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Abstract

Let W be a finite reflection group acting on R™. As W preserves the unit sphere S*~!, for
any subgroup G C W, there is a quotient S®~!/G of this sphere under the action of G.
We study the combinatorial (and topological) structure of these quotients as certain kinds
of cell complexes (balanced simplicial posets). In particular, we give sufficient conditions
on G for the quotient to be Cohen-Macaulay or Gorenstein over a field k, and a simple
characterizations of those G' for which the quotient is a pseudomanifold, and when it
is orientable as a pseudomanifold. We then look at quotients for particular classes of
subgroups G, namely reflection subgroups, alternating subgroups of reflection subgroups,
and their diagonal embeddings in the product groups W”. For these groups, we show that
the quotient is always partitionable, that in some cases it is shellable, and when shellable
it 1s either a sphere or a disk. For all of these groups, the partitioning yields combinatorial
interpretations for certain non-negative integers By associated to the quotient known as
the type-selected Mobius invariants. Applications to calculating invariant polynomials of
permutation groups and their Hilbert series (as developed by Garsia and Stanton [GS])
are discussed.

Our methods require an extension of some of the theory of P-partitions, and multi-
partite P-partitions from the symmetric group S, to other finite reflection groups. In
particular, for the hyperoctahedral group B,, we work out analogues to almost all of the
standard P-partition results. This yields hyperoctahedral analogues for the connection
between posets and distributive lattices. These methods also suggest a new approach
and generalization to the Neggers-Stanley conjecture.
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Chapter 1

Introduction

This thesis deals with two closely related problems. This first is to understand the
uotients of finite Coxeter complexes by subgroups of their Coxeter group. The second
1s to generalize to other Coxeter groups the theory of P-partitions as it relates to the
symmetric group. The idea of such a generalization is nearly implicit in the work of
Bjorner and Wachs [BW1,BW2], Garsia and Stanton [GS], and is suggested explicitly be
Gessel in [Gel]. In chapters 4 and 5, we hope to show that solving the second problem
helps us to solve some instances of the first, so let us try to motivate the first.

In [GS], Garsia and Stanton consider the following problem: Given a subgroup G of
the symmetric group S, acting on the ring R = Q[z1,...,z,] of polynomials in n vari-
ables with rational coeflicients, can we explicitly describe RY, the subring of polynomials
imvariant under G7 Their method proceeds roughly as follows:

1. Replace R by a related ring & and show that an explicit description of S¢ leads
to one for RY. The ring S turns out to be the Stanley-Reisner ring of the Cozeter
complez of the symmetric group S, (with its usual set of Coxeter generators).

o

Get an explicit description of S¢ by decomposing (in a certain fashion) the quotient
of the Cozeter complez of S, under the action of G.

They also showed that for Coxeter groups W other than S, of a certain type (Weyl
groups), there exists a ring Ry analogous to Rs, = Q[zy,...,,] in the following sense:
Given G a subgroup of W, if one can decompose the quotient of the Coxeter complex
under the action of (7, one gets an explicit description of the subring RS, of G-invariants.
They then proceeded to find such a decomposition (and hence solve the original problem)
for subgroups G' of W of a certain type (standard parabolic subgroups).

Our aim has been to study these quotients of Coxeter complexes in themselves, with
the hope of eventually enlarging the class of subgroups G admitting such a solution.

In Chapter 2, we begin by introducing the main characters of our story, the Cozeter
complex X(W,S) and its quotient (W, S)/G by any subgroup G of W. We explain how
Y (W, S) carries the natural structure of a balanced simplicial compler, and consequently
that L(W,S)/G is naturally a balanced simplicial poset ([St3]). In order to state general
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results about X(W,S)/G , we define the notions of when a simplicial poset is Cohen-
Macaulay over a field k, Gorenstein over a field k, a pseudomanifold (with and without
boundary), or an orientable pseudomanifold. The main results of Chapter 1 may then be
summarized by saying that (W, S)/G is:

1. Cohen-Macaulay over a field & if the characteristic of k does not divide #G

2. a pseudomanifold with boundary for all G

3. a pseudomanifold (without boundary) if and only if G contains no reflections

4. an orientable pseudomanifold if and only if G contains no elements of odd length

5. Gorenstein over a field & if and only if either G = W, or is both Cohen-Macaulay
over k and an orientable pseudomanifold.

Chapter 3 concerns the theory of P-partitions. The usual theory of P-partitions
([St4]) is an attempt to unify some of the many enumeration results for partitions, par-
titions into distinct parts, and compositions of a number. It starts with a partial order
P on numbers {1,2,...,n} (i.e. a labelled poset), and defines a P-partition to be a map

f:{1,2,...,n}) =N

satisfying f(i) > f(j) whenever 1 <p j, and f(3) > f(j) whenever 1 <p j and 7 > j.
Thus a partition into n parts is a P-partition for the partial order

l<p2<p<p...<pn,
a partition into n distinct parts is a P-partition for
n<pn-—-1<p...<pl,

and a composition into n parts is a P-partition for the partial order P on {1,2,...,n}in
which no 2 elements are related. The main result in the usual theory is that the set of
A(P) of all P-partitions decomposes into the disjoint union of all sets A(P,) where P,
is the total order '

oy <oy <... <0,

defined by some permutation o, as o ranges over the set L(P) of all permutations which
extend P to a total order. For example, if P is the partial order given by 2 <p 1 and
2 <p3on{l,2,3}, then

A(P) =A2<1<3) TA(2<3<1)
where II denotes disjoint union of sets. This means that
{f €R®: f(2) > f(1), £(2) = f(3)}
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={feR*: f(2)> f(1) 2 FB}II{f € R*: £(2) 2 f(3) > fF(1)}.

In Chapter 3, we show how a partial order on the numbers {1,2,...,n} is equivalent
to the choice of a subset of the root system A,_; lying in some pointed cone. We then
use this to define the notion of a parset (analogous to posets) for other root systems,
and proceed to extend some of the theory of P-partitions to this context. In Section 3.2,
we show how the decomposition of the root system’s ambient space given by the main
P-partition result leads to the usual shelling of Z(W,S) ([Bj4], [GS]). We also extend
the theory of multipartite P-partitions ([GG],[Ge2]), and use this to give a shelling of
(W7, rS) (where (W™, rS) is the Coxeter system which is the direct product of » copies
of (W, 5)). In Section 3.3, we present two immediate applications of the preceding theory:

1. We give a simple proof (suggested by Gessel) of the existence of Solomon’s descent
algebra S ([So2]) for any finite Coxeter system, and some lesser known modules
over S recently found by Moszkowski ([Mo]).

L

We prove a generalization to all finite Coxeter groups of the following theorem
of Kreweras and Moszkowski: Let w be a word on letters {1,2,...,n} (with no
repeated letters), and J C {l,...,n — 1}. Then among all permutations of
{1,2,...,n} with descent set J, the number which contain w as a subword depends
only on the descents of w.

In Chapter 4, we use this extended P-partition theory to examine quotients by some
specific classes of subgroups GG. Our general strategy:

1. Identify a fundamental domain, in terms of P-partitions, for the action of G on the
ambient vector space of the root system.

o

. Decompose this fundamental domain using P-partition theory.
3. Turn this decomposition into a partitioning or shelling of X(W,S)/G .
We apply this strategy to three classes of subgroups G:
1. Reflection subgroups W', i.e. groups generated by the reflections they contain.

2. Alternating subgroups E’ of reflection subgroups, i.e. the elements of even length
in a reflection subgroup W”.

3. Diagonal embeddings A™(W') or A"(E’) of the two classes above in the Coxeter
system (W7, rS).

Our results may be summarized as follows:

1. (W7, rS)/A™(W') and (W™, rS)/AT(E’) are partitionable for all r.

2. S(WT,rS)/A7(W') is shellable for r = 1,2, but may be non-shellable for r > 3.



3. B(W",rS)/A"(E') is shellable for » = 1, but may be non-shellable for » > 2

4. B(W?25)/A*(W') and £(W, S)/E' are homeomorphic to spheres, and furthermore
L(W,S)/W' is homeomorphic to a disk.

These partitionings yield combinatorial interpretations of the type-selected Mébius in-
variants Bj:

)
P D(w;) = Ji, H{wpw,—y - w) AW =0 or TNW'}

where T'is the set of all reflections of W, and I(w) is the set of (left) inversionsof w. When
(W, S)/G is Gorenstein, the fine Dehn-Somerville equations assert that 85 = fs_, for
all J € S, and using our earlier criteria for Gorenstein-ness, we produce non-bijective
equalities between some of the cardinalities of sets above. In Section 4.2, we apply our
partitionings and shellings to the invariant theory problems mentioned at the beginning
of this introduction.

