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POSET ASSOCIAHEDRA COMPARABILITY INVARIANT CycLIiC FENCE POSETS

Given a poset P, a tube 7 is a connected convex subposet of P such that | | The comparability graph of a poset P is a graph C'(P) whose vertices are | | The (even) cyclic fence poset CFjy,11) is the poset on the elements
1 < |r] < |P|. the elements of P and where ¢ and j are connected by an edge if i and | | {1,2,...,2n + 2} with the covering relations 2k — 1,2k + 1 < 2k for

‘o J are comparable. 1 <k<mnand1.2n+1<2n+2.
\% % The (odd) cyclic fence poset CFs,.1 is the poset on the elements

Th . If P and P’ have th bilit h, then o/ (P) and , , ,
eo/rem f P an ave the same comparability graph, then </ (P) an {1,2,...,2n 4+ 1} with the covering relations 2k — 1,2k + 1 < 2k for
o/ (P") have the same face numbers.
1<k<n,and1l<2n+ 1.

v1 € 71 and vy € T such that v{ <p vs.
1%/ DI DB
lﬁ l, , Stack-sorting Example: C'Fg and CF7

LT 7 T A colored (m, n) path is a sequence of m upsteps and n downsteps where

, , Given a permutation m € G,,, the stack-sorting algorithm maps 7 to s() .
A tubing T of Pis a set of tubes such that obtained through the following procedure. Iterate through the entries e(ssfhn)st;g)ﬂlls i)l;;);;kdisii ?lrpls)’ilel;. f;févgegmﬁ; jeél:ﬁnz&:pse;o;e;(ﬁ(;ig

* any pair of tubes in 7' is either nested or disjoint, and of . In each iteration, is one of the two steps at some peak. The remaining steps are called
e if the stack is empty or the next entry is smaller than the entry at the | | side steps.

top of the stack, push the next entry to the top of the stack;

2 5 2 4) @\
ﬁ < e else, pop the entry at the top of the stack to the end of the output
s | ; ; permutation.
=/
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For a finite poset P, there exists a simple, convex polytope (P) whose Example: A path in C'P; 4 with 4 peak steps and 5 side steps
face lattice is isomorphic to the set of tubings ordered by reverse inclu-

sion. This polytope is called the poset associahedron ot P.

Given two tubes 11,75, we say 7y < 7o if 71 N5 = (), and there exists

STACK-SORTING AND BROOM POSETS

e thereisno{m,m,..., 7} CTsuchthatmy <o < ... <7 < 7.

Theorem. For C'Fy(,, 1), the h-vector is given by

3 3 3
) s L @ 3 stack stack stack stack stack h; = {w € CP,, ,, | #red peak steps — #blue peak steps = 2(1 — n)}|.
\_/ o - . o 1 n | #red peak steps — ##blue peak steps = 2(i —n)}|
/ \ For CF5,, 41, the h-vector is given by
2
4 1 1 hi = [{w € CP,_1, | #red side steps — #blue side steps = 2(i — n) + 1}|.
3 : stack stack stack stack
Example: 5(3142) = 1324 CONJECTURES AND QUESTIONS
Broom Posets

Conjecture. All poset associahedra are real-rooted and ~vy-nonnegative.

: Broom posets A, = Cp41 © Ag
\'/ Question. Find a combinatorial interpretation for the face numbers of poset

Example: Permutohedron associahedra.
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