `, 1) =

(
k + `

k

)
,

39
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the binomial coefficients. These have combinatorial interpretation

M(k, `, 1) =

∣∣∣∣([k + `]

k

)∣∣∣∣,
the size of the set of k element subsets of [k + `] := {1, 2, . . . , k + `}.
It has a natural q-analogue

M(k, `, 1; q) = q(
k+1
2 )

k + `

k


q

with combinatorial interpretation

M(k, `, 1; q) =
∑

([k+`]
k )

qΣS ,

where ΣS =
∑
i∈S i.

The Hoggatt sum is

H(1)
n = 2n−1,

with combinatorial interpretation being the total number of subsets of [n− 1].

The q-Hoggatt sum is

H(1)
n (q) =

n−1∑
k=0

q(
k+1
2 )

n− 1

k


q

= (−q; q)n−1 = (1 + q)(1 + q2) . . . (1 + qn−1),

with combinatorial interpretation

H(1)
n (q) =

∑
S⊆[n−1]

qΣS .

The (q, t)-Hoggatt sum is

H(1)
n (q, t) =

n−1∑
k=0

q(
k+1
2 )

n− 1

k


q

tk = (−tq; q)n−1 = (1 + tq)(1 + tq2) . . . (1 + tqn−1),

with combinatorial interpretation

H(1)
n (q, t) =

∑
S⊆[n−1]

qΣSt|S|.

Geometrically, we have that H
(1)
n (1, t) = (1 + t)n−1 is the h-vector for the

octahedron, the flag simplicial polytope dual to the cube.

In Coxeter-theoretic terms, we have H
(1)
n (q, t) =

∑
J⊆[n−1] q

maj(wJ )tdes(wJ ),

where wJ is the maximal length coset representative for the parablic coset WJ

inside W = An−1.
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And in terms of pattern avoiding permutations, we can realize {wJ |J ⊆ [n−1]}
as the set of permutations in Sn that avoid the classical patterns 132 and 231, and

H
(1)
n (q, t).

3.1.2. Level 2: Catalan Objects. For m = 2, the MacMahon numbers are

M(k, `, 2) =
1

k + `

(
k + `

k

)(
k + `

k + 1

)
,

the Narayana numbers.

They have q-analogue

M(k, `, 2; q) =
qk

2+k

[k + `+ 1]q

k + `+ 1

k


q

k + `+ 1

k + 1


q

,

the q-Narayana numbers [28].

The Hoggatt sum is

H(2)
n =

1

n+ 1

(
2n

n

)
,

the Catalan number.

The q-Hoggatt sum is

H(2)
n (q) =

1

[n+ 1]q

2n

n


q

,

the q-Catalan number [28].

And the (q, t)-Hoggatt sum is

H(2)
n (q, t) =

n−1∑
k=0

qk
2+k

[n]q

n
k


q

 n

k + 1


q

tk,

the q-Narayana distribution.

H
(2)
n (1, t) is the h-polynomial for the original type A associahedron. It can

also be thought of as a generating function over Catalan objects with respect to a

natural statistic (Dyck paths of length 2n with respect to peaks, etc.).

A standard q-analog of this polynomial is what we have defined as H
(2)
n (q, t),

which is a generating function for the q-Narayana numbers [28]. This polynomial

has a number of combinatorial interpretations. For example, it gives the joint

distribution of Dyck paths with respect to descents and major index. Additionally,

the work of Stump [54] shows that we have

(13) Cat(n, q, t) =
∑

w∈Sn(231)

qmaj(w)+maj(w−1)tdes(w),
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where Sn(231) is the set of all permutations of length n that avoid the pattern 231

(w avoids the pattern 231 if there does not exist a triple of indices 1 ≤ i < j < k ≤ n
such that wk < wi < wj).

3.1.3. Level 3: Baxter Objects. For m = 3, the MacMahon numbers are

M(k, `, 3) = Θk,`,

which have numerous combinatorial interpretations as given in the introduction.

They have q-analogue

M(k, `, 3; q) = Θk,`(q)

.

The Hoggatt sum is

H(3)
n = B(n),

the Baxter number.

The q-Hoggatt sum is

H(3)
n (q) =

n∑
k=0

q3(k+1
2 )Θk,`(q),

as a q-Baxter number.

And the (q, t)-Hoggatt sum is

H(3)
n (q, t) =

n−1∑
k=0

n+ 1

k


q

n+ 1

k + 1


q

n+ 1

k + 2


qn+ 1

1


q

n+ 1

2


q

q3(k+1
2 )tk.

H
(3)
n (q, t) can conjecturally can be expressed as a generating function of Baxter

permutations similar to the one for 231-avoiding permutations in Equation (13), as

we next explain.

Definition 3.2. Given a permutation w, let IDB(w) = {w−1
i+1 : w−1

i+1 < w−1
i }

be the set of inverse descent bottoms, and let IDT(w) = {w−1
i − 1 : w−1

i+1 < w−1
i }

be the set of inverse descent tops.

In simpler terms, an inverse descent in a permutation is an instance of i + 1

appearing to the left of i, and for each such inverse descent pair, we call the position

of i + 1 an inverse descent bottom, and the position of i (minus one) the inverse

descent top.

Definition 3.3. Let

imajB(w) =
∑

i∈IDB
i
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and

imajT (w) =
∑
i∈IDT

i.

We note that this is simply the notion of descent bottoms (resp. tops) and

sum of descent bottoms (resp. tops) applied to the inverse of a permutation as

mentioned in [26] and [4].

Conjecture 3.4.

Baxn(q, t) =
∑

w∈Baxn

qimajB(w)+maj(w)+imajT (w)tdes(w)

This conjecture would be a corollary to a related conjecture, explained next,

that gives a bijection between Baxter permutations and non-intersecting triples of

lattice paths in terms of IDB, Des, and IDT.

Given a permutation w ∈ Sn, define a triple of lattice paths, each consisting of

n − 1 steps, as follows. One path starts at (2, 0), whose ith step is to to the right

if i ∈ IDB(w), and up otherwise. The second path starts at (1, 1), and whose ith

step is to the right if i ∈ Des(w), and up otherwise. The third path starts at (0, 2),

and whose ith step is to the right if i ∈ IDT(w), and up otherwise.

