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1. Introduction

For a graph G, its Tutte polynomial TG(x,y) is a two-variable polynomial with nonnegative
coefficients, and an isomorphism invariant of G, having a remarkable number of inter-
esting combinatorial interpretations via specialization of the variables x,y. For example,
TG(x + 1,1) gives a generating function that counts spanning forests in G according to
their number of components, and in particular, TG(1,1) is the number of spanning trees
of G; see, e.g., Brylawski and Oxley [2] and Bollobas [1, Page 345].

When one has a covering map π : G̃ → G, it is known that the spanning tree number
TG(1,1) divides TG̃(1,1). Furthermore, when π is a 2-fold or double covering parametrized
by a voltage assignmentGβ onG (as explained in Section 2 below),one has an interpretation
for the ratio via work of Chepuri et al. [6, Cor. 4.5]

TG̃(1,1)
TG(1,1)

=
∑

Z∈NVF(Gβ)

2#(minus cycles of Z)−1. (1.1)

Here NVF(Gβ) is the set of negative vector fields for Gβ , which are certain orientations of
a subset of the edges of G defined in Chepuri et al. [6, §4], and reviewed in Section 3.1
below.

In general TG(x,y) does not divide TG̃(x,y). However, one can ask if other specializations
besides x = y = 1 lead to divisibility. The following example is suggestive.

Example 1.1. Let Cb denote a cycle with b edges. We have that

TCb(x,y) = xb−1 + xb−2 + . . .+ x+ y

There is a double covering π : C2b→ Cb that “wraps” C2b twice around Cb. Note that here
TCb(x,y) does not divide TC2b

(x,y). However, specializing y = 1, one has

TCb(x,1) = xb−1 + xb−2 + . . .+ x+ 1
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and then one does have a divisibility TCb(x,1) into TC2b
(x,1):

TC2b
(x,1)

TCb(x,1)
=
x2b−1 + x2b−2 + . . .+ x+ 1
xb−1 + xb−2 + . . .+ x+ 1

= xb + 1.

The above example is an instance of our main result, Theorem 1.2 below, about double
coverings of flower graphs. We show that for each flower graph F, and connected double
covering graph F̃→ F parametrized by a voltage assignment Fβ , that every negative vector
field Z for Fβ has only one minus cycle (see Proposition 3.8 below). Hence (1.1) simplifies
to the following:

TF̃(1,1)
TF(1,1)

= #NVF(Fβ).

Motivated by this, for each such voltage assignment Fβ on a flower F, we will define
(Definition 3.9 below) a certain base negative vector field Z0 in NVF(Fβ), and for any other
negative vector field Z in NVF(Fβ), we will define a statistic comm(Z) which measures
how far away Z is from Z0. It is because of this that comm() is an abbreviation of common
since in some sense we want to know how common Z is with Z0. We will then prove the
following main result.

Theorem 1.2. Let F be a flower graph, and F̃ → F a connected double covering graph corre-
sponding to a voltage assignment Fβ . Then

TF̃(x,1)
TF(x,1)

=
∑

Z∈NVF(Fβ)

xcomm(Z)

One might wonder if arbitrary double coverings G̃ → G have TG(x,1) dividing TG̃(x,1),
but small examples of non-flower graphs show that this can fail.

Example 1.3. For the following voltage assignment Gβ and double cover G̃→ G in Fig-
ure 1

Gβ = x− +
y − G̃ = x+ y+

x− y−

Figure 1. Non-Example

one calculates that TG(x,1) = x does not divide TG̃(x,1) = x3 + 3x2 + 3x+ 5.

This raises the following question:

Do double coverings of flower graphs lie in some natural larger class of
double covering graphs G̃→ G for which TG(x,1) divides TG̃(x,1)?
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It would also be interesting to understand a closer connection between Theorem 1.2 and
the results of Chepuri et al. [6], which we currently find mysterious.

The rest of this paper is structured as follows. Section 2 explains some background on
graph coverings and discusses double coverings of flowers. Section 3 recalls the notation
of negative vector fields. Section 4 gives the definition of Tutte polynomials and some
facts about them which will be useful in later sections. Section 5 gives motivating exam-
ples of some simple graphs for which 1.2 holds. Section 6 outlines the strategy for proving
Theorem 1.2. Section 7 proves parallel recurrences that reduce the main theorem from
general double covers of flowers to those that have no plus cycles in their voltage assign-
ment. Sections 8 then proves parallel recurrences that complete the proof by induction
on the number of minus cycles in the flower.