In Chapter 5, we examine the quotients (W, S)/(c) where (¢} is the cyclic subgroup
generated by a Cozeter element. Here, partitionings and shelling are harder to come by,
and we concentrate rather on finding relations that hold among the 8;’s of (W, S)/{c) .
Our main results:

L. B = By for all J C S whenever ¢ is a diagram automorphism of (W, S).

2. Br+Bris = Bs_g+ PBs_j_s for all J C S — s whenever ¢ satisfies a condition called
s-duality. We show (by enumerating the exceptions) that c is s-dual for almost all
finite Coxeter systems (W, S) and s € S.

In Section 5.2, we look at a certain filtration of £(W, S) and X(W, S)/{c) using the notion
of primitivity. We then use a result of Gessel (and its analogues for some other Coxeter
systems) to partition a large piece of this filtration, and deduce some non-bijective equal-
ities similarly to those in Chapter 4.

In Chapter 6, we return to the topic of parsets P and P-partitions to examine more
closely the case of (W,5) = B,, the hyperoctahedral group. The usual theory ([St4])
allows one to derive expressions for generating functions that count P-partitions as sums
over L(P) of generating functions for P,-partitions. For example if P is a partial order on
{1,2,...,n} , and Q(P;m) denotes the number of P-partitions with largest part less than
or equal to m — 1 (the order polynomial of P), then the above-mentioned decomposition

AP) = I AR)

g€L(P)




can be used to show that

m Yocl(P Q#D(U)H
Z ‘Q(P’m)q = 61( : n+1 ’
m>0 ( - q)

where D(c) = {i: 0; > 0;41} is the descent set of o. We find that this and almost all
other such generating function results from the usual theory of P-partitions (i.e the case
of (W,S) = A,_y) extend to the case of B,-parsets.

We also introduce the lattice J(P) of ideals of a B,-parset P, and pursue the analogy
to the theory of posets and distributive lattices. Our main results:

1. A Bp-analogue of Birkhoff’s theorem on distributive lattices, giving the relation
between P and the lattice J(P), and an intrinsic characterization of the lattices

J(P).

o

Calculations of some combinatorial invariants of J(P), namely its Mobius function
and a complete linear factorization of its characteristic polynomial.

3. An (edgewise lexicographic) shelling of a class of lattices (B,-analogous to upper-
semimodular lattices) that includes the lattices J(P).

In Section 6.5, we introduce partition rings associated to B,-parsets P, analogous to the
partition ring associated to posets ([Ga]). We then give a quick summary of how our
earlier results apply in finding decompositions of the invariant subring of these partition
rings under the action of a group GG of automorphisms of P.

Chapter 7 deals with the Neggers-Stanley Conjecture. If we let

Ep(q)= > ¢*PlIt
c€L(P)

be the numerator in our expression for 3,50 Q(P;m)q™, then the Neggers-Stanley Con-
jecture asserts that Ep(q) has only real zeroes for all labelled posets P. By extending
the definitions of Q(P; m) and Ep(q) to all parsets P, we suggest some plausible general-
izations of this conjecture for other Coxeter groups. Our hope is that this more general
context may suggest new approaches to the problem. We also discuss some reductions
and special cases for a generalized conjecture.

10




Chapter 2

Coxeter complexes and their
quotients

2.1 Coxeter complexes

Let (W, S) be a finite Cozeter system , i.e. W is a finite group generated by Euclidean
reflections acting on an R-vector space V of dimension #5, and S is its generating set of
simple reflections (see [Bro] for an excellent introduction to Coxeter systems; the standard
reference is [Bo]). We shall give two definitions of the Cozeter complez S(W, S) .

Definition(informal): (W, S) is the simplicial complex describing the cell decompo-
sition of the unit sphere in V' “cut out” by the reflecting hyperplanes of reflections in W.

Definition(formal): Given J C S, let the standard parabolic subgroup W; be the sub-
group of W generated by J, i.e W = (J). Then X(W,S) is the simplicial complex whose
faces are the cosets {wW;},ew scs of standard parabolic subgroups, with inclusion of
faces corresponding to reverse inclusion of cosets (i.e the “face” w; Wy, is contained in
the “face” woWj, when w, Wy, C wiWy,).

The (non-trivial) facts that both of these define simplicial complexes, and that they
are equivalent may be found in [Bro, Chapters 1,3].

Example: Let W be the symmetric group S, on n letters, and
S ={(12),(23),...,(n -1 n)}

the adjacent transpositions. W may be realized as the symmetry group of a regular
(n — 1)-simplex having vertices labelled {1,2,...,n} and centered about the origin in
R"~! (see Fig. 1 for a picture when n = 3).

Note that in the figure, X(W,S) is isomorphic to the barycentric subdivision of the
boundary complex of the simplex. It is well-known, and not hard to see that if (W, S) may
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Figure 2-1: S(W, S) for (W, S) = (53, {(12), (23)})

be realized as the symmetry group of a regular polytope P, then L(W,S) is isomorphic
to the barycentric subdivision of the boundary complex of P. In fact, this is the case
exactly when the Cozeter diagram of (W, S) (see Section 5.1) is linear.

Example: If (W,S) is a Coxeter system and r € P, then 3(W”,rS) is also a Coxeter
system, where W™ = W x ... x W, and rS is the disjoint union of r copies of S embedded
e,

r times

in each coordinate of W7. It is easy to check (see [Ti, Corollary 2.15}) that

(W™, rS) = B(W,S) -+ S(W,S) ,

"
r times

where = denotes isomorphism and * denotes the join of simplicial complexes. For exam-

ple, it (W,S) = (Z,,{s}), then L(W,S) is just the 0-sphere S°, and hence
S(Wr,rS) 2 S%x%...xS°

sometimes known as the r-dimensional cross-polytope or r-hyperoctahedron (see Fig. 2
for r =1,2,3).
We note two important properties of (W, S) :

1. X(W,S) is (completely) balanced, i.e. we can label each vertex of L(W,S) with
an element s € S (call s the type of that vertex) so that every maximal face
contains exactly one vertex of each type. A vertex of (W, S) corresponds to a coset
wWs_() of a maximal proper parabolic subgroup, which we label s. Similarly, we
say a face of X(W,S) corresponding to a coset wWj is of type S — J (since it lies
above one vertex of each type in S — J). See [Bro] Chapter 3, or [Ti] Definition 2.5
for more on this labelling.

2. The Coxeter group W acts on XL(W,S) as the group of simplicial automorphisms
that preserve the above labelling. In fact, this action is simply the action of W on

12
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Figure 2-2: X(W",rS) for W = Z3 and r = 1,2,3

left cosets, i.e. given g € W and wWj a face of X(W,S) , the image of wW; under
the action of ¢ is the face gwW; (see [Bro] Chapter 3).

2.2 Quotients of Coxeter complexes

Let G be a subgroup of W. Since W acts on L(W,S) , so does G, and we now give two
definitions of the quotient ¥ (W, S)/G of ¥(W,S) under this action.

Definition(topological): L(W,S5)/G is the quotient space of the sphere (W, 5) under
the action of (. That is, let X(W,S)/G as a set be the set of G-orbits of points on

the sphere 2(W,S) , and give this set the quotient topology induced by the canonical
surjection 7w : X(W,S) — X(W,S)/G .

Definition(combinatorial): Let 5(W,S)/G be the poset of orbits of faces of X(W,S) ,
i.e double cosets {GwWJ}wewJ(_;S, ordered under reverse inclusion of double cosets.

Because the action of G is label-preserving, the elements of the poset L(W, S)/G still
have well-defined labels, namely that the double coset GwWj has label S — J. Further-
more, any maximal element of this poset must lie above exactly one element of each
type K C S (since two faces of L(W,S) of different types cannot be identified by an
element of G). Thus, ¥(W, S)/G is what is known as a simplicial poset [St3] or Boolean
complez [GS] or complex of Boolean type [Bj2], i.e. a poset with a least element 0 in
which every lower interval [0, 2] is isomorphic to a Boolean algebra. Simplicial posets
are a generalization of the face posets of simplicial complexes, in that they correspond to
the face posets of regular CW-complexes in which each maximal face (with its boundary
faces) is combinatorially isomorphic to a simplex (see [Bj2, St3]). It is straightforward
to show that the topological definition of ¥(W,S)/G may be given such a CW-complex
structure so that the combinatorial definition of (W, S)/G is its face poset. We call this
CW-complex the topological realization of the associated simplicial poset, and in what
follows we will often not distinguish between the two of them.
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Figure 2-3: £(W, S)/G for (W, S) = (Ss, {(12), (23)}), G = ((123))

Example: Let (W,5) = (53, {(12),(23)}), and let G be the cyclic subgroup generated
by the 3-cycle (123). Fig. 3 shows the two ways of viewing (W, S)/G .

