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STANLEY’S SIMPLICIAL POSET CONJECTURE,
AFTER M. MASUDA

Ezra Miller and Vic Reiner
School of Mathematics, University of Minnesota, Minneapolis, Minnesota, USA

M. Masuda recently provided the missing piece proving a conjecture of R.P. Stanley
on the characterization of f -vectors for Gorenstein∗ simplicial posets. We propose a
slight simplification of Masuda’s proof.

Key Words: Face ring; f-vector; Gorenstein; h-vector; Simplical poset.

Mathematics Subject Classification: Primary 13F55, 05E99; Secondary 55U10, 13F50.

Our main result, Theorem 2, was first proven by Masuda (2005), completing
the missing step in a conjecture of Stanley characterizing the f -vectors of
Gorenstein∗ simplicial posets. This note gives a simplified proof of it, using
elementary methods. We begin with some background on simplicial posets; see
Stanley (1991) for more detail and explanations of assertions not justified here.

A simplicial poset P is a finite poset with a minimal element 0̂ such that
every interval �0̂� p� for p ∈ P is a Boolean algebra. We shall work instead with the
associated regular cell complex � = ��P�, whose face poset is P. The (closed) faces
of � are simplices that meet pairwise in subcomplexes of their boundaries (Stanley,
1991). For simplicity, we identify each face G of � (denoted G ∈ � in what follows)
with the corresponding element of P.

Let S = k �xG � G ∈ �� be a polynomial ring over a field k in indeterminates
indexed by the faces of � . The face ring of � is the quotient A� = S/I� , where I� =
�xGxG′ − xG∧G′

∑
F xF�. Here the summation runs over the minimal faces F among

those containing both G and G′, and the meet G ∧G′ is the largest face in � that
is contained in both G and G′; its uniqueness (when the sum is nonzero) follows
from the fact that G and G′ lie in the Boolean algebra �0̂� F� for any common upper
bound F in the sum.

Write fi = fi��� for the number of faces of dimension i in � , and set f−1 = 1.
Letting d − 1 be the dimension of � , one has an equivalent encoding of the f -vector
�f−1� f0� f1� � � � � fd−1� via the h-vector �h0� h1� � � � � hd�, whose entries are uniquely
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defined by the equation

d∑
i=0

fi−1�t − 1�d−i =
d∑
i=0

hit
d−i�

Stanley (1991) completely characterized the possible f -vectors (or h-vectors)
when � is Cohen-Macaulay over k , and almost characterized the possible f -vectors
when � satisfies the stronger condition of being Gorenstein∗ over k , that is, when
� triangulates a k -homology sphere. When � is Cohen-Macaulay, �h0� h1� � � � � hd�
can be interpreted as the Hilbert function of the quotient ring A�/	, where 	 is
the ideal generated by any linear system of parameters 
1� � � � � 
d. Consequently
hi ≥ 0 for all i = 0� � � � � d, and this non-negativity is sufficient to characterize these
h-vectors (Stanley, 1991, Theorem 3.10). The stronger Gorenstein∗ property further
implies that A�/	 will be a Poincaré duality algebra, and hence hi = hd−i for all i.
This almost characterizes such h-vectors, as shown by the following theorem of
Masuda, conjectured by Stanley.

Theorem 1 (Masuda, 2005, Corollary 1.2; Stanley, 1991, Remark 5). Let
�h0� � � � � hd� ∈ �d+1 satisfy hi = 1 and hi = hd−i for all i. Then there is a Gorenstein∗

simplicial poset P of rank d with hi = hi���P�� if and only if either

(i) hi > 0 for all i = 0� � � � � d, or else
(ii)

∑d
i=0 hi is even.

Stanley proved half of this theorem, by showing that the above conditions
on �h0� � � � � hd� are sufficient to explicitly construct such a Gorenstein∗ simplicial
poset. For the other half, since fd−1 =

∑d
i=0 hi, it only remains to show that the

condition hi = 0 for some i = 1� � � � � d − 1 forces � to have an even number of
�d − 1�-dimensional faces (called facets). In fact, Masuda shows (see discussion
following Masuda, 2005, Eq. (5.1)) that the assumption hi = 0 implies the following
stronger property.