2. Double Coverings of Flowers

In this section we will define the notion of flower graph. We will also introduce facts
about the voltage assignments on flower graphs which will let us more easily characterize
double coverings of flower graphs later in the paper.

2.1. Flowers. This paper primarily deals with the following kind of graph.

Definition 2.1. An n-petal flower graph F will be defined as follows. Let Ca denote a
cycle with a edges. Let Ca1

,Ca2
, . . . ,Can be cycles with vertex sets V1,V2, . . . ,Vn respectively

such that the vertex sets are pairwise disjoint from each other. Then we pick vertices
v1 ∈ V1,v2 ∈ V2, . . . , vn ∈ Vn and identify them all with a single vertex d which we will refer
to as the stem vertex of the flower F. Thus we have “glued” cycles Ca1

,Ca2
, . . . ,Can , at a

single vertex stem vertex d, into a connected graph F, for which we will use the following
notation:

F =
⊕
1≤i≤n

Cai ,

Example 2.2. In Figure 2 we have a 4-petal flower F with cycles of sizes 2,3,4 and 4 (up
to isomorphism).

x y f

w d e

a c g

b

Figure 2. Four Petal Flower
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2.2. Double coverings and voltage assignments. We will assume prior knowledge of
the definition of graph coverings as is presented in [5, Page 274]. We will however list
some of the important results cited in [5] and important implications which those results
have for graph coverings.

Definition 2.3. A double covering π : G̃→ G of a graph G = (V (G),E(G)) has

• for each vertex v in V (G), two vertices {v+,v−} = π−1(v) in V (G̃), and
• for each edge e in E(G) with endpoints v,w in G, either π−1(e) in E(G̃) is

– a pair of plus edges with endpoints v+,w+ and v−,w−, or
– a pair of minus edges with endpoints v+,w− and v−,w+.

The corresponding voltage assignment is the map β : E(G) → {±1} indicating whether
π−1(e) are plus edges (if β(e) = +1) or minus edges (if β(e) = −1).

Example 2.4. Consider the following flower F with voltage assignment β:

x −

+

y

+z

+

+

w

Figure 3. Two Petal Flower

Then the following is the resulting double covering graph F̃:

x+ y+

x− z+ y−

w+ z−

w−

Figure 4. Double Cover of the Above Two Petal Flower

When considering double covering graphs of flower graphs, it will be convenient to put
them in a standard form up to isomorphism, using the notion of vertex-switching.

Definition 2.5. Consider a double covering graph G̃→ G resulting from voltage assign-
ment Gγ , and a vertex v ∈ G. Now for every edge incident to vertex v ∈ G if the edge is a
plus edge under γ change it to a minus edge and if the edge is a minus edge under γ then
change it to a plus edge. Say that this new voltage assignment Gγ ′ is obtained from Gγ by
vertex-switching at v.

Example 2.6. On the left is a voltage assignment Gβ , and on the right is the result of
switching at the vertex x:
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x −

+

y

+

− z

a

−

b−

+
x

+

−
y

+

− z

a

+

b−

+

Figure 5. Vertex Switch Example

Proposition 2.7. [7, Page 404] If Gγ ′ is obtained from Gγ by a vertex-switch, then the
resulting double covering graphs G̃′→ G and G̃→ G are isomorphic.

The next proposition is well-known, but we include a proof for self-containment.

Proposition 2.8. For a graph G and spanning tree T , every voltage assignment Gγ is equiv-
alent via vertex-switchings to one with all + on the edges of T .

Proof. Start at any given vertex v in Gγ . Let Nv denote the set of neighboring vertices of
v in T . Then for any w ∈ Nv such that the edge vw is (−) in Gγ we apply a vertex change
to w. Note that for any w,z ∈ Nv , wz cannot be an edge in T because otherwise v,w and
z would form a cycle in T . Apply the aforementioned logic inductively to each layer of
vertices until all edges in T have a (+) assignment. �

2.3. Double Coverings for Flowers. In this section we will derive a way to obtain all
possible double coverings of a flower F, and a convenient way to label the vertices and
edges of a flower F.

