Face Numbers of Poset Associahedra
Son Nguyen
Advisor: Vic Reiner
University of Minnesota Twin Cities

Poset Associahedra
Given a poset P, a tube τ is a connected convex subposet of P such that $1 < |\tau| < |P|$.

Given two tubes τ_1, τ_2, we say $\tau_1 < \tau_2$ if $\tau_1 \cap \tau_2 = \emptyset$, and there exists $v_1 \in \tau_1$ and $v_2 \in \tau_2$ such that $v_1 <_P v_2$.

A tubing T of P is a set of tubes such that
- any pair of tubes in T is either nested or disjoint, and
- there is no $\{\tau_1, \tau_2, \ldots, \tau_k\} \subseteq T$ such that $\tau_1 < \tau_2 < \ldots < \tau_k < \tau_1$.

For a finite poset P, there exists a simple, convex polytope (P) whose face lattice is isomorphic to the set of tubings ordered by reverse inclusion. This polytope is called the poset associahedron of P.

Example: Permutohedron

Comparability Invariant
The comparability graph of a poset P is a graph $C(P)$ whose vertices are the elements of P and where i and j are connected by an edge if i and j are comparable.

Theorem. If P and P' have the same comparability graph, then $\mathcal{A}(P)$ and $\mathcal{A}(P')$ have the same face numbers.

Stack-sorting and Broom Posets
Stack-sorting
Given a permutation $\pi \in S_m$, the stack-sorting algorithm maps π to $s(\pi)$ obtained through the following procedure. Iterate through the entries of π. In each iteration,
- if the stack is empty or the next entry is smaller than the entry at the top of the stack, push the next entry to the top of the stack;
- else, pop the entry at the top of the stack to the end of the output permutation.

Broom Posets
Broom posets $A_{n,k} = C_{n+1} \oplus A_k$

Example: $A_{4,3}$

Cyclic Fence Posets
The (even) cyclic fence poset $CF_{2(n+1)}$ is the poset on the elements $\{1, 2, \ldots, 2n + 2\}$ with the covering relations $2k - 1, 2k + 1 \leq 2k$ for $1 \leq k \leq n$, and $1, 2n + 1 \leq 2n + 2$.

The (odd) cyclic fence poset CF_{2n+1} is the poset on the elements $\{1, 2, \ldots, 2n + 1\}$ with the covering relations $2k - 1, 2k + 1 \leq 2k$ for $1 \leq k \leq n$, and $1 \leq 2n + 1$.

Example: CF_6 and CF_7

Conjectures and Questions
Conjecture. All poset associahedra are real-rooted and γ-nonnegative.

Question. Find a combinatorial interpretation for the face numbers of poset associahedra.

Acknowledgement
I would like to thank
- Vic Reiner for his wonderful guidance, his careful reading of my papers, and always knowing the right ideas;
- Gregg Musiker and Pavlo Pylyavskyy for their amazing support and mentorship during my undergraduate years;
- Ayah Almousa, Daoji Huang, Patricia Klein, Anna Weigandt, and a long list of people at Minnesota for being the most welcoming and supporting group I have ever known;
- Andrew Sack for teaching me many things about polytopes;
- Colin Defant and Pavel Galashin for helpful conversations;
- my family for supporting my academic journey;
- Nhi Dang for her mental support throughout the years.