Conjecture 3.5. The above correspondence gives a bijection between Baxter

permutations of length n with k descents, and non-intersecting triples of lattice

paths from (0, 2), (1, 1), (2, 0) to (k, n− k + 1), (k + 1, n− k), (k + 2, n− k − 1).

This conjectured bijection appears to be fundamentally different from the clas-

sical bijection given by Dulucq and Guibert [22] involving twin binary trees.

Example 3.6. Let w = 2147563. Then IDB(w) = {1, 3, 4}, Des(w) = {1, 4, 6},
and IDT(w) = {1, 5, 6}.

For higher Hoggatt levels (m ≥ 4), it is not known if there are any combinatorial

interpretations other than plane partitions.

Remark 3.7. Even though Hoggatt levels m = 1, 2 have representations in

terms of permutations avoiding 231 and 312 and permutations avoiding 231 (respec-

tively), they do not have the same interesting symmetries as Baxter permutations.

• In general, 231 permutations are not closed under taking inverses. The

ones that are fixed under this action must also necessarily avoid the pat-

tern 312. All permutations avoiding 231 and 312 are equal to their own

inverse.

• Similarly, in general, 231 permutations are not closed under 180◦ rotation.

The ones that are fixed under this action must also necessarily avoid 312.

If we identify permutations avoiding 231 and 312 of length n with subsets
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Figure 3.1. Image of w = 2147563 under conjectured bijection.

of [n−1], then rotating the permutation matrix 180◦ degrees corresponds

to sending I ⊆ [n− 1] to {n− i}i∈I , so the number of fixed points will be

2bn/2c.

• Neither 231 avoiding permutations nor 231 and 312 avoiding permuta-

tions are generally closed under 90◦ rotation. Additionally, there are no

permutations in either class fixed under this action for n > 1. Any permu-

tation of length n > 1 fixed under this action will have a non-degenerate

4-cycle of the form (1, j, n, n + 1− j) with j 6= n/2. If j < n/2, then the

subsequence j . . . n . . . 1 will form an instance of 231, and if j > n/2, then

the subsequence j . . . n . . . n+ 1− j will form an instance of 231.

3.2. Real Rootedness

Additionally, one can look at the specialization of the (q, t)-Hoggatt numbers

at q = 1. At level 1, we get

H(1)
n (1, t) =

n−1∑
k=0

(
n− 1

k

)
tk = (1 + t)n−1.

At level 2, we get

H(2)
n (1, t) =

n−1∑
k=0

(
n
k

)(
n
k+1

)(
n
1

) tk,

the Narayana distribution. And for level 3, we get
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H(3)
n (1, t) =

n−1∑
k=0

(
n+1
k

)(
n+1
k+1

)(
n+1
k+2

)(
n+1

1

)(
n+1

2

) tk,

the generating function for Baxter permutations with respect to descents.

Theorem 3.8. H
(m)
n (1, t) has only real roots for all m.

This follows from the theory of multiplier sequences.

Definition 3.9. Say that {ak}k≥0 is a multiplier sequence if for every polyno-

mial
∑n
k=0 bkt

k with all real roots,
∑n
k=0 akbkt

k also has all real roots.

Multiplier sequences satisfy some basic properties, which are outlined in Craven

and Csordas [20].

Proposition 3.10. Let {ak}k≥0 be a multiplier sequence.

(a)
∑n
k=0 akt

k is real rooted.

(b) {ak+r}k≥0 for r ≥ 0 is also a multiplier sequence.

(c) If {bk}k≥0 is another multiplier sequence, then {akbk}k≥0 is also a multi-

plier sequence.

(d) If {ar, ar+1, . . . , ar+s} is a segment of a multiplier sequence, and
∑n
k=0 bkt

k

is real rooted with n ≤ s, then
∑n
k=0 ar+s−kbkt

k is real rooted.

Proof of Theorem 3.8. When m = 1, H
(1)
n (1, t) =

∑n−1
k=0

(n−1)!
k!(n−1−k)! = (1 +

t)n−1, which is obviously real rooted.

For m > 1, we can write H
(m)
n (1, t) as

n−1∑
k=0

fm(n)!tk∏m−1
i=0 (k + i)!(n− 1− k − i)!

,

where

fm(n) =
(n+m− 2)!m∏m−1
j=1

(
n+m−2

j

) .
It suffices to show that we can obtain H

(m)
n (1, t) by applying multiplier se-

quences to a known real-rooted polynomial.

Consider the polynomial

fm(n)(1 + t)n−1

(n− 1)!
=

n+1−m∑
k=0

fm(n)tk

k!(n− 1− k)!
,

which is obviously real-rooted, and of degree n− 1.

It is well known that { 1
k!}k≥0 is a multiplier sequence [15, Theorem 2.4.1].

Proposition 3.10 (b) tells us that for 1 ≤ i ≤ m−1, { 1
(k+i)!}k≥0 will be a multiplier
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sequence, and so
n−1∑
k=0

fm(n)tk

(n− 1− k)!
∏m−1
i=0 (k + i)!

will be real rooted.

Now apply Proposition 3.10 (d) to the segments { 1
(i)! , . . . ,

1
(n−1+i)!} for 1 ≤ i ≤

m− 1 to this polynomial. This shows that

n−1∑
k=0

(n+m− 2)!tk∏m−1
i=0 (k + i)!(n− 1− k − i)!

= H(m)
n (1, t)

is real-rooted.

�

3.3. Gamma Nonnegativity

One can show that any polynomial of degree n with nonnegative symmetric

coefficients and all real roots must expand nonnegatively in the basis

{ti(1 + t)n−2i}0≤i≤bn/2c

(Branden [14], Gal [29, Remark 3.1.1], Stembridge [53, Section 1.4]). While Gal

proved that the h-polynomial is not real-rooted for flag spheres of dimension 5 or

higher, he did make a conjecture about this weaker property.

Gal’s Conjecture (Gal, [29]). The h-polynomial for any flag (generalized)

homology sphere is gamma nonnegative.