Note that for a cycle Ca, its spanning trees are all graphs obtained by removing a single
edge. Similarly for an n-petal flower graph

F =
⊕
1≤i≤n

Cai (2.1)

with cycles Ca1
, . . . ,Can sharing the stem vertex d, a spanning tree consists of a choice of

spanning trees S1,S2, . . . ,Sn within Ca1
, . . . ,Can . Fix such a choice of a spanning tree for F,

and let ρi be the unique edge of Cai − Si for i = 1,2, . . . ,n.

Propositions 2.7 and 2.8 then immediately imply the following.

Proposition 2.9. All double coverings of the flower F in (2.1) up to isomorphism can be
obtained from a voltage assignment Fβ that assigns each ρi a (+) or (-), and all of the other
edges in (+).

Furthermore, in this situation Cai is a (+) or (-) cycle of Fβ depending upon whether ρi is
assigned (+) or (-).

We now describe a systematic labeling of the vertices and the edges of F.

Definition 2.10. Let d be the stem vertex of F. For 1 ≤ i ≤ n we label the vertices of cycle
Cai sequentially as vi,1,vi,2,vi,3, . . . , vi,ai in a clockwise direction with vi,1 = d. For 1 ≤ i ≤ n
in cycle Cai we label the edge vi,rvi,r+1 as ei,r for 1 ≤ r ≤ ai where we set vi,ai+1 = vi,1.
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Example 2.11. Here is an example of labeling in accordance with definition 2.10:

v1,3

e1,3
v1,4

e1,4

v2,2
e2,1

v1,2

e1,2

de1,1

e4,4

e2,3

e3,1
v2,3

e2,2

v4,4

e4,3

v4,2

e4,1

v3,2

e3,2

v4,3

e4,2

Figure 6. Labeling of Flower in Figure 2

3. Negative Vector Fields for Flowers

3.1. Definitions. Now we will define negative vector fields of a given graph G with a ±
voltage assignment Gβ .

Definition 3.1. For edge xy in G the orientation −−→xy of edge xy will contribute 1 to the
out-degree of vertex x and contribute 0 to the out-degree of vertex y. Note we regard −−→yx
and←−−xy as the same orientations.

Definition 3.2. For any cycle in G if that cycle has an odd number of edges with a (−)
assignment in Gβ then we will call that cycle a minus cycle of Gβ . If a cycle of G has an
even number of edges with a (+) assignment in Gβ then we will call it a plus cycle of Gβ .

Example 3.3. Consider the following signed graphs from examples 5.2 and 2.4:

x
−
y

+

−
w

+
x −

+

y

+z

+

+

w

Figure 7. Examples of Plus and Minus Cycles

In the first flower the petal with vertex set {x,y} is a minus cycle. In the second flower the
petal with vertex set {z,y} is a plus cycle.

Definition 3.4. (see Chepuri et al. [6, Defn. 4.4]) A negative vector field Z for Gβ is a
directed graph on the same vertex V set as G = (V ,E) with these properties:



MJUM Vol. 6 (2020-2021) Page 7

(i) For each undirected edge {x,y} in E, out of its two directed arcs x→ y and y→ x,
at most one (and possibly neither) will appear in Z.

(ii) Every vertex x in V has an out-degree of 1 in Z.
(iii) Directed cycles in Z are supported on minus cycles in Gβ .

Combining Chepuri et al.’s results [6, Cor. 1.5, Cor. 4.5] gives the formula (1.1) quoted in
the Introduction.

Example 3.5. We present in Figure 8 one negative vector field Z for the flower F with a
given voltage assignment Fβ from Example 2.2 on the right in Figure 8.

x − y

+

f

−

w

+

d+

+

+
− e

+

a
−

c
+

g
+

b

+

x // y

��

f

vvw

OO

doo e

OO

a

??

c

��

g

gg

b

__

Figure 8. Negative Vector Field Example

In Figure 9 are two non-examples of negative vector fields of flower F under the same
voltage assignment as in Figure 8.

x // y

��

f

vvw

OO

doo

��

e

OO

a

��

c g

gg

b

@@

x // y

��

f

vvw

OO

doo // e

OO

a

??

c

��

g

gg

b

__

Figure 9. Negative Vector Field Non-Example

Both examples in Figure 9 do not qualify because in both d has an out-degree of two.
Further in the left negative vector field c has an out-degree of 0 which is another disqual-
ifying factor.

