Face Numbers of Poset Associahedra: Results and Conjectures

Son Nguyen

Advisor: Vic Reiner
Readers: Gregg Musiker, Pavlo Pylyavskyy
Joint work with Andrew Sack
Given a poset P, a tube τ is a connected convex subposet of P such that $1 < |\tau| < |P|$.

Example

Non-example
Given two tubes τ_1, τ_2, we say $\tau_1 \prec \tau_2$ if $\tau_1 \cap \tau_2 = \emptyset$, and there exists $v_1 \in \tau_1$ and $v_2 \in \tau_2$ such that $v_1 <_P v_2$.

Potential problem: may/will have $\tau_1 \prec \tau_2 \prec \tau_3 \prec \ldots \prec \tau_k \prec \tau_1$.

- τ_1
- τ_2
- τ_2
- τ_1
Given two tubes τ_1, τ_2, we say $\tau_1 \prec \tau_2$ if $\tau_1 \cap \tau_2 = \emptyset$, and there exists $v_1 \in \tau_1$ and $v_2 \in \tau_2$ such that $v_1 <_P v_2$.

Potential problem: may/will have $\tau_1 \prec \tau_2 \prec \ldots \prec \tau_k \prec \tau_1$.
A tubing T of P is a set of tubes such that
- any pair of tubes in T is either nested or disjoint, and
- there is no potential problem $\{\tau_1, \tau_2, \ldots, \tau_k\} \subseteq T$ such that $\tau_1 \prec \tau_2 \prec \ldots \prec \tau_k \prec \tau_1$.

Examples

Non-examples
Definition (Galashin ’21)
For a finite poset P, there exists a simple, convex polytope $\mathcal{A}(P)$ whose face lattice is isomorphic to the set of tubings ordered by reverse inclusion. This polytope is called the **poset associahedron** of P.
f and **h**-vector

- **f-vector:** \((f_0, f_1, \ldots, f_d)\) where
 \[f_i = \#i\text{-dimensional faces} \]
 Eg: \((6, 6, 1)\)

- **f-polynomial:**
 \[f(t) = 6 + 6t + t^2 \]

- **h-vector and h-polynomial:**
 \[f(t) = h(t + 1) \]
 \[6 + 6t + t^2 = 1 + 4(t + 1) + (t + 1)^2 \]
 \[\rightarrow (1, 4, 1) \]

Permutohedra
When the h-polynomial is symmetric, we have the γ-vector and γ-polynomial:

$$1 + 4t + t^2 = (1 + t)^2 + 2t$$

$\rightarrow (1,2)$

Note: Not necessarily nonnegative
γ-nonnegativity??? (BIG)

For our polytopes: real-rooted $\Rightarrow \gamma$-nonnegative, log-concave, unimodal
Big Questions

γ-nonnegativity??? (BIG)

real-rootedness??? (BIGGER)

For our polytopes: real-rooted \Rightarrow γ-nonnegative, log-concave, unimodal
Vic’s Favorite Examples

Permutohedra
Vic’s Favorite Examples

Associahedra
Broom posets: $A_{n,k} = C_{n+1} \oplus A_k$
Broom posets: $A_{n,k} = C_{n+1} \oplus A_k$

Question: What do their face numbers count?
Permutohedra

- *h*-vector: Eulerian number

\[h_i = |\{ w \in S_n \mid \text{des}(w) = i \}| \]

\# vertices = \(n! \)
Associahedra

- **h-vector:** Narayana number

 \[h_i = ? \]

- **# vertices = Catalan number**

Associahedra
Stack-sorting, denoted s, is an algorithm that “sorts” a permutation in linear time.

$$s(3142)$$
Stack-sorting, denoted s, is an algorithm that “sorts” a permutation in linear time.

Stack-sortable permutations are counted by Catalan numbers!!!
Associahedra

- **h-vector: Narayana number**
 \[h_i = \left| \{ w \in s^{-1}(12 \ldots n) \mid \text{des}(w) = i \} \right| \]

- **# vertices** = \(|s^{-1}(12 \ldots n)| \) = Catalan number
Permutohedra

- **h-vector: Eulerian number**
 \[h_i = |\{w \in S_n \mid \text{des}(w) = i\}| \]

 \# vertices = \(n! \)
Associahedra

- h-vector: Narayana number
 $$h_i = |\{w \in s^{-1}(12 \ldots n) \mid \text{des}(w) = i\}|$$

- Number of vertices = $|s^{-1}(12 \ldots n)|$ = Catalan number
Define $\mathcal{G}_{n,k} = \{ w \mid w \in \mathcal{G}_{n+k}, w_i = i \text{ for all } i > k \}$. Eg. $\mathcal{G}_{3,2} = \{12345, 21345\}$.
Broom Posets

Define $\mathcal{S}_{n,k} = \{w \mid w \in \mathcal{S}_{n+k}, w_i = i \text{ for all } i > k\}$.
Eg. $\mathcal{S}_{3,2} = \{12345, 21345\}$.