Following Gal [29], one can consider the expansion of polynomials of degree n

with symmetric coefficients in terms of the basis {ti(1 + t)n−2i}0≤i≤bn2 c.

Definition 3.11. Let h(t) = a0 +a1t+ . . . ant
n be a polynomial of degree ≤ n

with symmetric coefficients (ai = an−i). Then if we write

h(t) =

bn/2c∑
i=0

γit
i(1 + t)n−2i,

we call γ(h(t)) :=
(
γ0, γ1, . . . , γb(n+1)/2c

)
the gamma vector, and we say that h(t)

is gamma nonnegative if all of the γi are nonnegative.

Since each polynomial ti(1 + t)n−2i has coefficient sequence that is symmetric

about tn/2 and unimodal, a polynomial being gamma nonnegative implies that

its coefficient sequence is symmetric and unimodal. It is also worth pointing out

that if a polynomial has symmetric integer coefficients, then the gamma vector will

necessarily consist of integers.

Corollary 3.12. H
(m)
n (1, t) is γ-nonnegative.
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Proof. It is not hard to see that H
(m)
n (1, t) =

∑n−1
k=0 akt

k will have symmetric

coefficient sequence, as ak counts plane partitions in a k× (n− 1−k)×m box, and

an−1−k counts plane partitions in a (n−1−k)×k×m box. Gamma nonnegativity

now follows from Theorem 3.8, via [29, Remark 3.1.1]. �

In general, we can represent H
(m)
n (1, t) as a hypergeometric series, particularly,

H(m)
n (1, t) = mFm−1

−n+ 1 −n . . . −n−m+ 2

m . . . 2

∣∣∣∣∣∣ (−1)mt

 .
For small values of m, we can use known hypergeometric transformations to

come up with an explicit expression for the gamma-nonnegativity expansion.

For m = 1, we have already seen that H
(1)
n (1, t) =

∑n−1
k=0

(
n−1
k

)
tk = (1 + t)n−1,

by the standard binomial theorem.

For m = 2, by a standard quadratic transformation (as seen in [44, Prop

11.14]), one can see that this polynomial has a gamma nonnegative expansion of

H(2)
n (1, t) =

bn−1
2 c∑

k=0

Ck

(
n− 1

2k

)
tk(1 + t)n−1−2k,

where Ck = 1
k+1

(
2k
k

)
is the Catalan number.

For m = 3, we can apply the well-poised 3F2 quadratic tranformation [5, p. 97]

(1− z)a3F2

a b c

1 + a− b 1 + a− c

∣∣∣∣∣∣ z


= 3F2

 1
2a

1
2 (a+ 1) 1 + a− b− c

1 + a− ba 1 + a− c

∣∣∣∣∣∣− 4z

(1− z)2

 .
Setting z = −t, a = −n + 1, b = −n, c = −n − 1 gives a gamma nonnegative

expansion of

H(3)
n (1, t) =

bn/2c∑
k=0

γit
i(1 + t)n−2i

for

(14) γi =
(n+ 3)i(1− n)2i

(1)i(2)i(3)i
.1

1Thanks to Dennis Stanton for suggesting this transformation
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We note that each γi is an integer as its part of the gamma expansion for a

symmetric polynomial with integer coefficients, though integrality is not a priori

obvious by looking at the closed formula.



CHAPTER 4

q-Gamma Nonnegativity

4.1. Introduction

Now, we will establish a bivariate notion of gamma nonnegativity.

Definition 4.1. Call a bivariate polynomial

P (q, t) =

∞∑
r=0

∞∑
s=0

ar,sq
rts

with integer coefficients symmetric (with center of symmetry (M/2, N/2)) if there

existM,N ∈ Z≥0 such that P (q, t) = qM tNP ( 1
q ,

1
t ) (or equivalently, ar,s = aM−r,N−s).

Note that this is not the same as P (q, t) = P (t, q).

These symmetric polynomials are multiplicative, in the sense that the product

of a symmetric polynomial (with center of symmetry (M1/2, N1/2)) and a symmet-

ric polynomial (with center of symmetry (M2/2, N2/2) will again be a symmetric

polynomial (with center of symmetry ((M1 +M2)/2, (N1 +N2)/2).

Definition 4.2. Let P (q, t) be a symmetric bivariate polynomial in Z[q, t] with

center of symmetry (M/2, N/2). Then if there exist nonnegative integers a and b

and γ
(a,b)
i (q) ∈ Z[q] such that

P (q, t) =

bN/2c∑
i=0

γ
(a,b)
i (q)ti

N−1−i∏
k=i

(1 + tqka+b),

we say that P (q, t) has a q-gamma expansion (of type (a,b)), and call

γ(a,b)(P ) :=
(
γ

(a,b)
0 (q), γ

(a,b)
1 (q), . . . , γ

(a,b)
bN/2c(q)

)
its q-gamma vector (of type (a,b)).

We say that P (q, t) is q-gamma nonnegative (of type (a,b)) if furthermore each

γ
(a,b)
i (q) lies in Z≥0[q].

This is clearly a q-analog of regular gamma expansions/gamma nonnegativity,

as specializing a q-gamma expansion of P (q, t) to q = 1 will give a regular gamma

expansion of P (1, t), and if P (q, t) is q-gamma nonnegative, then P (1, t) will be

gamma nonnegative (as in Definition 3.11).

49
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Definition 3.11 is a nonnegative expansion of a symmetric polynomial with

center of symmetry (0, N/2) and nonnegative coefficients into a distinguished basis

of nonnegative symmetric polynomials that also have center of symmetry (0, N/2).

Proposition 4.3. If P (q, t) has center of symmetry (M/2, N/2) and has a

q-gamma expansion of type (a, b),

P (q, t) =

bN/2c∑
i=0

γ
(a,b)
i (q)ti

N−1−i∏
k=i

(1 + tqka+b).

Then we necessarily have that γ
(a,b)
i (q) is symmetric with center of symmetry (M−A2 , 0),

for

A =

N−1−i∑
k=i

ka+ b = (ai+ b)(N − 2i) +
a(N − 2i)(N − 1− 2i)

2
.