Example: Let (W, S) = (Z, {s}) and (W",rS) be as before, and let G be the diagonal
embedding of W into W7, i.e. G = ((s,...,s)) € W’. One can check that the non-trivial
element of G acts on the r-hyperoctahedron by swapping antipodal vertices, and hence
acts as the antipodal map on all of X(W7",rS) . Hence (W7 rS)/G is homeomorphic
to (r — 1)-dimensional real projective space RP™!.

By analogy to simplicial complexes, we will call the elements of a simplicial poset
faces, maximal elements facets, and minimal non-0 elements vertices. Note that the
remarks following Definitions 1 and 2 imply that every facet of £(W,S)/G lies above
exactly one vertex of each type s € S. When the vertices of a simplicial poset P can be
labelled in such a fashion, we say P is (completely) balanced.

2.3 General results about quotients

We now study the combinatorial and topological properties of £(W,S)/G via its face
ring. The Stanley-Reisner ring (or face ring) k[A] of a simplicial complex A has been
used extensively in the study of simplicial complexes (see e.g. [St1], Chapter 2). In [St3],
Stanley introduced the face ring k[ P] for a simplicial poset P, which he defined as follows:

Definition: Let k£ be a field. Then k[P] is the quotient k[z|.cp/Ip of the polynomial
ring in the faces of P by the ideal /p having the following generators:

1. ay if z and y have no common upper bound in P

14




wy—(w/\y)( > Z)
zemub{z,y}
if z,y have a common upper bound b in P. Here mub{z,y} is the set of all minimal

upper bounds for z,y, and z Ay is the greatest lower bound of z,y (which exists
because x,y both lie in the Boolean algebra [0, 4]).

3. 0—1 (i.e. the 0 element of P is identified with the unit of the ring k[P]).

This definition reduces to the standard face ring k[A] when P is the face poset of a
simplicial complex A. ‘

We will be dealing exclusively with balanced simplicial posets P having a label-
preserving G-action (i.e. G is a subgroup of automorphisms of P satisfying type(gz) =
type(z) Vg € G,z € P).

Definition: With P and G as above, the quotient poset P/G has as elements the G-
orbits {Gz}zep, with Gz < Gy if gv < y in P for some g € G. The remarks following
the combinatorial definition of X(W, S)/G show that P/G is also a simplicial poset. Note
that the combinatorial definition of X(W,S)/G is the special case of this where P is the
poset of faces of X(W,S) .

Our first theorem gives a useful relation between k[P] and k[P/G].

Theorem 2.3.1 Let P and G be as above, and define a set map ¢ : P/G — k[P] by

$(Gz)= Y 7.

'€Gx

Then ¢ extends to a ring isomorphism ¢ : k[P/G] — k[P]®, where k[P]C denotes the
G-invariant subring of k[P].

Proof: We first establish some notation. Let S be the labelling set for P. Given J C
K C S and a face z € P with type(z) = K, let the restriction Res;(z) of z to J be the
unique face under z of type J.

We must check that ¢ extends to a ring homomorphism é : k[P/G] — k[P]. We need
to show that

$(Gz)4(Gy) =
{ Gz A GY) Cgremubicreyy $(Gz) if Gz, Gy have an upper bound in P/G
0 else

If we have that _
0 # $(Gz)p(Gy) = > 'y,

z'eGz
y'€Gy

15




then there must exist ¢’ = g1z and y’ = g,y such that 2’y’ # 0 in k[P], and hence z',y’
have and upper bound z € P. But then Gz would be an upper bound for Gz, Gy in
P/G. Hence ¢(Gz)¢(Gy) =0 if Gz, Gy have no upper bound in P/G.

Otherwise, let mub{Gz,Gy} = {Gz}:z1,.. .. Without loss of generality, we may pick
@,y so that they have an upper bound in P, and hence & A y exists, with type(z Ay) =
type(z) Ntype(y). Then Gz A Gy = G(z A y), since G(z Ay) < Gz, Gy and

type(G(z Ay)) = type(z Ay) B
= type(z) N type(y)
= type(Gz) N type(Gy)
= type(Gz A Gy).

Thus,
d(Gz A Gy) Z p(Gz) = ( ¢(G2i)) (G(z Ny))
Gzemub{Gz,Gy} =1
i=1 z€Gz; weEG(zAY)
= ZW. |
1=1 2€Gz; weEG(zAY)
Meanwhile,
¢(Gz)p(Gy) = ) 'y
z'eGz
y'€Gy
= Z 17’ A yl ( Z Z)
z'€Gz,y' €Gy z€mub{z! ,y'}
= Z Z z Z ' A y'
1=1 z€Gz; z'€Gz,y'€Gy
z€mub{z’ y'}
::1 ZzEGz.' ZwEG(:v/\y) 2w - #{-T/ - G.’B, yl € Gy :

z € mub{z,y'},w = ' Ay'}.
Therefore it suffices to show Yw € G(z Ay),z € Gz; that
zw = zw - #{z' € Gz,y’ € Gy:z € mub{z',y'},w=2' Ay'}.

[f z,w have no upper bound in P, then it is trivially true since zw = 0. If z, w have an
upper bound v € P, then the cardinality of the set on the right is 1, because z’,y’ are
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uniquely defined by 2’ = Restype( v and y' = Restype nV- So it is still true.

Thus ¢ extends to a ring homomorphism é - k[P/G] — k[P]. Tt is clear that the
image of ¢ is contained in k[P]“, since

Gz) = Y 2’ € k[P)°,

z'€Gz

and {Gz}.ep generate k[P/G] as an algebra.

It only remains to show that ¢ takes a k-basis for k[P/G] to one for k[P]¢. From
[5t3], Lemma 3.4, we know that a k-basis for k[P] consists of all monomials 2,2, - - - z,
supported on a multichain z; < ... < z, in P. Thus we have a k-basis for P/G consisting
of all monomials GzyGzy - Gz, with Gzy <... < Gz, in P/G. We also know that we
can get a basis for k[P]% by symmetrizing the basis for k[P], i.e. we take all sums of the
form 3 eqg(zy - a,) withzy < ... < 2, in P.

Having identified our two bases, we have

$(Gay---Ga,) = ¢(Gay) - (Ga,)
= Z (91.’131)"'(gr237-)-

Note that if ) < 2, in P and (g121)(g222) # 0 in k[P], then gy21, g2z, have some upper
bound z, and hence

121 = Restypes,)?
= Restype (Restype(x2) z)
= 92Restype )(Restype(zg)gz z)
= 92Restype 21) 82
= G211
since 1 < x9 < g{{lz.

Thus (g121) -+ (grz,) # 0 if and only if we can replace all the g;’s by a single g, i.e.
¢iz; = gz; Ve and some ¢ € (7. Hence

$(Ger---Gz,) = 3 (gw1)-(gz,) = Y g(n

(gl »»»» g,-)EGr gEG

So ¢ takes our basis for k[P/G] into our basis for k[P]%, and hence is an isomorphism.m

Example: Let P be the balanced simplicial poset shown in Fig. 4, with G' = Z, acting
on P by swapping a and b, leaving all other faces fixed. Then P/G is as shown, and we
have

k[P] = kla,b,c,d)/(ab, cd — (a + b))
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Figure 2-4: An example of P and P/G

k[P/G) = k[&,d, &]/(ed — &)

and it is easy to see that

p:e—c,dd é—atb

is an isomophism from k[P/G] — k[P]°.

In [St3], Stanley defines a simplicial poset P to be Cohen-Macaulay over the field
k (abbreviated CM/k) if k[P] satisfies a ring-theoretic condition known as Cohen-
Macaulay-ness. For face rings, this condition turns out to be equivalent to purely
topological conditions on the realization of P, namely that for : < dim(P) we have

Hi(P; k) = Hi(P,P — p) = 0 for all points p in the realization of P, where H denotes
reduced homology (see [St3] for more details).