Theorem (N., Sack ’23)

Let $h = (h_0, h_1, \ldots, h_{n+k-1})$ be the h-vector of $\mathcal{A}(A_{n,k})$. Then

\[h_i = |\{w \in s^{-1}(\mathcal{S}_{n,k}) \mid \text{des}(w) = i\}|\]
Theorem (Brändén ’08)

For \(A \subseteq \mathcal{S}_n \), we have

\[
\sum_{\sigma \in s^{-1}(A)} x^\text{des}(\sigma)
\]

is \(\gamma \)-nonnegative.

Corollary

The \(\gamma \)-vector of \(\mathcal{A}(A_{n,k}) \) is nonnegative.
Proposition (N., Sack '23)

\[
\left| \left\{ w \in s^{-1}(2134 \ldots n) \mid \text{des}(w) = i \right\} \right| = \\
\left| \left\{ w \in s^{-1}(1234 \ldots n) \mid \text{des}(w) = i, w_1 < n, w_n < n \right\} \right|
\]
Proposition (N., Sack '23)

\[\left| \left\{ w \in s^{-1}(2134 \ldots n) \mid \text{des}(w) = i \right\} \right| = \left| \left\{ w \in s^{-1}(1234 \ldots n) \mid \text{des}(w) = i, w_1 < n, w_n < n \right\} \right| \]

Proposition (N., Sack '23)

\[h_{A_{n,2}}(x) = 2h_{A_{n+2,0}}(x) - (1 + x)h_{A_{n+1,0}}(x). \]
Proposition (N., Sack ’23)

\[
\left| \{ w \in s^{-1}(2134 \ldots n) \mid \text{des}(w) = i \} \right| = \\
\left| \{ w \in s^{-1}(1234 \ldots n) \mid \text{des}(w) = i, w_1 < n, w_n < n \} \right|
\]

Proposition (N., Sack ’23)

\[
h_{A_{n,2}}(x) = 2h_{A_{n+2,0}}(x) - (1 + x)h_{A_{n+1,0}}(x).
\]

Theorem (N., Sack ’23)

\[
h_{A_{n,2}}(x) \text{ is real-rooted.}
\]
Conjectures

Conjecture (Hard)

The h-polynomials of $\mathcal{A}(A_{n,k})$ are real-rooted.

Conjecture (Harder)

$A(P)$ are γ-positive for all P.

Conjecture (Very Hard)

The h-polynomials of $\mathcal{A}(P)$ are real-rooted for all P.
Conjecture (Hard)

The h*-polynomials of* $\mathcal{A}(A_{n,k})$ *are real-rooted.*

Conjecture (Harder)

\mathcal{A}(P) *are* γ*-positive for all* P.
Conjecture (Hard)

\[\text{The } h\text{-polynomials of } A(A_{n,k}) \text{ are real-rooted.} \]

Conjecture (Harder)

\[A(P) \text{ are } \gamma\text{-positive for all } P. \]

Conjecture (Very Hard)

\[\text{The } h\text{-polynomials of } A(P) \text{ are real-rooted for all } P. \]
Question (Another Direction)

Find more stack-sorting preimages that give h-polynomials of $\mathcal{A}(P)$.

Eg: Known for two-leg broom posets

How about many-leg broom posets?
Questions

Question (Another Direction)

Find more stack-sorting preimages that give h-polynomials of \(\mathcal{A}(P) \).

Eg: Known for two-leg broom posets

How about many-leg broom posets?

Question (A Rabbit Hole)

Real-rootedness of descent generating polynomials of stack-sorting preimages.
ACKNOWLEDGEMENT

I would like to thank
• Vic Reiner for his wonderful guidance, his careful reading of my papers, and always knowing the right ideas;
• Gregg Musiker and Pavlo Pylyavskyy for their amazing support and mentorship during my undergraduate years;
• Ayah Almousa, Daoji Huang, Patricia Klein, Anna Weigandt, and a long list of people at Minnesota for being the most welcoming and supporting group I have ever known;
• Andrew Sack for teaching me many things about polytopes;
• Colin Defant and Pavel Galashin for helpful conversations;
• my family for supporting my academic journey;
• Nhi Dang for her mental support throughout the years.