Proof. Consider the smallest i for which γ
(a,b)
i (q) =

∑
bjq

j 6= 0, call it i0.

Then if we think of P (q, t) =
∑N
s=0

∑M
r=0 ar,sq

rts as a polynomial in t with co-

efficients in Z[q], the only term from the q-gamma expansion that contributes to

ti0 and tN−i0 will be γ
(a,b)
i0

(q)ti
∏N−1−i0
k=i0

(1 + tqka+b). Thus, the coefficient of ti0

must be γ
(a,b)
i0

(q), so we have bj = aj,i0 . Similarly, the coefficient of tN−i0 must be

γ
(a,b)
i0

(q)qA, where

A =

N−1−i0∑
k=i0

ka+ b = (ai0 + b)(N − 2i0) +
a(N − 2i0)(N − 1− 2i0)

2
.

This tells us that aj+A,N−i0 = bj . Combining these two statements with the

symmetry of P (q, t) gives bj = aj,i0 = aM−j,N−i0 = bM−A−j , which is exactly the

statement that γ
(a,b)
i0

(q) is symmetric with center of symmetry (M−A2 , 0).

Now, repeat on

P (q, t)− γ(a,b)
i0

(q)ti0
N−1−i0∏
k=i0

(1 + tqka+b),

which will have q-gamma expansion

bN/2c∑
i=i0+1

γ
(a,b)
i (q)ti

N−1−i∏
k=i

(1 + tqka+b).

�

We note that this proposition implies that each summand of a q-gamma ex-

pansion will have the same center of symmetry as the original polynomial.

It will sometimes be convenient to use the notation of the Pochhammer symbol.

We define
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(x)i =x(x+ 1) · · · (x+ i− 1)

(x; q)i =(1− x)(1− xq) . . . (1− xqi−1).

Using the Pochhammer symbol, we can equivalently say that P (q, t) has a q-

gamma expansion if there exist nonnegative integers a and b and γ
(a,b)
i (q) ∈ Z[q]

such that

P (q, t) =

bN/2c∑
i=0

γ
(a,b)
i (q) ti (−tqai+b; qa)N−2i

If P (q, t) is q-gamma nonnegative, then setting q = 1 makes P (1, t) a uni-

variate polynomial with symmetric coefficients and nonnegative gamma vector(
γ0(1), γ1(1), . . . , γbN/2c(1)

)
, so this is a q-analog of gamma nonegativity.

Remark 4.4. Note that given a P (q, t) that is q-gamma nonnegative, the cor-

responding a and b are not uniquely determined. For example,

P (q, t) = 1 + q3t+ q4t+ q5t+ q6t+ q9t2

= (1 + tq4)(1 + tq5) + (q3 + q6)t

= (1 + tq3)(1 + tq6) + (q4 + q5)t

has nonnegative γ(1,4) and γ(3,3) vectors.

Remark 4.5. There is a slightly different notion of q-gamma nonnegativity

that has been used by Krattenthaler and Wachs. They say that a polynomial

P (q, t) ∈ N[q][t] of degree d in t is q-gamma nonnegative of index r if there exist

γk(q) ∈ N[q] such that

P (q, t) =

bd/2c∑
k=0

qr(
k+1
2 )γk(q)tk

d−k∏
i=k+1

(1 + qrit)

The notion of q-gamma nonnegativity that we use is more general, as anything

that is q-gamma nonnegative of index r in the sense that they have defined will be

q-gamma nonnegative of type (r, r) in the sense that we have defined (with the γj(q)

differing only by a factor of q), but the converse is not necessarily true. However,

many results we have here could be expressed in either framework. They are also

able to get some additional results from their framework.



52

Theorem 4.6 (Krattenthaler and Wachs). 1 Let P (q, t) ∈ N[q][t] be q-gamma

nonnegative of index r of degree n. Then if P̃ (q, t) is the polynomial obtained from

P (q, t) by multiplying the coefficient of tj by q−r(
j+1
2 ), then P̃ (q, t) =

∑n
i=0 ai(q)t

i

is palindromic (i.e., ai(q) = an−i(q)) and q-unimodal (i.e., ai+1(q) − ai(q) ∈ N[q]

for 0 ≤ i < n/2).

4.2. Hoggatt Families

Our original motivation for q-gamma nonnegativity arose from examples con-

tained in Hoggatt families.

Proposition 4.7. H
(m)
n (q, t) is symmetric, with center of symmetry (M,N) =

(m
(
n
2

)
, n− 1).

Proof. Let

H(m)
n (q, t) =

∞∑
r=0

∞∑
s=0

ar,sq
rts.

Take M = m
(
n
2

)
and N = n − 1. Define an involution on the set of plane

partitions that contribute to H
(m)
n (q, t) by pairing π in the k × (n − 1 − k) × m

box with π̄c in the (n − 1 − k) × k × m box, where π̄ is the plane partition in

(n− 1− k)× k ×m box naturally identified with π.

The first plane partition π will contribute a term of q|π|+m(k+1
2 )tk, while the

second plane partition π̄c will contribute a term of qkm(n−1−k)−|π|+m(n−k
2 )tn−1−k.

One can check that

km(n− 1− k)− |π|+m

(
n− k

2

)
= m

(
n

2

)
−
(
|π|+m

(
k + 1

2

))
,

which shows that ar,s = aM−r,N−s, and H
(m)
n (q, t) is symmetric.

�

In general, we have that

H(m)
n (q, t) = mφm−1

q−n+1 q−n . . . q−n−m+2

qm . . . q2

∣∣∣∣∣∣ q, (−1)m(tqmn+(m
2 ))

 .
Again, for small values of m, we are able to do some explicit computations.

4.2.1. Subsets. When m = 1, by the q-binomial theorem, we get

H(1)
n (q, t) =

n−1∑
k=0

q(
k+1
2 )

n− 1

k


q

tk = (−tq; q)n−1 = (1 + tq)(1 + tq2) . . . (1 + tqn−1),

1Personal communication with Michelle Wachs
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which shows that H
(1)
n (q, t) is q-gamma nonnegative of type (1,1).