Example 3.6. Consider the voltage graph Gβ and one of its vector fields ZG in Figure 10.

Then we see from the definition 3.4 that although ZG is a valid vector field of Gβ , it is not
a valid negative vector field of Gβ since the loop on x in ZG is a plus cycle in Gβ and not a
minus cycle. Hence Figure 10 is another non-example of negative vector fields.
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Gβ = x+
+

y − ZG = x99 yoo

Figure 10. Vector Field Non-Example

3.2. Characterization. In this section we will first characterize the negative vector fields
of Fβ . Then we will define our choice of base negative vector field Z0, and the statistic
comm(Z) for Z ∈NVF(Fβ).

Definition 3.7. Given an edge ei,r with endpoints {vi,rvi,r+1} and Z ∈NVF(Fβ), say that Z
directs ei,r

• clockwise if it is directed −−−−−−−−→vi,rvi,r+1 , and
• anti-clockwise if it is directed←−−−−−−−−vi,rvi,r+1 .

Proposition 3.8. Every negative vector field Z in NVF(Fβ) has this form:

• There is a unique minus cycle in the flower ,which we denote as CZ , that Z directs
clockwise or counterclockwise.
• In each of the other remaining cycles Caj , CZ , there is a unique edge that Z omits

and does not direct, which we will call χZ,j .
• The remaining vertices in each Caj , CZ have a unique directed path in Z to the

stem vertex d that does not pass through the omitted edge χZ,j .

In particular, the undirected graph for Z is a spanning unicyclic subgraph of F.

Proof. In Definition 3.4, use property (i) to encode Z as a function V
f
−→ V defined by

f (x) = y if the unique directed arc in Z out of x is x→ y.

To see the first property in the proposition, let CZ = Cai be the unique cycle of F that con-
tains the directed arc d → f (d). By iterating f , and using property (ii) in Definition 3.4,
one concludes that the vertices

d,f (d), f 2(d), . . . , f ai−1(d), f ai (d) = d

must run through the vertices of Cai . Thus Cai (=: CZ) is directed as a cycle by Z. Property
(iii) in Definition 3.4 implies that CZ must be a minus cycle in Fβ .

For any vertex x not on CZ , say in Caj , CZ , if the directed arc x→ f (x) is clockwise (resp.
anti-clockwise), then one similarly sees that iterating x,f (x), f 2(x), . . . gives a sequence of
clockwise (resp. anti-clockwise) edges inside Caj that eventually reaches the stem vertex
d. This already accounts for arcs in Z that cover a spanning tree of edges within each
Caj , CZ , and all of the edges in CZ . The number of such arcs therefore is |V |, which is
the total number of arcs in Z by property (ii) in Definition 3.4. Hence there are no more
arcs in Z, and we have described Z completely. �

Recall that a flower F must have at least one minus cycle in the voltage assignment Fβ , in
order for F̃→ F to be connected. We will assume this is the case for the rest of the paper.
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Thus without loss of generality we may assume that the first cycle Ca1
of F is a minus

cycle in Fβ .

Definition 3.9. Choose the base negative vector field Z0 ∈NVF(Fβ) as follows

• Choose CZ0
= Ca1

, having all of its arcs directed clockwise.
• For each Cai , CZ0

choose χN,j = ej,1, so that ej,2, ej,3, . . . , ej,aj are all directed clock-
wise in Z.

Definition 3.10. Given Z in NVF(Fβ), define comm(Z) to be the cardinality of the set of
directed arcs x→ y in Z satisfying both of these two conditions:

• the exact same arc x→ y, with the same direction, appears in Z0, and
• additionally, if CZ , CZ0

(= Ca1
), then x→ y is not an arc in CZ .