Theorem 2 (Masuda, 2005). If � is Gorenstein∗ and hi��� = 0 for some i strictly
between zero and d, then for every subset V = �v1� � � � � vd� of vertices, the number of
facets in � having vertex set V is even.

Proof. Since the quotient A�/	 is a Poincaré duality algebra, one has hd = 1, that
is, its degree d piece (its socle) is a 1-dimensional vector space over k . Using the
relations in I� , one can see that the product xv1 · · · xvd in A� is congruent to the sum∑

F xF as F ranges over all facets having V as their vertex set. If hi = 0, then as
observed in Masuda (2005), the image of xv1 · · · xvd modulo 	 will be zero, because it
has factors (such as xv1 · · · xvi ) lying in the vanishing ith-graded component �A�/	�i.
Hence the image of

∑
F xF modulo 	 must be zero in �A�/	�i. Since this sum takes

place in the socle of A�/	, it is therefore enough to prove the following general
claims:

(i) the images modulo 	 of the variables xF for facets F containing the vertices
v1� � � � � vd are all the same up to ± sign in the 1-dimensional socle, and

(ii) these images x̄F are all nonzero.
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Indeed, since the sum
∑

F xF modulo 	 is zero in the socle, (i) and (ii) would imply—
at least when we choose the field k to have characteristic zero, which we are free to
do—that there must be an even number of terms in the sum.

Claims (i) and (ii) follow from Proposition 5 and Corollary 7, below, since �
being a k -homology sphere implies that it is also a pseudomanifold. �

The rest of this note proves results implying Claims (i) and (ii). We do not
assume that � is Gorenstein∗ anywhere in what follows, unless explicitly stated
otherwise.

For a monomial m = xG1
· · · xGr

in A� , define m to be standard if G1 ⊆ · · · ⊆Gr

is a (weak) chain in � . The following is a slight strengthening of Stanley’s
observation (Stanley, 1991, Lemma 3.9) that A� is integral over its subalgebra
generated by �A��1.

Lemma 3. The variables xG for G ∈ � generate A� as a module over the subalgebra
of A� generated by �A��1. In fact, AP is spanned k -linearly by monomials mxG in which
m is a monomial in the variables xv for the vertices v of G.

Proof. Every element of A� is a sum of standard monomials by Stanley (1991,
Lemma 3.4). Let xG1

· · · xGr
be a standard monomial, so G1 ⊆ · · · ⊆ Gr . For each

face G ∈ � , denote by xG the product of all variables xv for vertices v of G. Now, for
every index i < r, use the defining relations of A� to replace xGi

with xGi −∑
xG′ ,

the sum being over all minimal faces G′ 	= Gi containing the vertices of Gi. Observe
that xG′xGr

= 0 in A� for the faces G′ in the sum, because no face contains both Gr

and a face other than Gi with the same vertices as Gi. Hence xG1
· · · xGr

is equal to
xGr

times a monomial in the variables xv for vertices v of G. �

Abusing notation slightly, let 	 denote a linear system of parameters

1� � � � � 
d for A� , and k �	� the polynomial subalgebra of A� that they generate.
After choosing an ordering on the vertices of � , one can express 	 as a d × n
matrix whose rows are 
1� � � � � 
d. As observed by Masuda (2005, Lemma 3.1),
given any facet F of � , one can compose the finite extension k �	� ↪→ A� with the
surjection A� � A�0̂�F� that sends all variables xG for G 	⊂ F to zero. Because the
composite k �	� → A�0̂�F� must also be finite, and since A�0̂�F� is a polynomial ring on
the variables �xv�v∈F , the d × d submatrix 	F of 	 with columns indexed by vertices
in F has nonzero determinant det�	F�. For any y ∈ A� , denote by ȳ the image of y
in the quotient ring A�/	.

Lemma 4 (cf. Fulton, 1993, §5.2 Lemma, p. 107). Suppose that � is pure, meaning
that its facets all have dimension d − 1. Let m be a monomial in the variables xv for
vertices v in a facet F . Then, for any face G of F , the image m̄x̄G of mxG in A�/	
equals a sum of terms m̄′x̄G in which each monomial m′ is a product of variables xv for
distinct vertices v outside of G.

Proof. Invertibility of 	F implies that for any vertex v of F , the k -span of

1� � � � � 
d contains a linear form 
′ = xv +

∑
w 	∈F cwxw for some constants cw ∈ k .