4.2.2. Catalan Objects. For m = 2, we have the following.

Theorem 4.8.

H(2)
n (q, t) =

n−1∑
k=0

qk
2+k

[n]q

n
k


q

 n

k + 1


q

tk(15)

=

bn−1
2 c∑

k=0

Ck(q2)

n− 1

2k


q

qk(k+2)tk
n−2−k∏
i=k

(1 + tq2i+2),

where Ck(q) = 1
[k+1]q

2k

k


q

is a q-Catalan number [28], and thus Catn(q, t) is q-

gamma nonnegative of type (2,2).

Remark 4.9. This result was independently obtained by Christian Kratten-

thaler and Michelle Wachs.

Proof. From the definition, we can see that

Catn(q, t) = 2φ1

q−n q−n+1

q2

∣∣∣∣∣∣ q, tq2n+1

 .
Now we apply Lemma 4.10 below, setting x = tq2n, A = q−n+1, and B = q−n.

�

Lemma 4.10.

2φ1

A B

Aq
B

∣∣∣∣∣∣ q, AxB
 =

∞∑
k=0

(A2; q2)2k(−A/B; q)2kq
−2(k

2)xk

(q2; q2)k(A2q2/B2; q2)k(−A; q)2k

(−A2q2kx; q2)∞
(−q−2kx; q2)∞

,

as a formal power series in x.

Corollary 4.11. If we set A = q−N for N a positive integer, then we have

2φ1

q−N B

q−N+1

B

∣∣∣∣∣∣ q, xq
−N

B

 =

bN/2c∑
k=0

(q−2N ; q2)2k(−q−N/B; q)2kq
−2(k

2)xk

(q2; q2)k(−q2−2N/B; q)k(−q−N ; q)2k
(−q−2N+2kx; q2)N−2k

as a polynomial identity.

Proof. Many thanks to Dennis Stanton for helping to derive this identity.

Our goal is to show that the coefficient of xN on each side of the equation is

the same. First, we look at the right hand side. The q-binomial theorem [30][II.3]

says
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1Φ0[a;−; q, z] =
(az; q)∞
(z; q)∞

,

so by setting z = −xq−2k and a = A2q4k, we can expand the last part of the right

hand side as

(−A2q2kx; q2)∞
(−q−2kx; q2)∞

=
∑
j

(A2q4k; q2)j
(q2; q2)j

(−xq−2k)j .

Then the coefficient of xN on the right hand side is

N∑
k=0

(A2; q2)2k(−A/B; q)2kq
−2(k

2)xk

(q2; q2)k(A2q2/B2; q2)k(−A; q)2k

(A2q4k; q2)N−k
(q2; q2)N−k

(−xq−2k)N−k.

Simplifying this expression gives

(A2; q2)N
(q2; q2)N

N∑
k=0

(A2q2N ; q2)k(−A/B; q2)k(−Aq/B; q2)k(q−2N ; q2)kq
2k

(q2; q2)k(A2q2/B2; q2)k(−A; q2)k(−Aq; q2)k

which can also be written as

(A2; q2)N
(q2; q2)N

4φ3

A2q2n −A/B −Aq/B q−2N

A2q2/B2 −A −Aq

∣∣∣∣∣∣ q2, q2

 .
Using Singh’s quadratic transformation [30][III.22],

4φ3

a2 b2 c2 d2

a2b2q −cd −cdq

∣∣∣∣∣∣ q2, q2

 = 4φ3

a2 b2 c d

abq1/2 −abq1/2 −cd

∣∣∣∣∣∣ q, q


with choice of parameters a2 = Aq/B, b2 = −A/B, c2 = A2q2N , and d2 = q−2N ,

this expression becomes

(A2; q2)N
(q2; q2)N

4φ3

−A/B −Aq/B AqN q−N

Aq/B −Aq/B −A

∣∣∣∣∣∣ q, q
 .

Cancelling out the like terms, the 4φ3 becomes a 3φ2. Using the q-Saalschütz sum

formula ( [30][II.12]),

3φ2

a b q−n

c abc−1q1−n

∣∣∣∣∣∣ q, q
 =

(c/a; q)n(c/b; q)n
(c; q)n(c/ab; q)n

,

for choice of parameters a = −A/B, b = AqN , c = −A, and n = N , our expression

reduces to
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(A2; q2)N
(q2; q2)N

(B; q)N (q−N ; q)N
(−A; q)N (Bq−N/A; q)N

After making some standard reductions, this readily becomes

(A; q)N (B; q)N
(q; q)N (Aq/B; q)N

(A/B)N ,

which is the desired coefficient of xN on the left hand side of the original equation.

�

4.2.3. Baxter Objects. For m = 3, in terms of q-gamma nonnegativity, we

have the following theorem.

Theorem 4.12.

H(3)
n (q, t) =

b(n−1)/2c∑
i=0

γi(q)t
i
n−2−i∏
k=i

(1 + tqn+1+k)

for

(16) γi(q) = q3(i
2)+3i (q

n−2i; q)2i(q
n+3; q)i

(q3; q)i(q2; q)i(q; q)i

and thus H
(3)
n (q, t) has a q-gamma expansion of type (1, n+ 1).

Proof. Note that H
(3)
n (q, t) = 3Φ2

q−n+1 q−n q−n−1

q2 q3

∣∣∣∣∣∣ q,−tq3n+3

. Using

the Sears-Carlitz transformation of a terminating well-poised 3φ2 [30, (III.14)],

3Φ2

a b c

aq/b aq/c

∣∣∣∣∣∣ q, aqzbc
 =

(az; q)∞
(z; q)∞

5Φ4

a1/2 −a1/2 (aq)1/2 −(aq)1/2 aq/bc

aq/b aq/c az q/z

∣∣∣∣∣∣ q, q


for choice of parameters a = q−n+1, b = q−n, c = q−n−1, and z = −tq2n, the left

hand side is readily seen to be the formula for H
(3)
n (q, t), and the right hand side

reduces to our desired expression by standard reductions.