Theorem 2.3.2 Let P be a balanced simplicial poset and G a group of label-preserving
automorphisms. If P is CM/k, and the characteristic of the field k does not divide #G,
then P/G is CM k.

Proof: k[P/G] = k[P]¢ by the previous theorem. Since P is C M/k, we know that k[P] is
a Cohen-Macaulay ring. Since the characteristic of £ does not divide #G, we can apply
a result of Hochster and Eagon ([HE], Proposition 13) to conclude that k[P]C is also
Cohen-Macaulay. Therefore k[P/G] is CM/k. m

Corollary 2.3.3 Let (W,S) be a finite Cozeter system, and G a subgroup of W. Then
S(W,S)/G is CM [k for all fields k whose characteristic does not divide #G.

Proof: Since (W, S) is a sphere, it is CM/k for all fields k (by the topological charac-
terization). Now apply Theorem 2.3.2.m

Theorem 2.3.2 may also be used to prove a result about simplicial posets which are
not necessarily balanced. Let P be a simplicial poset and G a group of automorphisms of
P. If we let | P| denote the topological realization of P as a cell complex, then G acts as a
group of homeomorphisms of |P| and we may form the quotient space |P|/G. Although
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|P|/G does not carry an obvious cell-structure that would make it the realization of

a simplicial poset, we can still speak of |P|/G being CM/k by using the topological
characterization.

Theorem 2.3.4 Let P and G be as in the preceding paragraph. If P is CM/k, and the
characteristic of k does not divide #G, then |P|/G is CM/k.

Proof: Let Sd(F) denote the barycentric subdivision of P, i.e. the simplicial complex of
all chains in P. Sd(P) is a balanced simplicial complex in which the label of a vertex is
given by the dimension of the face of P to which it corresponds, and hence G acts a label-
preserving group of automorphisms of Sd(P). Note also that |Sd(P)| is homeomorphic to
|P|, and one can easily check that |Sd(P)/G| is homeomorphic to [P|/G (where Sd(P)/G
1s the quotient simplicial poset of Sd(P) under the action of G). Since P is CM/k, so
is Sd(P) (as CM-ness is a topological property). By Theorem 2.3.2, so is Sd(P)/G, and
hence so is |P|/G =

This is not the end of the story. One might suspect that there is a purely topological
version of the same theorem. In fact, using the main result of [Sm|, one can prove the
following 1:

Theorem 2.3.5 Let X be a Hausdorff space, G a finite group of homeomorphisms of X,
and k a field whose characteristic does not divide #G. Let m: X — X/G be the quotient
mapping. Then Vi € N,z € X we have that Hi(X/G; k) is a direct summand of Hi(X;k)
and Hy(X/G, X/G—7r( )i k) is a direct summand of H(X, X — z;k).m

Since the topological characterication of C'M/k asserts the vanishing of certain groups

Hi(X;k) and H,(X,X — z;k), we clearly have

Theorem 2.3.5 = Theorem 2.3.4 = Theorem 2.3.2.

2.4 Further general results about %(W, S)

We now focus our attention on X(W, S)/G rather than more general quotients, and in-
vestigate some important combinatorial invariants associated to them.

Definition: Given a balanced simplicial poset P with label set S, and J C S, let a;(P)
be the number of faces of P of type J, and let

Bs(P) = Y (-1)*V-Klap(p).

KCJ

'Thanks to K. Brown for suggesting a topological approach, H. Miller for the key reference [Sm), and
H. Sadofsky for technical help
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£y P) is sometimes called the J-type-selected Mébius invariant of P, and the a’s and ’s
are sometimes called the fine f-vector and fine h-vector of P respectively.

A priori, 8;(P) € Z. However, if P is CM/Q then it is known that §;(P) € N, and
in fact 3;(P) has the following two alternate interpretations in this case:

1.
ﬂJ(P) - dzmQ(Q[P]/(es)SES)J

where (0,)ses is the ideal generated by the rank-row polynomials 0, = 3 wer T
type(z)=s

in k[P), and (Q[P]/(0,)ses)s is the J* graded-homogeneous component of the
quotient ring Q[P]/(0;)ses. In fact, knowing B;(P) for all J C P gives an expression
for the finely graded Hilbert series of Q[P]. See [Gal, Section 2 for more details.

o

Bi(P) = dimq(Hys_1(P1;Q))

where Ha4y_1(Py; Q) denotes the (#J — 1) reduced homology group with rational
coeflicients, and Pj is (the realization of) the simplicial poset obtained from P by
deleting those faces z € P with type(z) not contained in J. Py is sometimes called
the J-type-selected subcomplez of P. See [St5], Section 1 for more details.

Since L(W,S)/G is always CM/Q (by Corollary 2.3.3), the above facts apply.

In light of the second interpretation above, our next result allows us to calculate

dimq(Hys_1(P1;Q)).
Proposition 2.4.1

1 ifsgn(g)=1 forall gin G
0 else

Bs(S(W, 8)/G ) = {

where sgn denotes the sign character of W, i.e. sgn(g) is the determinant of g thought
of as a linear transformation of V (note that sgn(g) = £1 since W is generated by
reflections).

Proof:

Bs(B(W,9)/G) = 3 (-1 Fag(T(W,5)/G )

KCS

= Z (—1)#(S”K)#{double cosets GuWs_g C W}
KCS

= > (-)*5MIndf 16, Indy, 1w, )w
KCS

by Mackey’s formula ([Se], Chapter 7), where here Ind denotes induction of characters,
lg,lws_, are the trivial characters of G, Ws_k respectively, and (-,-)w is the inner
product of characters of W. Thus
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ﬂs(E(I’V, S)/G ) = <Ind2’1@, Z (—1)#(S—K)Ind%s_h,1WS_K>W

KCS
= <Ind2’1c;, Sgl’l>W
= (lg, Res? sgn)g

where the second-to-last equality comes from a result of Solomon ([Sol], Theorem 2), and
the last equality is by Frobenius reciprocity (here Res denotes restriction of characters,
and (-, ) is the inner product of characters of G see [Se], Chapter 7). Thus

B5(S(W,5)/G ) = { 1 if Ressgn = 1g

0 else

by the orthogonality of irreducible characters of G. This is a rephrasing of our result. =
Our next result tells us about the singularities of (W, S)/G .

Definition: A simplicial poset P is a pseudomanifold with boundary if
1. P is pure, i.e. all its facets have the same dimension.

2. Any two facets F, F' of P can be joined by a sequence F = Fy, F,, ..., F, = F' of
facets in which F}, Fi1; share a common face of codimension 1 for 1 < i < r.

3. Every face of codimension 1 lies in at most 2 facets.

We say P is a pseudomanifold (without boundary) if every face of codimension 1 lies in
ezactly two facets. If P is a pseudomanifold, we say P is orientable if it is possible to
choose an orientation on the each of the facets of P (i.e. a £1 coefficient on each facet)
so as to make the sum of all the facets a homology cycle (see [St1], Chapter 0, Defs.
3.15,3.16 and Chapter 2, Theorem 5.1).

Proposition 2.4.2

1. (W, S)/G is always a pseudomanifold with boundary.

2. Z(W, S)/G is a pseudomanifold if and only if G contains no reflections (conjugates
of elements of S).

3. X(W,8)/G is an orientable pseudomanifold if and only if sgn(g) =1 Vg € G.

Proof:




1. Clearly (W, S)/G is pure, and any two facets F, F' in X(W,S)/G can be joined
by a sequence as in the definition; simply lift them to facets F', F* in T(W,S)
join these facets by such a sequence of facets in L(W,S5) (Wthh exists because
£(W,S) is a sphere and hence a pseudomanifold), and then project this sequence
down by = : X(W,S) — E(W,S)/G . Given a face F of codimension 1, F' must
correspond to a double coset of the form GuwW,} for some w € W, s € S, and hence
F lies in the facet(s) corresponding to GwWy = Gw and GwsWj = Gws. Thus F
lies in two facets if Gw = Guws, or one facet if Gw # Gws.

2. By the discussion in 1, ¥(W,S)/G is a pseudomanifold exactly when Gw # Gws
Vw e W,s € S. Since Gw = Gws & wsw™! € G, the result follows.