Example 3.11. The flower Fβ from Example 2.2 is shown here on the left, along with the
negative vector field Z0 ∈NVF(Gα) from Example 3.5 is shown in Figure 11:

x − y
+

f

−
w

+

d+

+

+
− e

+

a
−

c
+

g+

b

+

x // y
��

f

��
w

OO

doo eoo

a

>>

c
��

g

gg

b

``

Figure 11. Fβ and its Base Negative Vector Field

Now we set Z0 as the base negative vector field of Fβ since it meets the requirements of
Definition 3.9. Now consider these two elements Z1,Z2 of NVF(Fβ) in Figure 12:

Z1 = x // y

��

f

��
w // d

66

eoo

a

??

c

��

g

gg

b

__

Z2 = x // y

��

f

vvw

OO

doo e

OO

a

??

c

^^

g

gg

b

__

Figure 12. Negative Vector Field comm()

In the above we have put the edges which contribute to comm() as smooth and straight
and the edges which don’t contribute to comm() are dashed. Hence we have that:

comm(Z1) = 2 + 1 + 3 = 6,

comm(Z2) = 4 + 0 + 1 + 2 = 7.
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4. Tutte polynomials

Throughout this paper we will use the following definition of the Tutte polynomial via a
deletion and contraction recursion.

Definition 4.1. Define e to be a bridge of graph G if the graph G− e has strictly more con-
nected components thanG. Define the Tutte polynomial TG(x,y) for a graphG recursively
by TG(x,y) = 1 if G has no edges, and otherwise if e is an edge of G, then

TG(x,y) =


xTG−e(x,y) if e is a bridge
yTG−e(x,y) if e is a loop
TG−e(x,y) + TG/e(x,y) if e is neither a loop nor a bridge.

Here G−e and G/e denote the graphs obtained from G by deleting edge e and by contract-
ing on edge e, respectively.

By iterating the recursion in Definition 4.1, one can calculate that for a cycle Ca having a
edges that:

TCa(x,y) = xa−1 + xa−2 + · · ·+ x+ y,

TCa(x,1) = xa−1 + xa−2 + · · ·+ x+ 1 =: [a]x,

The following multiplicative property of TG(x,y) (see, e.g., [2, Page 128]) will be useful.
Given graphs G1,G2 on disjoint vertex sets, along with a choice of a vertex vi in Gi for
i = 1,2, their sum G1 ⊕G2 is the quotient of the disjoint union G1 tG2 obtained by iden-
tifying the two vertices v1,v2 as a single vertex. Although G1 ⊕G2 depends up to graph
isomorphism upon the choices of v1,v2, the following result says that its Tutte polynomial
does not.

Proposition 4.2. For any graphs G1 and G2,

TG1⊕G2
(x,y) = TG1

(x,y) · TG2
(x,y).

Consequently, since the definition of the n-petal flower F =
⊕

1≤i≤nCai is consistent with
iterating this G1 ⊕G2 construction, one sees that

TF(x,y) =
n∏
i=1

TCai (x,y),

TF(x,1) =
n∏
i=1

TCai (x,1) =
n∏
i=1

[ai]x,

5. Motivating Examples

In this section we demonstrate some examples of Theorem 1.2.
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Example 5.1. The cycle graph Cb has only two negative vector fields, one which we take
to be Z0 whose arcs all point clockwise, and another Z whose arcs all point counterclock-
wise. Thus ∑

Z∈NVF(Fβ)

xcomm(Z) = xcomm(Z0) + xcomm(Z) = xb + 1

in agreement with our previous calculation.

Example 5.2. Consider the following flower graphG with its voltage assignment β shown
with the associated double covering graph G̃:

x
−
y

+

−
w

+
x y w

a b c

Figure 13. Gβ and it Double Covering G̃

Then one can calculate that
TG(x,1) = (x+ 1)2,

TG̃(x,1) = (x+ 1)3(x2 + 3),

TG̃(x,1)
TG(x,1)

= (x+ 1)(x2 + 3) = x3 + x2 + 3x+ 3.