�

Conjecture 4.13. γi(q) ∈ Z≥0[q] (as in Equation (16)), and thus the above

q-gamma expansion is q-gamma nonnegative.

Interestingly enough, there appears to be a second q-gamma expansion for

Baxter permutations, which appears to generalize to all Hoggatt levels.
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Conjecture 4.14. For every m ≥ 3, H
(m)
n (q, t) is q-gamma nonnegative of

type (m,m).

The examples of q-gamma nonnegativity given for m = 1, 2 are both of this

form. This would be an extension of Corollary 3.12, which asserts the necessary

condition that this polynomial be gamma nonnegative when we set q = 1.

4.3. Permutations

Another example of q-gamma nonnegativity comes from looking at permuta-

tions.

Definition 4.15. Say that a permutation w = w1 . . . wn has a descent at

position i if wi+1 < wi. Let Des(w) be the set of all descents of w, let des(w) =

|Des(w)| and define the major index by maj(w) =
∑
i∈Des(w) i.

For example, if w = 631542, then Des(w) = {1, 2, 4, 5}, des(w) = 4, and maj(w) =

12.

The classical Eulerian polynomial is given by

An(t) =
∑
w∈Sn

tdes(w).

This relates to Gal’s conjecture, as An(t) is known to be the h-vector for the

permutahedron. It has been proven combinatorially by Shapiro, Woan, and Getu

[47] that it has gamma nonnegativity expansion

An(t) =

b(n−1)/2c∑
i=0

γit
i(1 + t)n−1−2i,

where γi is the number of permutations in Sn with no consecutive descents, n− 1

is not a descent, and i peaks, where the number of peaks is defined by

pk(u) = |{2 ≤ i ≤ n− 1|ui−1 < ui > ui+1}|.

There is another version of this formula due to Foata and Schützenberger [25]

which shows that

An(t) = 2−n−1
∑
u∈Sn

(4t)pk(u)(1 + t)n−1−2 pk(u).

Our polynomial of interest will be

An(q, t) =
∑
w∈Sn

qmaj(w)tdes(w).
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Theorem 4.16 (Han, Jouhet, Zeng [35]). There exists an expansion

An(q, t) =

b(n−1)/2c∑
i=0

γ
(0,1)
i (q)ti

n−1−i∏
k=i

(1 + tqk),

where γ
(0,1)
i (q) ∈ Z≥0[q]. In particular, An(q, t) is q-gamma nonnegative of type

(0,1).

Their proof relies on the q-Carlitz identity, which states that

∑
k≥0

[k + 1]nq t
k =

∑
w∈Sn

qmaj(w)tdes(w)∏n
i=0(1− tqi)

,

and they do not give a combinatorial interpretation.

Example 4.17.

A2(q, t) =1 + tq

A3(q, t) =(1 + tq)(1 + tq2) + (q + q2)t

A4(q, t) =(1 + tq)(1 + tq2)(1 + tq3) + (2q + 4q2 + 2q3)t(1 + tq2)

A5(q, t) =(1 + tq)(1 + tq2)(1 + tq3)(1 + tq4) + (3q + 8q2 + 8q3 + 3q4)t(1 + tq2)(1 + tq3)

+ (2q3 + 4q4 + 4q5 + 4q6 + 2q7)t2

Remark 4.18. Shareshian and Wachs have come up with similar gamma non-

negativity results [48, Remark 5.5], but with excedance playing the primary role,

where exc(w) is the number of i for which wi > i. In particular, if we let

Amaj,des,exc
n,k =

∑
w∈Sn

fix(w)=k

qmaj(w)pdes(w)texc(w)

with Amaj,des,exc
n representing the same sum with no restriction on number of fixed

points, then

• Amaj,des,exc
n,0 (q, p, q−1t) has coefficients in Z≥0[q, p] when expanded in the

basis {td(1 + t)n−2d}bn/2cd=0 .

• Amaj,des,exc
n,k (q, 1, q−1t) has coefficients in Z≥0[q] when expanded in the ba-

sis {td(1 + t)n−k−2d}b(n−k)/2c
d=0 .

• Amaj,des,exc
n (q, 1, q−1t) has coefficients in Z≥0[q] when expanded in the ba-

sis {td(1 + t)n−1−2d}b(n−1)/2c
d=0 .

We note that none of these results can be specialized to give Conjecture 4.16,

and while these results could be phrased as being q-gamma nonnegative of type

(0,0), typically our results are q-gamma nonnegative of type (a,b) with a strictly

positive.
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Remark 4.19. It is also worth pointing out that Theorem 4.16 does not im-

mediately follow from a specialization of the cd-index. For a bounded and ranked

poset, one can define a polynomial in non-commuting variables a and b called the

ab-index. In the case where the poset is the face lattice of a polytope, the ab-index

is known to be a polynomial in the expressions c = a + d and d = ab + ba called

the cd-index [50].

In the case of the permutahedron, one can think of the ab-index as being

the generating function over all permutations, where to each permutation w =

w1 . . . wn, we assign a monomial uw = u1 . . . un−1, where ui is a if i /∈ Des(w) and

b if i ∈ Des(w). One can see that specializing a to 1 and b to t will give An(t), and

if we make the corresponding changes to c and d, then the cd-index will specialize

to a gamma nonnegativity expansion.

Similarly, if we specialize a to 1 and b to tqi when b is the ith term in its

monomial, we will get An(q, t). Then one can replace c with (1 + tqi) and d with

(tqj+tqj+1) (where i and j depend on the position of c and d in a given monomial) to

come up with a q-analog of the gamma positivity expansion for An(q, t). However,

the pieces of this expansion do not have central symmetry with respect to both q

and t, and there does not appear to be a systematic way to combine terms to give

our expansion.

For example, consider S4. Using the cd-index φ4 = c3 + 2cd+ 2dc and making

the appropriate specializations, we would get the expansion

A4(q, t) = (1 + tq)(1 + tq2)(1 + tq3) + 2(1 + q)q2(1 + tq) + 2q(1 + q)(1 + tq3).

The first summand has our desired central symmetry with respect to both q

and t, but the latter two summands do not.