3. Clearly sgn(¢g) = 1 Vg € G implies G contains no reflections, and hence that
Y(W,S)/G is a psudomanifold by 2. On the other hand, it is easy to see that for
any pseudomanifold X of dimension d, we have

Ay ) Q if X is orientable
H(X;Q) = { 0 else
Hence by Proposition 2.4.1 and our second interpretation of fg(X(W,S)/G ), the
result follows. m

Definition: A simplicial poset P which is CM/k and also an orientable pseudomani-
fold is called Gorenstein* over k (abbreviated Gor*/k). Like Cohen-Macaulay-ness, this
condition can also be defined as a ring-theoretic condition on k[P] which turns out to be
equivalent to the purely topological condition that P is a k-homology sphere. See [St2]
for details.

Corollary 2.4.3 Let k be a field whose characteristic does not divide #G. Then
E(W,S)/G is Gor* [k & sgn(g) =1 Vg€ Gm

Remark: There is a slightly weaker condition on a simplicial poset P than being Gor* /k,
that of being Gorenstein over k. In [St3], Section 4, Stanley defines this concept and
points out that the only simplicial posets which are Gor/k but not Gor*/k are the Boolean
algebras. Hence Gorenstein-ness is only a trivially weaker notion than Gorenstein*-ness.
In our context, it is easy to see that (W, S)/G is a Boolean algebra if and only if G = W,
since this would mean that ¥(W,S)/G had only a single facet GuwWy, i.e. Gw = Gu'’
Yw,w € W.

Gorenstein* simplicial posets satisfy a duality related to Alezander duality) (see [St5],
Section 2). This is reflected in the folowing result.
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Proposition 2.4.4 Let P be a balanced simplicial poset (with label set S), which is also
Gor*/Q. Then the invariants 8;(P) satisfy the fine Dehn-Somerville equations:

Bi(P) = Bs_s(P)¥J C S.

Sketch of proof: Let z1,...,z, be the vertices of P, thought of as independent indeter-
minates, and define a generating function

Lp(zy,...,z,) =
faces z€P a:.<a:

Let {t;}ses be a another set of independent indeterminates, one for each element of the
label set S, and let T' be the map from power series in zy, ..., z, to power series in {t,}scs
which sends i — yype(s,)- Lhen we have

T(Lp(zy,...,2,)) = T ( )
faces z€P x; <a:
ls
= 21l
JCS seJ t T s
ZJCS ﬂJ(P) HSEJ ts
HsES J ts
Proposition 4.4 of [St3] says that
Le(zr...,20) = (~1)#5L <i i)
PlL1lyvydpn) = P ml)"')ajn .
Applying the map T gives
Yucs Bi(P)eests (~1)#3 >ucs Bi(P) HseJ{l;
[lies1 =1, MMees1— ¢

which (with a little algebra) implies our result.m

Corollary 2.4.5 Ifsgn(g) = 1 Vg € G then §;(E(W,S)/G ) = Bs_s(Z(W,S)/G ) VJ C
S.

In Chapters 3 and 4, we will give combinatorial interpretations of these non-negative
integers By (X(W,S)/G ) for certain groups G, and then use this corollary to assert non-

trivial equalities between cardinalities of certain sets.

Example: Let (W, S) = (Z,,{s}) and (W",75) be as before, and let G = ((s,...,s)) C
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W" as before. Then the quotient (W, S)/G & RP™™' is CM/k whenever the char-
acteristic of k is not 2. Since (s,...,s) is not a reflection (unless » = 1), and
sgn((s,...,s)) = (=1)" we conclude that (W, S)/G is a pseudomanifold Vr > 2, and
orientable Vr even. Of course, these facts agree with what is known about RP™~!,

Example: Let (W, S) = (53, {(12),(23)}) and G = ((123)) as before. Since sgn((123)) =
1, ¥(W,S)/G is an orientable pseudomanifold of dimension 1, i.e. S* (as shown in Fig.
3). We can use Fig. 3 to write down ay(35(W,S)/G ) VJ C S, and then calculate §;
from this. This yields the following table:

B as(B5(W,5)/G ) Bs(B(W,5)/G )

) 1 1
{(12)} 1 0
{(23)} 1 0

{(12),(23)} 2 1

Note that 8;(S(W,S)/G ) = Bs—s(S(W,S)/G ) VJ C S.
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Chapter 3

P-partitions for other Coxeter
groups

3.1 Definitions

In this chapter, we generalize some of the theory of P-partitions (see [St4]) which deals
with the symmetric group S, to other finite Coxeter groups. We will then use some
of these results in Chapters 4 and 5 to prove results about 3(W,S)/G for some specific
classes of subgroups G. However, this theory has some interest on its own, and we present
two applications of it in Section 3.3.

Since many of the results of this chapter are known for the case of W = S, (see the
Introduction), we will try to “translate” the more general results into these more familiar
surroundings whenever possible.

Let (W,S) be a finite Coxeter system acting as a group generated by reflections on
a Euclidean space (V, (:,-)), with dimgpV = #S. Let T denote the reflections of W, i.e.

the set of all conjugates in W of elements of S.

Definition: A positive root system realizing (W, S) is a pair (®,II) of finite subsets of
vectors in V satisfying

1. II is a basis for V.
2. & =] -®* where
®+:{ana:ca€R,ca>0}ﬂ®

is the set of all vectors in ® which can be written as a positive linear combination
of vectors in II,

~®t = {—a:ac dt}

and [] denotes disjoint union.
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3. S = {rq : a € II} where r, denotes the reflection through the hyperplane orthogo-
nal to «.

4. & = WII = {wa: w e W,a € II}.

® is called the set of roots, @t the positive roots, —®* the negative roots, and II the
simple roots. What we call here a positive root system realizing (W, S) corresponds in
the literature to a root system realizing W along with a choice of positive roots consistent
with S. See [Bo], Chapitre VI Section 1 for background, and [Bro|, Chapter II, Section
5 for a method of constructing (®,II) given any finite Coxeter system (W, S).

Example: Let (W, S) = (S, ,{(12),(23),...,(n —1n)}) acting on
V={(z1,...,2,) ER": D z; =0}
by permuting coordinates. Let
O={e;—e;:1<i,7<nij)
where e; denotes the i** standard basis vector. Let
Ot = {e;—¢;:1<i<j<n)

I={e;—eis1:1 <1< n}

[t is easy to check that (®,II) give a positive root system realizing (W, S), which we will
call the standard realization of S, . Whenever we say W = S, , we are referring to this
realization,

For the remainder of this section, (W, S) will be a finite Coxeter system, and (®,II)
a positive root system realizing (W, S).

Definition: A parset (partial root system) is a subset P C ® satisfying
l.a€eP=—-a¢P

2. oy, a0 € P and ¢y + cyay € @ for some ¢q,cy > 0, then cjay + cpap € P

The second condition says that P is closed under the operation of taking positive linear
combinations that still lie in ®. We will denote this closure by FZ¢ | i.e given A C ® we
let Z7% be the smallest subset of ® which is closed under this operation.

Another way of phrasing conditions 1 and 2 is to say that P is the intersection of ®
with some pointed cone in V.

Example: For W = S, | a parset P corresponds to a labelled poset on the numbers
1,2,...,n (ie. a partial order <p on {1,2,...,n} ) via the identification

1<pj e —ei €P
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P {es €3 L2 6‘}

Figure 3-1: Some parsets for W =5,

Conditions 1 and 2 for a parset correspond to antisymmetry and transitivity of partial
~ orders (reflexivity is already built-in).

Definition: We say 2 parsets Py, P, are isomorphic (written Py & P,) if
Jw € W such that wP; = Ps.

We say P is natural if P C &+,

Example: For W = S, , two parsets P;, P, are isomorphic if their underlying partial
orders (ignoring labels) are isomorphic, i.e.

3¢ : Py — P, such that i <p, j & ¢(i) <p, ¢(j).
In Figure 1, P, = P,, and P; is natural, but P, is not.
Definition: A vector f € Vis a P-partition if
(a, f) > 0 Va € P and

(a,f) >0Va e PN-0*F
We denote by A(P) the set of all P-partitions.

Example: For W =S, , a P-partition is a vector f = (f(1),..., f(n)) € R" satisfying
FG) 2 £G) it i <p j and FG) > £(j) if i <p j and i > j
along with the extra condition 3~ f(z) = 0. This extra condition makes our notion slightly

(but trivially) different from the usual one given in [St4]. An example of A(P) for a
particular P is shown in Figure 2. '
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Figure 3-2: An example of A(P)

Definition: The Jordan-Holder set of P, denoted L(P), is the set {w e W : P C wd*}.
Note that w®™ is a parset, and we say f € V is w-compatible if f € A(wdT) .
Given w € W, we define its (left) inversion set I(w) and its (right) descent set D(w)
by
I{w) =T Nuw(-97)
Dw)=TNw (=0 =TnI(w™")

We will also think of I(w) as the subset {r, : a € I{w)} of T, and D(w) as the subset
{ro:a € D(w)} of S, i.e. weidentify a positive root @ with the reflection r, through the
hyperplane orthogonal to a. We hope that it will be clear from context which we mean.