Choosing the following as the base negative vector field Z0 in NVF(Gβ)

x
((
y

**
whh

Figure 14. Base Negative Vector Field for Gβ

then the elements Z ofNVF(Gβ) and their values comm(Z) are tabulated in Table 1. Note
that the right column of table 1 agrees with the prediction of Theorem 1.2 that

∑
Z∈NVF(Fβ)

xcomm(Z) =
TF̃(x,1)
TF(x,1)

= x3 + x2 + 3x+ 3.
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Z comm(Z)

x
((
y

**
whh 3

x 66 y
**
whh 2

x
((
y 44 w
vv

1

x
((
ygg whh 1

x 66 y
ww

whh 1

x 66 y 44 w
vv

0

x
((
ygg w
vv

0

x 66 y
ww

w
vv

0
Table 1. Negative Vector Fields of Gβ and Associated comm() Values

6. Strategy for Proof

We explain here our strategy for proving Theorem 1.2. Introduce these abbreviations for
the left and right sides in the theorem:

• We define t(Fβ) as

t(Fβ) :=
TF̃(x,1)
TF(x,1)

• We define n(Fβ) as

n(Fβ) :=
∑

Z∈NVF(Fβ)

xcomm(Z)

.

So Theorem 1.2 asserts

t(Fβ) =
TF̃(x,1)
TF(x,1)

=
∑

Z∈NVF(Fβ)

xcomm(Z) = n(Fβ)

for all voltage assignments Fβ of flowers F that lead to connected double covering graphs
F̃→ F. The connectedness condition is equivalent in this situation to saying that at least
one of the cycles of F is a minus cycle in Fβ .

• Section 7 deals with Fβ having at least one plus cycle, say the one labeled Can .
This section prove two recurrences that hold when one obtains F′β′ from Fβ by
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“plucking” the petal Can :

t(Fβ) = [an]x · t(F′β′ ), (6.1)

n(Fβ) = [an]x ·n(F′β′ ). (6.2)

This reduces the proof to the case where Fβ has no plus, only minus cycles.

• Section 8 deals with Fβ a voltage assignment on a flower F =
⊕

1≤i≤nCai as in (2.1)
having all minus cycles. This section prove two recurrences that let one “pluck”
a minus petal Can from such a flower, assuming Can does not support the unique
directed cycle in the base vector field Z0:

t(Fβ) = [an]x · t(F′β′ ) + 2
∏

1≤i≤n−1

[ai]x, (6.3)

n(Fβ) = [an]x ·n(F′β′ ) + 2
∏

1≤i≤n−1

[ai]x. (6.4)

Using Example 1.1 as the base case n = 1, this completes the proof of Theorem 1.2
via induction on n.

7. Removing a Plus Petal

7.1. Proof of the recurrence (6.1). Assume that our flower F =
⊕n

i=1Cai has voltage
assignment Fβ with at least one plus cycle, labeled Can without loss of generality. Let

F′ :=
⊕n−1

i=1 Cai , so that

F = F′ ⊕Can (7.1)

and let F′β′ be the voltage assignment on F′ such that the cycles Ca1
, . . . ,Can−1

agree with
their assignment in Fβ .

Proposition 7.1. With the above definitions of Fβ and F′β′ , the associated double coverings
F̃→ F and F̃′→ F′ satisfy

F̃ � F̃′ ⊕Can ⊕Can .

Proof. By Proposition 2.9, every edge of Can is assigned (+). Since (7.1), says that F′ and
Can share only the vertex d within F, one similarly has in F̃ that that are two copies of C̃an ,
one with all vertices of the form x+ for vertices x in Can , the other with all vertices of form
x−, the first copy sharing only the vertex d+ with F̃′, and the second only sharing vertex
d− with F̃′. �

Example 7.2. Recall Example 2.4, where Fβ and F̃ looked as follows. Here the role of Can
is the plus cycle in Fβ on the vertex set {d,y}.
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x −

+

y

+d

+

+

w

x+ y+

x− d+ y−

w+ d−

w−

Figure 15. Plus Petal Example

Propositions 7.1 and 4.2 now allow us to derive the first recurrence in (6.1):

t(Fβ) =
TF̃(x,1)
TF(x,1)

=
TF̃′⊕Can⊕Can (x,1)

TF′⊕Can (x,1)

=
TCan (x,1)2 · TF̃′ (x,1)

TCan (x,1) · TF′ (x,1)
,

= TCan (x,1) · t(F′β′ ) = [an]x · t(F′β′ ).