4.4. Signed Permutations

We define a signed permutation of length n to be a bijection f : ±[n] 7→ ±[n],

for ±[n] = {−n, . . . ,−1, 1, . . . n}, satisfying f(−i) = −f(i). Typically, we will refer

to a signed permutation in one line notation as w = w1 . . . wn, where wi = f(i), and

we use bars to denote negated elements. For example, the bijection with f(1) = −3,

f(2) = 1, and f(3) = −2 would be denoted at 3̄12̄. Let Bn be the set of all signed

permutations of length n.

Definition 4.20. We say a signed permutation w = w1 . . . wn has a descent

at position i if wi > wi+1, and a descent at position 0 if w1 < 0. Let DesB(w) ⊆
{0, 1, . . . , n−1} be the set of descents of w, and desB(w) = |DesB(w)|. For example,

DesB(3̄12̄) = {0, 2}.
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Theorem 4.21. [43, Petersen, Prop 4.16]

∑
w∈Bn

tdesB(w) =
∑
u∈Sn

(4t)lpk(u)(1 + t)n−2lpk(u),

where lpk(u) = #{i ∈ [1, n − 1] : ui−1 < ui > ui+1}, with the convention that

u0 = 0.

One natural statistic that arises when looking at signed permutations is called

fmaj, originally defined by Adin and Roichman [1].

Definition 4.22. For a signed permutation w ∈ Bn, let majB(w) =
∑
i∈DesB(w) i,

and let neg(w) = #{i|wi < 0}. Then

fmaj(w) = 2 majB(w) + neg(w).

Part of the motivation for defining this statistic is that it is equidistributed with

Coxeter length on signed permutations, similar to how the major index on permu-

tations is equidistributed with its Coxeter length (inversion number), as shown by

MacMahon [39].

Theorem 4.23 (Han, Jouhet, Zeng [35]).

Bn(q, t) =
∑
w∈Bn

qfmaj(w)tdesB(w) =

bn/2c∑
i=0

γ
(2,1)
i (q)ti

n−1−i∏
k=i

(1 + tq2k+1),

where γ
(2,1)
i (q) ∈ Z≥0[q]. In particular, Bn(q, t) is q-gamma nonnegative of type

(2,1).

Again, this follows from a type-B version of the q-Carlitz identity [17], which

states that

∑
k≥0

[2k + 1]nq t
k =

∑
w∈Bn

qfmaj(w)tdesB(w)∏n
i=0(1− tq2i)

.

Example 4.24.

B2(q, t) =(1 + tq)(1 + tq3) + (q2 + 2q3 + q4)t

B3(q, t) =(1 + tq)(1 + tq3)(1 + tq5) + (2q + 5q2 + 6q3 + 5q4 + 2q5)t(1 + tq3)

B4(q, t) =(1 + tq)(1 + tq3)(1 + tq5)(1 + tq7)

+ (3q + 9q2 + 15q3 + 18q4 + 15q5 + 9q6 + 3q7)t(1 + tq3)(1 + tq5)

+ (2q4 + 7q5 + 11q6 + 13q7 + 14q8 + 13q9 + 11q10 + 7q11 + 2q12)
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Remark 4.25. Our previous two examples correspond to type A (permuta-

tions) and type B (signed permutations). It would be interesting to know if there

is a similar result for the third infinite family of irreducible Coxeter groups (type

D, corresponding to signed permutations with an even number of signs). There are

a number of potential statistics for type D one could consider (see [7], [8], [9], [41])

that are analagous to major index and fmaj. However, none of them seem to give

the desired type of result generalizing the type D Eulerian polynomial.

4.5. Cyclohedron

Another example comes from the cyclohedron. It can be thought of as the

dual polytope to a type B version of the associahedron, which corresponds to cen-

trally symmetric triangulations of a 2n-gon. It can also be realized as the graph-

associahedron for the n-cycle graph, as defined by Carr and Devadoss [16]. Its

h-polynomial was computed by Simion [49] to be:

Cycn(t) =

n∑
k=0

(
n

k

)2
tk.

Let Dn be the set of binary sequences in {0, 1}2n with the same number of

0’s as 1’s. These can be combinatorially interpreted as lattice paths from (0, 0)

to (n, n) using only steps E = (1, 0) and N = (1, 0). As with permutations, for

a = a1 . . . a2n ∈ Dn, we let Des(w) = {i|ai+1 < ai}, des(a) = |Des(a)|, and

maj(a) =
∑
i∈Des(w) i. This h-vector can be interpreted as the descent generating

function for Dn, or equivalently, the generating function for the lattice paths with

respect to number of EN corners.

This polynomial has a gamma nonnegativity expansion, which can be computed

by a hypergeometric transformation (as in [44], via Lemma 4.1 in [46] with r =

n, a1 = a2 = 1) to be

Cycn(t) =

bn/2c∑
r=0

(
n

r, r, n− 2r

)
tr(1 + t)n−2r.

If we consider the joint distribution with respect to des and maj, we get

Cycn(q, t) =
∑
a∈Dn

qmaj(a)tdes(a) =

n∑
k=0

n
k

2

q

qk
2

tk.

This can be viewed as a special case of Theorem 1 in [37] for µ1 = µ2 = 0,

λ1 = λ2 = n, c = −n, d = n.
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Theorem 4.26.

Cycn(q, t) =

bn/2c∑
r=0

γr(q)t
r
n−1−r∏
k=r

(1 + tq2k+1),

for

(17) γr(q) = q(−r2+2r+2nr) (q−n; q)2r(−1; q)2r

(q2; q2)r(q2; q2)r

and thus has a q-gamma expansion of type (2,1).

Remark 4.27. This result was independently obtained by Michelle Wachs and

Christian Krattenthaler.

Proof. We again apply Lemma 4.10, this time with choice of parameters

A = B = q−n, and x = tq2n+1

�

Theorem 4.28 (Krattenthaler and Wachs). 2 γr(q) ∈ Z≥0[q] (for γr(q) as in

Equation 17), and thus the above q-gamma expansion is q-gamma nonnegative.