We first find a sum as in the lemma in which each m′ is only squarefree
(but may involve vertices of G), by induction on the sum of all exponents ≥ 2 on
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variables xv in m. Suppose x2v divides m, and write m = xv�. Use the linear form 
′

to write

m̄x̄G = − ∑
w 	∈F

cwx̄w�̄x̄G�

If x̄w�̄x̄G 	= 0, then some facet F ′ containing G also contains all vertices appearing
in xw�. By induction, x̄w�̄x̄G can be rewritten as desired.

Now assume that m is squarefree, and use a similar argument, this time by
induction on the number of variables xv dividing m for vertices v ∈ G. The fact that
each w in 
′ is not in F ensures that we re-create the squarefree hypothesis at each
stage. �

Proposition 5. If � is pure, the images in A�/	 of the variables xG for faces G ∈ �
span k -linearly. In particular, if � is Gorenstein∗, then x̄F 	= 0 in A�/	 for some facet F .

Proof. By Lemmas 3 and 4, every element of A� can be expressed mod 	 as a sum
of monomials of the form m′xG′ , where m′ is a product of variables xv for distinct
vertices v 	∈ G′. But in A� , such a monomial m′xG′ equals the sum of the variables
xG as G runs over all faces minimal with respect to the property that they contain
both G′ and all vertices v for which xv divides m

′. �

Say that two facets F� F ′ in a pure �d − 1�-dimensional complex share a thin
ridge if their intersection is a �d − 2�-face contained in no other �d − 1�-faces.

Proposition 6. When � is pure, any two facets F , F ′ sharing a thin ridge will have
x̄F = ± det�	F ′ �

det�	F �
x̄F ′ in A�/	.

Proof. For convenience of notation, denote det�	F ′ �
det�	F �

by �. Let G = F ∧ F ′, and let
vF , vF ′ be their corresponding vertices not in G. There are two possibilities for these
vertices: either vF = vF ′ or else vF 	= vF ′ .

When vF = vF ′ = v, we get xvxG = xF + xF ′ . The argument in Lemma 4 shows
that, modulo 	, we can write x̄v as a linear combination of degree 1 elements x̄v for
vertices v not in F . Since G lies only in the facets F and F ′, this implies that x̄F +
x̄F ′ = x̄vx̄G = 0. Hence in this case, x̄F = −x̄F ′ (which equals −�x̄F ′ , since 	F ′ = 	F ).

When vF 	= vF ′ , we get xvF xG = xF , and xvF ′ xG = xF ′ . After multiplying the
matrix 	 on the left by 	−1

F , one of the rows gives (by Cramer’s rule) a linear form
xvF ∓ �xvF ′ +

∑
cvxv in the ideal 	, where the sum is over all vertices v 	= vF ′ that do

not lie in F , and the cv are constants in k . Hence

x̄F = x̄vF x̄G =
(
± �xvF ′ −

∑
cvxv

)
x̄G = ±�x̄vF ′ x̄G = ±�x̄F ′ �

where the third equality holds because xvxG = 0 whenever v does not lie in
F ∪ F ′. �

Corollary 7. Assume � is pure and F� F ′ are facets with the same set of vertices that
are connected by a sequence F = F1� � � � � Fr = F ′ in which Fj and Fj−1 share a thin
ridge for 2 ≤ j ≤ r. Then x̄F = ±x̄F ′ .



STANLEY’S SIMPLICIAL POSET CONJECTURE 1053

Proof. Use Proposition 6: The product of ratios of determinants telescopes to ±1.
�

Example 8. Let � be obtained by slitting a hollow tetrahedron along a single edge,
and attaching a “pita pocket” of two triangles sewn together along two of their
common edges. Suppose that the two pita triangles have vertices 123, while the slit
tetrahedron has vertices 2345. Take a path from the top pita triangle to the bottom
pita triangle by traversing the facets with vertices 234, then 345, then 235, and finally
back to the bottom pita triangle. Writing �ijk� = det�	F� when F has vertex set ijk
(these are Plücker coordinates), the sequence of ratios of determinants is �234�/�123�,
then �345�/�234�, then −�235�/�345�, and finally �123�/�235�. Note that the product
of all these is −1, which is also the sign obtained by flipping from the top pita
triangle to the bottom one along one of the two codimension 1 faces they share.
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