=PLC

Note that since ®* = 1II , we have that

f is w-compatible & (o, f) > 0 Va € w®*t and
(a, f) > 0 Va € wd*t N -0+

& ({a,w™'f) >0Va e d* and
(a,w™1f) >0Va € dt Nw H(—=d%) = [(w™?)

& (a,w'f) >0Vaell and
(a,w ™ f) >0 Vae INw(-®%) = D(w)

In other words, in order to check if f is w-compatible, we only need to look at (a,w=!f)
Va € 11, rather than looking at («, f) Vo € wd*

Example: For W =S, , L(P) is the set of permutations ¢ = (01l -+ ) such that the
total order oy < ... < g, is an extension of P. We have

Io)={(j):1<i<j<nand c7'(i) < a7'(5)}
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and
Dio)y={(1t+1):1<i<nand o; > 0y11}.
We also have that f is o-compatible exactly when f is a P-partition for the total order
given by
01 < 0y <o < Oy,

i.e. when we have f(oy) > ... > f(0,) and f(0;) > f(oiy1) for (1 1+ 1) € D(o).
For example, if P is the parset in Figure 2, then L(P) = { 22, g? } Ifo=(}%),

then I(0) = D(o) = {(12)}, and f is o-compatible if f(2) > f(1) > f(3)

We come now to the first (and central) result about P-partitions.

Proposition 3.1.1
AP) = I A(wd*)

weL(P)

Proof (cf. [Ge2], Theorem 1): We use induction on ¢t = #{a € ®*:a ¢ P,—a ¢ P}.

Case 1: t = 0. We want to show that A(P) = A(w®d*t) for some w € L(P) , so it
would suffice to show that P = w®™* for some w € W. Since t = 0 implies ® = P[[~P,
and P = P'H¢ , we conclude that P forms an alternative set of positive roots for ®
(this is essentially the content of [Bo], Chapitre VI, Section 1, No. 7). Since W acts
transitively on all possible sets of positive roots, we have P = w®* for some w € W.

—— PIC . .
Case 2: t > 0. Assume o, —a ¢ P, and let P, = PU {a} . We claim P, is a
parset, i.e. it also satisfies the first condition for being a parset. To see this, suppose not,
ie. let §,—f3 € P,. Then we must have

B :aa+2a,~ai

—f = ba-}—sz-a,-

for some a;,b; > 0, a,b > 0, and «; € P. Adding these equations, and dividing by a + b

yields
1
—a = E -—a n b(a,- + bi)a,-

and hence —a € P, a contradiction. Similarly we can form the parset P_,. We then
have

A(P) = A(F) TA(P-,)

L(P) = L(P,) LL(P_,) -
The first equality holds because any f € A(P) either satisfies (o, f) > 0 or (—¢, f) > 0.
The second equality holds because any w € L(P) either satisfies « € w®t or —a € wWdT.

Thus by induction on t, we are done.m
An example is shown in Figure 3.
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Figure 3-3: An example of the central result on P-partitions

3.2 P-partitions and E(W,S5)

We come now to the main link (Lemma 3.2.1) between P-partitions and Coxeter com-
plexes. The theorems of this section are known (see [Bj4], Section 2, [GS], Sections 7,8),
however our method of proof is slightly different, and will form the prototype for the
results in Section 3.4 and Chapters 4 and 5.

Definition: The fundamental (Weyl) chamber C is the set A(®*T) C V, that is all
vectors f € V satisfying (a, f) > 0 Va € &% (or alternatively, (e, f)} > 0 Vo € II). Given
feV,let

F(fy={weW:w™'(f)eC}.

We note two important facts about F(f) and C (see [Bro], Chapter I, Theorem 5F):
1. For f €C, F(f) = W; where J = {ry: a € I], (a, f) = 0}

2. Every f € V has a unique translate w(f) € C.

Hence, in general we know that F(f) = wW; for some w € W and J C S, ie. F(f)
always corresponds to a face of X(W,S) .

Example: For W = S, , C is the set of all f satisfying f(1) > ... > f(n). The first
fact above says that if f(:) = f(z + 1), then we can permute the coordinates z,¢ 4 1
and f will remain in C. E.g. if f = (3,2,2,1,1,1) € C then so is w(f) € C whenever
w € Wiaa) (45),56)}- The second fact above says that there is a unique permutation of the
coordinates of f into (weakly) decreasing order.

The next lemma establishes the fundamental link between P-partitions and the Cox-
eter complex (W, S) , and will be used frequently in our analysis.

Lemma 3.2.1 Forall f € V, we have
f e A(wd) & wWy C F(f) C wWs_p)
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and hence for all g € W, we have
9(f) € A(w®*) & g 'wWy C F(f) C g " wWs_p(w)
Proof: We have

f € A(wdt) >0 Va €Il and {a,w™(f)) > 0 Va € D(w)
d (—a,w™'f) < 0 Ya € D(w)

nd (ro(a),w=(f)) <0 VYa € D(w)

and (a,raw‘l(f)) < 0Va e D(w)

w € F(f) but wr, € F(f) Va € D(w)

wW@ g F(f) Q wWS_D(w).

£ R

This proves the first assertion. The second follows from the first along with the simple
observation that F'(g(f)) = ¢gF(f)m

The previous lemma reflects the following fact, which is tedious but straightforward
to verify. Given a face F' = wW; of £(W,S) , define the set

VIF)={feV:F(f)=F}

Then V(F)NS#5-1 is exactly the open cell in the decomposition of the unit sphere S#5-1

corresponding to F' (from the “informal” definition of ¥(W,S) ). In fact, our philosophy
is to “think of” the face F' = wWj as the same as the open cell V(). We then analyze
the W-action on V (i.e. find a fundamental domain in V for the action of ), and use
the previous lemma to translate this into a statement about (W, 5)/G .

Our next theorem exemplifies this philosophy. But first, a definition.

Definition: A partitioning or ER-decomposition of a simplicial poset P is an expression
t
P = [][F, Mj]
=1

where for each 1, M; is a facet of P, F; is a face of M;, and [F;, M;| ={F € P: F; < F <
M},

Theorem 3.2.2 %(W,S) is partitionable as

Z(I/V,S) = H [st_D(w),wI/VQ]

weW
Proof: Applying Proposition 3.1.1 to the empty parset P = (), we get

Vo= A®)
= I Awd)

weL(0)
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= I A(wo+)

weW

If we now apply the operation f — F(f) to both ends of the above equation, we get

Jrih=U U F&

fev weWw reA(wd*)

In light of Lemma 3.2.1 (and the easy-to-check fact that every face F' € L(W,S) is F(f)
for some f € V), this gives

E(W,S) = H [wWS—D(uJ))wW@]
weW
as we wanted.m

One by-product of a partitioning for a balanced simplicial poset P is another inter-
pretation of B;(P).

Proposition 3.2.3 If P = [I!_,[F}, M}] is a partitioning, then
B1(P) = #{i : type(Fy) = J}

Proof: Given J C P, there is exactly one face of type J in each interval [F;, M;] with
type(F;) € J. Thus we have

aj(P) = #{1: type(F;) C J}

Since
Bs(P) = Y (-1)*U"Mag(P)

KCJ

the result then follows by inclusion-exclusion.m

Corollary 3.2.4
By(EW,S) )=#{we W :Dw)=J}n

An important subclass of the partitionable simplicial posets are those that are

shellable.

Definition: A shelling of a simplicial poset P is a partitioning P = [['_,[F;, M;] with
the extra condition that F; < M; = ¢ < j (see [Bj4], Proposition 1.2 for the equivalence
of this to other definitions of shellings).

Shellability of P has strong consequences for the topology of P and ring theory of
k[P]. In particular, if P is shellable, then it is CM/k for all fields k (see [Bj3] for more
on shellability).

In order to shell £(W,S) , we require a bit more technology.
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Definition: The length of an element w € W is defined by
l{w) = min{r: w = s1sy--s, for some s; € S}.