7.2. Proof of the recurrence (6.2). Assume the same conventions on the flowers F,F′ and
on Fβ ,F′β′ as in Section 7.1.

Proposition 7.3. Define a function by

f :NVF(Fβ) −→ NVF(F′β′ )× {0,1, . . . , an − 1}
Z 7−→ f (Z) := (Z ′, j)

where χZ,n = en,an−j and Z ′ is the restriction of the arcs of Z to F′. Then f is a bijection.

Furthermore, when f (Z) = (Z ′, j) one has

comm(Z) = comm(Z ′) + j. (7.2)

Proof. Proposition 3.8, shows that if Z lies in NVF(Fβ), then Z ′ will lie in NVF(F′β′ ), and
χZ,n must be an edge of the form en,an−j for some j = 0,1, . . . , an−1. Thus the map f is well-
defined. On the other hand, the same proposition shows that Z is completely determined
if we know both Z ′ and the edge χZ,n = en,an−j , so the map f is certainly injective, and
any choice of such a Z ′ and edge en,an−j will give rise to a Z in NVF(Fβ). So the map is
bijective.

One can check that (7.2) holds because Z has exactly j arcs of CZ directed the same as
they are directed in Z0. �
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Given Proposition 7.3, the recurrence in (6.2) follows:

n(Fβ) =
∑

Z∈NVF(Fβ)

xcomm(Z)

=
∑

(Z ′ ,j):
Z ′∈NVF(F′

β′ )

j=0,1,...,an−1

xcomm(Z ′)+j

=

 ∑
Z ′∈NVF(F′

β′ )

xcomm(Z ′)


an−1∑
j=0

xj

 = [an]x ·n(F′β′ )

8. Removing a Minus Petal

8.1. Proof of the recurrence (6.3). Assume that our flower F =
⊕n

i=1Cai has voltage as-

signment Fβ such that all cycles are minus cycles. Let F′ =
⊕n−1

i=1 Cai , so that F = F′ ⊕Can ,
and let F′β′ be the voltage assignment on F′ such that cycles Ca1

, . . . ,Can−1
agree with their

assignment on Fβ . As before, let F̃→ F and F̃′→ F′ be their associated double coverings.

The following property will be useful in computing t(Fβ). Say that the graph G′ is ob-
tained from G by adding p series copies of an edge if G′ contains a path P of p edges shown
in Figure 16.

v0 v1 · · · vp−1 vp

Figure 16. P-Series Extension of an Edge

Where each of the vertices v1, . . . , vp−1 has degree two in G′, and G = G′ − P is obtained
from G′ by deleting all of the edges in P .

Proposition 8.1. In this setting, F̃ is obtained from F̃′ by twice doing an extension of an
copies of an edge in series. In both cases, the extension adds p series copies of an edge
along a path whose endpoints are d+,d− in F̃′.

Proof. With labeling as in Definition 2.10,we have by proposition 2.9 that the two added
paths are the ones shown in Figure 17 up to isomorphism.

d− = vn,1,− vn,2,+ vn,3,+ · · · vn,an,+ vn,1,+ = d+

d+ = vn,1,+ vn,2,− vn,3,− · · · vn,an,− vn,1,− = d− �

Figure 17. Paths Added
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Proposition 8.2. [3, Lemma 2.5] In the above setting with graph G,

TG′ (x,y) = [p]xTG(x,y) + TG′/P (x,y).

where G′/P is obtained from G′ by contracting all of the edges in P .

Corollary 8.3. In the above setting,

TF̃(x,1) = [an]x ·

[an]x · TF̃′ (x,1) + 2
∏

1≤i≤n−1

[ai]
2
x

 .
Proof. Since F̃ is obtained from F̃′ by adding two series paths P1, P2, each with an edges,
we can apply Proposition 8.2 twice:

TF̃(x,1) = [an]xTF̃−P1
(x,1) + TF̃/P1

(x,1)

= [an]x
(
[an]xTF̃−P1−P2

(x,1) + T(F̃−P1)/P2
(x,1)

)
+ TF̃/P1

(x,1)