4.6. Involutions

One interesting example that is not obviously the h-vector for a flag simplicial

polytope has to do with involutive permutations. We say a permutation w ∈ Sn is

an involution if w2 = 1, and let In denote the set of all involutions in Sn. As with

all permutations, we can consider the descent generating function,

In(t) =
∑
w∈In

tdes(w).

Guo and Zeng have proved that this polynomial is unimodal, but they addi-

tionally conjectured that it is gamma nonnegative.

Conjecture 4.29 (Guo,Zeng [34]).

In(t) =

b(n−1)/2c∑
r=0

γrt
r(1 + t)n−1−2r

for γr ≥ 0.

However, it appears that even more is true.

Conjecture 4.30.

In(q, t) =
∑
w∈In

qmaj(w)tdes(w) =

b(n−1)/2c∑
r=0

γ(1,1)
r (q)tr

n−2−r∏
k=r

(1 + tqk+1),

2Private communication with Michelle Wachs
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where γ
(1,1)
r (q) ∈ Z≥0[q].

This conjecture was also independently noted by Kyle Petersen.

Example 4.31.

I2(q, t) =1 + tq

I3(q, t) =(1 + tq)(1 + tq2)

I4(q, t) =(1 + tq)(1 + tq2)(1 + tq3) + q2t(1 + tq2)

I5(q, t) =(1 + tq)(1 + tq2)(1 + tq3)(1 + tq4) + (q2 + q3)t(1 + tq2)(1 + tq3)

+ (q4 + q6)t2
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APPENDIX A

Tables

Table A.1. Baxter objects of order (k, `) = (3, 0)

Θk,`(q) = 1
Θk,`(1) = 1

Θk,`(−1) = 1

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane

Permutations Permutations Paths Tableaux Rectangulations Partitions

1234

	

1234

	
	

1 3 6 9
2 5 8 11
4 7 1012

	 	

∅
	

Table A.2. Baxter objects of order (k, `) = (0, 3)

Θk,`(q) = 1
Θk,`(1) = 1

Θk,`(−1) = 1

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane

Permutations Permutations Paths Tableaux Rectangulations Partitions

4321

	

4321

	
	

1 4 7 10
2 5 8 11
3 6 9 12

	 	

∅
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Table A.3. Baxter objects of order (k, `) = (2, 1)

Θk,`(q) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

Θk,`(1) = 10
Θk,`(−1) = 2

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane

Permutations Permutations Paths Tableaux Rectangulations Partitions

1243

l
2134

1243

l
2134

l

1 3 6 9
2 5 7 11
4 8 1012

l
1 3 5 9
2 6 8 11
4 7 1012

l
3 3

l
0 0

1342

l
3124

1342

l
3124

l

1 3 6 9
2 4 8 11
5 7 1012

l
1 3 6 8
2 5 9 11
4 7 1012

l
3 2

l
1 0

l l l l l l

1423

l
2314

1423

l
2314

l

1 3 5 7
2 6 9 11
4 8 1012

l
1 3 5 9
2 4 7 11
6 8 1012

l
3 1

l
2 0

2341

l
4123

2341

l
4123

l

1 4 6 9
2 5 8 11
3 7 1012

l
1 3 6 10
2 5 8 11
4 7 9 12

l
2 2

l
1 1

1324

	

1324

	
	

1 3 5 7
2 4 9 11
6 8 1012

	 	

3 0

	

3412

	

3142

	
	

1 3 7 9
2 5 8 11
4 6 1012

	 	

2 1
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Table A.4. Baxter objects of order (k, `) = (1, 2)

Θk,`(q) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

Θk,`(1) = 10
Θk,`(−1) = 2

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane

Permutations Permutations Paths Tableaux Rectangulations Partitions

1432

l
3214

1432

l
3214

l

1 3 6 9
2 4 7 11
5 8 1012

l
1 3 5 8
2 6 9 11
4 7 1012

l

2

2

l
1

1

2431

l
4213

2431

l
4213

l

1 4 6 9
2 5 7 11
3 8 1012

l
1 3 5 10
2 6 8 11
4 7 9 12

l

3

2

l
1

0

3241

l
4132

3241

l
4132

l

1 4 6 8
2 5 9 11
3 7 1012

l
1 3 6 10
2 4 8 11
5 7 9 12

l

3

1

l
2

0

3421

l
4312

3421

l
4312

l

1 4 7 9
2 5 8 11
3 6 1012

l
1 3 7 10
2 5 8 11
4 6 9 12

l

3

3

l
0

0

2143

	

2143

	
	

1 3 6 8
2 4 9 11
5 7 1012

	 	

2

1

	

4231

	

4231

	
	

1 4 6 10
2 5 8 11
3 7 9 12

	 	

3

0

	


	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2. Involutions on Baxter Objects
	2.1. Overview
	2.2. Proof of Theorem 2.2
	2.2.1. Objects (D) and (G)
	2.2.2. Objects (A), (D), and (E)
	2.2.3. Objects (A) and (B)
	2.2.4. Objects (B) and (C)
	2.2.5. Objects (C) and (F)

	2.3. Proof of Theorem 2.3
	2.4. Other Symmetry Classes
	2.4.1. Generating Tree for Classes of Permutations
	2.4.2. Generating Tree for Baxter permutations
	2.4.3. Generating Tree for Baxter permutations fixed under 180 rotation
	2.4.4. Generating Tree for Baxter permutations fixed under 90 rotation
	2.4.5. Remarks
	2.4.6. Other Conjectures


	Chapter 3. Hoggatt Numbers
	3.1. Definitions
	3.1.1. Level 1: Subsets
	3.1.2. Level 2: Catalan Objects
	3.1.3. Level 3: Baxter Objects

	3.2. Real Rootedness
	3.3. Gamma Nonnegativity

	Chapter 4. q-Gamma Nonnegativity
	4.1. Introduction
	4.2. Hoggatt Families
	4.2.1. Subsets
	4.2.2. Catalan Objects
	4.2.3. Baxter Objects

	4.3. Permutations
	4.4. Signed Permutations
	4.5. Cyclohedron
	4.6. Involutions

	Bibliography
	Appendix A. Tables