The (right) weak order <pg is defined to be the transitive closure of the relations w <g ws
ifwe W,s €S and ((w) <l(ws). We note some well-known facts about [ and <pg:

1. I(w) ={teT:(tw) < l(w)} and hence D(w) = {s € S: {(ws) < [(w)} (see [Bo],
Chapitre IV, Section 1, Remark after Lemme 3).

oo

[(w) = #I(w) (see [Bo], Chapitre IV, Section 1, Lemme 2).

3. Given wWj, there is a unique element denoted 77/ (w) in the coset wWj satisfying
D(r?(w)) € § — J. We also have 77(w) <g u Yu € wW; (see [Bo], Chapitre 1V,
Section 1, Exercice 3, [Bj4], Introduction to Section 2).

Example: For W =5, ,
o) =#{(i,j) : 1< i <j <n,0i > 05}

(the number of inversions of o). We have 0 <pg 7 if one can get from ¢ = (011 )
to 7 by a sequence of exchanges of o}, 0,4, With o; < ;1. Given ¢ and J, 7/(c) is the
permutation obtained from o by arranging the o; to be ascending in the places permuted
by W;. For example, letting 7 = (330) we have I(7) = 3, and for J = {(12),(34)} we
have ©/(1) = (127).

Theorem 3.2.5 ([Bj4], Theorem 2.1, [GS], Theorem 8.6)

(W, S) = H [wWs_p(w), wWp]
weW

is a shelling if we order {wWpy}l,ew by any linear extension of <g.

Proof: Let wq,ws,, ..., w; be such an order. Since Theorem 3.2.2 already asserts that we
have a partitioning, we only need to show that

w;Ws_py) S w;Wy=1<7

But we have

w;Ws_p(w;) < w;Wy w; € w;Ws_p(w;)
5P (wy) = w;
w; <R W;
1 <J

tise

as desired. =
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3.3 Two applications

In this section we explore two immediate applications of the theory of P-partitions that
are only indirectly related to the quotients (W, S)/G . But first we need to discuss one
more object ¥p, which will resurface in Chapters 6 and 7.

Definition: Let (W,S) be finite Coxeter system, and P a (W, S)-parset. We define the
subposet ¥p C L(W,S) by

Yp={FeX(W,S) : F=F(f) for some f € A(P) }
Repeating the proof of Theorem 3.2.2 with P in place of the émpty parset ) immedi-
ately yields
Proposition 3.3.1

Ep: H [wWS_D(w),qu)].l

weL{P)

Although ¥p is only a subposet of (W, .S) and not necessarily a simplicial poset, we
may still define

as(Zp) = #{F € S(W,S) : type(F) = J)

and

Br(Ep) = > (-1)*V"Fay(5p)

KCJ

as before. As in the preceding section, we conclude

Corollary 3.3.2
Bi(Ep)=#{we L(P) : D(w)=J} =

The following observation is the key to both applications.

Proposition 3.3.3 Let P, = EPLO fori =1,2 be two parsets, and suppose wA; = A,
and w(A; N —=®%) = Ay N ~d* for some w € W. Then

1. wA(P) = A(P;) and
2. B;(Ep)=Bs(Ep) VI CS
Proof: To prove 1, we claim that for ¢ = 1,2 we have

feAFP;) & (a,f)>0Va€ A, and (o, f) > 0 Va € A; N -0,
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To see this note that the right implication is obvious, and the only non-trivial part of
the left implication is checking that the left side implies

(a, f) > 0 Vo € P,N —®+,

To see this, assume o € P; N —®*, so that we can write & = 3 ¢;; for some ¢; > 0
and fB; € A;. Now if 8; € &t Vj, then we reach the contradiction that o € ®+. Hence
B; € A; N —®* for some jy, and thus

(a,f> = Cjo 510’ Z ﬁw

J#do

Given this claim, the fact that wA(P;) = A(P;) follows directly from our hypotheses.
To prove 2, we deduce from 1 that w¥p, = Xp,, and since the action of w is type-
preserving, that

o:J(Epl) = aJ(EP,Z) vJ Q S

Then 2 follows immediately.m
Our first application is a result of Moszkowski, which generalizes a result of Solomon.

Theorem 3.3.4 Let JJCJCIl and K' C K C ®. Then for a given w € W,
#{(u,v) e W Du)NJ =, I(v")NK = K', and uv = w}

depends only on I(w™1)N K.

Proof: Given w € W, define a parset P, = w(K — K’)PLC and notice that
Bs(Zr,) = #{ueL(Py) : D(u) =J}

#{ue W :P, Cudt D(u)=J}

= #{ueW  wK - K" Cudt D(u)=J}

= #ueW v wK - K')Cd+ D(u)=J}

= #{ueW : I(v ' w)NnK C K',D(u) = J}

= #Hw,v) e W I(vHY)NK CK',D(u) = J, and uv = w}

Thus, by inclusion-exclusion on the set K, it would suffice to show that 5;(Xp,) de-
pends only on I{(w™')N K. So suppose w,w’ € W satisfy [(w )N K = I(w')NK. We
can apply the previous proposition, once we note that w'w= w(K —-K') = w'(K—K') and

wwt e (w(K — K') N —&F)

i

w' (K — K'YnI(w™))
w (K — K')nI{(w'™))
= w'(K-K)n-0t
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where the second equality follows from our supposition.m

Corollary 3.3.5 ([Mo], Théoréme 1, cf. [So2], Theorem 1) Given K’ C K C &7,
let X[, denote the formal sum

X]\:/ = Z w

wew
Hw—YHnK=K'

as an element of the group ring ZW of W. Then

1. VJ C I, {X]}ycs span a subring Sy of ZW (Su is actually a ring with unit and
is sometimes called the Solomon algebra or descent algebra of W ).

2. VK C &+, {X,I\f,}I\f:gK span an Sy-submodule of ZW for each J C II.

Proof: We only need to show that VJ' C J CII, and K’ C K C ®*, we have that
X7, XE is in the Z-span of {Xf.}gvcr. We have

X7 XE
= Z (u,v)eW?2 uv
D(u)nd=J" I(v=)NnK=K!
Swew W #{(w,v) e W2 D(W)NJ = I(v)NEK = K'Juv = w}
= EI\"IICI\’Z wew w - C(.], J/,I{, I{/,I{H)
= Hw—HnK=K!"
Where

o(J,J K, K' K" = #{(u,v) e W2: D(u)NJ = J, (v HNK = K',uv = w}
is a constant whose existence is guaranteed by the previous theorem. Hence we have

XIXE = S o JK KK Y w
KUCK I( —tlu)env;/(_l»//

= Y oJJ K K KX,
K'CK

which is in the Z-span of #{X [, }xuck, as we wanted.m

Remark: Moszkowski and Solomon actually do more. They give interpretations for
c(J,J', K, K', K") as cardinalities related to certain subgroups of W,

For our second application, we need to translate some of the combinatorics of words
into the language of Coxeter groups.
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1

Definition: Given a permutation o = (, --- ") € S, , we will say a word w on letters

{1,2,...,n} is a subword of o if w = 0y, -+ -0y, for some 1 <4y < ... <4 < n. We
will say w has signature D(w) = {i : w; > wit1}. For example, o = (}1350) contains the
subword w = 416, and we have D(w) = {1}. Note that when we think of the permutation
o as a word, specifying its signature D(o) is the same as specifying its descent set D(c).

Our goal is to prove a generalization of the following theorem of Kreweras and

Moszkowski:

Theorem 3.3.6 ([KM], Théoréme 3) Fiz a word w of length k using letters from
{1,2,...,n} at most once, and also fir J C {1,2,...,n — 1}. Then amonyg all per-
mutations o € S, with D(o) = J, the number which contain w as a subword depends
only on D(w).

Our first task is to generalize the notion of “subwords” from S, to other Coxeter
groups.

Definition: A subgroup W/ C W is a reflection subgroup if W is generated by the
reflections it contains, i.e. W’ = (W' NT). Reflection subgroups W' share many of the
properties enjoyed by parabolic subgroups W; (see the Appendix). Among them is the
following (Appendix, Proposition A.0.10): any w € W can be factored uniquely as a
product w = uv with u € W' and I(v) " W’ = (. In this case, we say u = my(w).