However, note that F̃ − P1 − P2 = F̃′, while

F̃/P1 � Can ⊕
n−1⊕
i=1

(
Cai ⊕Cai

)
and (F̃ − P1)/P2) �

n−1⊕
i=1

(
Cai ⊕Cai

)
Thus one can rewrite this last expression as

TF̃(x,1) = [an]x

[an]xTF̃′ (x,1) +
n−1∏
i=1

[ai]
2
x

+ [an]x
n−1∏
i=1

[ai]
2
x

which is equivalent to the assertion in the corollary. Since F �
⊕n

i=1Cai and F′ �
⊕n−1

i=1 Cai
gives (via Proposition 4.2) that

TF(x,1) =
n∏
i=1

[ai]x = [an]x
n−1∏
i=1

[ai]x = [an]xTF′ (x,1).

�

One can now check recurrence (6.3):

t(Fβ) =
TF̃(x,1)
TF(x,1)

=

[an]x ·

[an]x · TF̃′ (x,1) + 2
n−1∏
i=1

[ai]
2
x


TF(x,1)

=
[an]2

x · TF̃′ (x,1)
TF(x,1)

+
2[an]x

∏n−1
i=1 [ai]2

x

TF(x,1)

=
[an]2

x · TF̃′ (x,1)
[an]xTF′ (x,1)

+
2[an]x

∏n−1
i=1 [ai]2

x∏n
i=1[ai]x

= [an]x · t(F′β′ ) + 2
n−1∏
i=1

[ai]x.
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8.2. Proof of the recurrence (6.4). Assume the conventions on the flowers F,F′ and Fβ ,F′β′
as in Section 8.1.

Proposition 8.4. One has ∑
Z∈NVF(Fβ):
CZ,Can

xcomm(Z) = [an]x ·n(F′β′ ), (8.1)

∑
Z∈NVF(Fβ):
CZ=Can

xcomm(Z) = 2
n−1∏
i=1

[ai]x, (8.2)

Proof. To prove (8.1), note that one has a bijection

{Z ∈NVF(Fβ) : CZ , Can} −→ NVF(F′β′ )
Z 7−→ f (Z) = (Z ′, j)

very similar to the one in Proposition 7.3, where Z ′ is the restriction of the arcs of Z to F′,
and χZ,n = en,an−j , again satisfying comm(Z) = comm(Z ′)+j. The key point is thatCZ , Can
ensures that the restriction of Z to Can is not a directed cycle, but rather a spanning tree
inside Can directed toward the stem vertex d. Then (8.1) follows via a calculation similar
to the one following Proposition 7.3.

To prove (8.2), note that if Z in NVF(Fβ) has CZ = Can , then it is completely determined
by the choice of whether Can is directed as a circuit in Z clockwise or anti-clockwise, along
with the choice of the edges χZ,i = ei,ai−ji for i = 1,2, . . . ,n − 1 which Z omits omits from
each of the cycles Ca1

, . . . ,Can−1
. This gives a bijection between the set

{Z ∈NVF(Fβ) : CZ = Can is oriented clockwise as a circuit in Z}

and the Cartesian product

{0,1, . . . , a1 − 1} × {0,1, . . . , a2 − 1} × · · · × {0,1, . . . , an−1 − 1}

by sending Z to the sequence (j1, j2, . . . , jn−1). Furthermore, by Definition 3.10, one has
comm(Z) = j1 + j2 + · · ·+ jn−1. Hence the sum of xcomm(Z) over such Z is

∑
(j1,j2,...,jn−1):

0≤ji≤ai−1

xj1+j2+···+jn−1 = [a1]x[a2]x · · · [an−1]x =
n−1∏
i=1

[ai]x.

One has the same formula for the Z in NVF(Fβ) for which CZ = Can is oriented anti-
clockwise as a circuit in Z. Adding the two of these formulas gives (8.2). �
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Therefore recurrence (6.4) holds:

n(Fβ) :=
∑

Z∈NVF(Fβ)

xcomm(Z) =
∑

Z∈NVF(Fβ):
CZ,Can

xcomm(Z) +
∑

Z∈NVF(Fβ):
CZ=Can

xcomm(Z)

= [an]x ·n(F′β′ ) + 2
n−1∏
i=1

[ai]x.
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