Example: For W = S, , a reflection subgroup corresponds to some partition of
{1,2,...,n} into blocks, and consists of all permutations of elements within the same
block. For example

W' = Su46) X Sgz3) X S5y

is a reflection subgroup of S (where Sy 46y is the subgroup permuting 1,4,6 while fixing
2,3,5), but the cyclic subgroup ((;g?)) is not a reflection subgroup. Given o € S, and
W', we can factor it into o = mw/(o)v as follows: v is obtained from o by rearranging
the numbers in each block (W'-orbit) of the partition to be in increasing order in the
word oy ...0,, and (o) is obtained by making the numbers in each block appear in
the same order as they do in oy ...0,, but subject to the constraint that mw.(c) € W'

For example if

123456
. _
W'= Sta6) % Sgap X Si5) and o = (341265> ’

then o = my(o)v where

(o) <123456> ol (123456)
w9 = 432156/ MY T 214365/

Key point: when the partition of {1,2,...,n} corresponding to W' has only one non-
singleton block {#1,...,%}, then the map 7w : S, — W' can be thought of as mapping
o to its subword w on letters {41,...,1;}. Thus we have a way of thinking of subwords
in terms of Coxeter group notions.
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Having generalized subwords, we need a notion of when two subwords have the same
“signature”.

Definition: If W' is a reflection subgroup of W', then W’ is a Coxeter group in its own
vight. In fact, if we define ®f,, = {a € &t : r, € W'}, then it is possible to choose
My € ®f, and 8" = {r, : @ € Iy} so that (W', S") is a Coxeter system (Appendix
Proposition A.0.9). Then for w € W’ we let D'(w) = ' N w1 (=8F,).

Example: Let W =5, and W' a reflection subgroup corresponding to the partition of
{1,2,...,n} into blocks B;. Choose Il as follows: for each block B; = {1;,...,%;} with
11 < ... <1, weinclude '

{eil T €y €y — €y Cip | T eik}

in lyy. A moment’s thought shows that if there is only one non-singleton block B;, and
if we think of my/(0) as a subword w of o on the letters in this block, then D'(7w /(o))

exactly encodes the same information as the signature D(w). For example, let o = (éif;gg)

and W' = S;46). Then 7w (o) = (}ég‘;gg) has D'(rmw:(c)) = {e1 — es}, while w = 416
has D(w) = {1}.

We can now prove our generalization of Theorem 3.3.6

Theorem 3.3.7 Let W/, W" be two reflection subgroups of W, with wily: = s for
somew €W, and fir JC S. Ifw' € W' w" € W" have wD'(w") = D"(w") (i.e. w' and

w" “have the same signature”), then

#{lueW: D) =Jaw(u) =w'} =#{ueW: D) = J,my(u) = w'}.

PLC PLC

Proof: Define two parsets P, Pys by w/(Ilf,) WD) respectively. Notice

that

Bs(Xp,) = #{u€L(Py) : D(u) = J}
= #{ueW: Py Cudt D(u) =J}
— HlueW w(BF, C) Cudt, D(u) = J)
= #lueW uW(®F, ) C ot D) =J)
= #lueW I(u'W)NW =0 C o+ D(u) = J}
= #{ueW:Du)=J,mw(u) =w'}

and similarly for w”, so we need to show that §;(Xp ) = Bs(Xp,,). Asin the previous
application, we can apply Proposition 3.3.3, once we note that w"ww'=t w'Ily: = w" Iy«
and
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w'ww N wly 0 =0%) = ww(ly Nw ™' (-31))
w//wD/(w/)

w/ID//(w//)

= w"Hwn N —‘I)+

where the second equality comes from our hypotheses.m
Corollary 3.3.8 Theorem 3.3.6 holds.

Proof: Given two words w’,w” with D(w') = D(w") and J C S fixed, we want to show
that among all permutations having descent set J, the number having w’ as a subword is
the same as the number having w” as a subword. We want to apply the previous theorem
with W = S, , and W', W" equal to the subgroups which permute the letters occurring
in w',w” respectively. If these sets of letters are L' = {3}, ..., },L" = {s{,...,i}} with
iy < ...1 and 1] < ...7}, then we choose

My = {ei; T Cis 6 T iy G T ei;}

and similarly for IIyy». We then choose w to be any permutation that takes i to ¢ for
all 5. This means that wlly: = Iwn, so we can apply the previous theorem. By the

discussion in the preceding example, this gives the result.m

Example: Let W = Sg, ' = 416, and w” = 425. Then in the above proof, we choose
W' = 5{1,4,6}) W = 5{2,4,5}a

My = {61 — €4,€C4 — 66}7HW" = {62 — 64,64 — 65}>

RETY: EY:

and w is any permutation of the form (123456) :

3.4 Multipartite P-partitions

In this section, we carry out a generalization of the theory of multipartite P-partitions
([GG], [Ge2]) to other Coxeter groups than S, (as suggested in [Ge2}, p. 300). We will
need these results in Chapters 4 and 5 when we discuss quotients by diagonal embeddings
of subgroups of W into W".

Let (W, S) be a finite Coxeter system realized by the positive root system (@,II) in
the vector space V. Fix r € P, and we now consider W actingon V"' =V x ... x V via
(R

r times
w(fi, - fr) = (W), w(fr).
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Definition: Order R" lezicographically, i.e. let (z4, ..
such that

) <e(yry .o yye) i3 < — 1

T =Y Te =Yoo s T = Yky Thop1 < Yks-

Given (fi,...,f) € V', and a € &, we will say (a, f)>, 0 if ((&, f1),...,{c, f;))>c 0
(and similarly for (o, f) >, 0, etc.). For a parset P, we say f € V7" is an r-partite
P-partition if

(a,f>2[, Q Vo € P
and

(@, [Y>z 0Va € PO —&+
We denote the set of all r-partite P-partitions by A,(P) .

Example: Let W = S, , P = ®. Then an r-partite P-partition f = (fi,...,f)
corresponds to a sequence of n vectors in R” ordered lexicographically from largest to

smallest. For example, let n = 6 and r = 2, and then f =((5,4,4,3,3,2),(1,3,2,3,3,3))

T ()22 ) =)

Ifn =, 7 =2 and P is the parset from Figure 2, then f = ((fi1, fi2, f13), (f21, fa2, f23)) is
in Ay(P) when
fi2 Jn fiz Jia
(f22> & (m) wnd (m) = (fzs)

AP) = 1 Aweh)
weﬁ(P)

Proposition 3.4.1

Proof: Same as Proposition 3.1.1 (which is the r = 1 case). The only properties we used
there were:

1. The linear maps (a,-) : V — R are well-defined Vo € ®.

2. R is a totally ordered vector space.
Replacing V by V7 and R by R", these properties still hold, and the proof goes through.=
Theorem 3.4.2 (cf. [Ge2], Theorem 16)

Ar(w®+) = H #{(fla e -7fr) eV’ : (wrwr—l e 'wi+1)_1(fi) € A(wz(b+) V'L}

(wy,...,wr)EW"
WrWp_ 1 wp=w

To prove this theorem, we mimic the proof of Theorem 16 in [Ge2], and first prove a
lemma which is slightly more general than the case r = 2:
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Lemma 3.4.3 (cf. [Ge2], Theorem 9) Let V}, V; be two vector spaces with W -actions,
and Ry, Ry two totally ordered vector spaces, with linear maps («,-) : V; — R; fori = 1,2.
Put the lexicographic total order on Ry x Ry (as in the previous definition), and then define
Av, (P), Ay, (P), Avyxv,(P) as before. Then

Avixv, (W) = H {(fi,)eVixVy: fr € AVz(w2q)+),w2_1(fl) € Ay, (w,07)}

(wy,wy)

Proof: First we check that the sets on the right are actually disjoint. So suppose (fy, f) €
Vi x V, satisfies

fr € Aw (w2 @7) 0 Ay, (v,07F)
and

w;l(f1) S AVl(w1<I>+) N .«4{/1 (UI‘D+)

for some wy, wy,v1,v;, € W. By the analogue of Proposition 3.1.1 for V3, the first line
allows us to conclude that w; = v;. But then wi'(fi) = v3'(f1), so the second line
allows us to conclude that wy = v;. Thus the sets on the right are disjoint.

Furthermore, the sets on the right cover all of V4 x V;, as w ranges over all of W.
To see this, let (fi, f2) € V4 x V. By the analogue of Proposition 3.1.1 for V;, we know
f2 € Ay, (w0,9%) for some wy; € W, and then we know w;'(f,) € Ay, (w;®*1) for some
w; € W. Hence (fy, f2) lies in the set on the right corresponding to (wy,ws).

Thus it only remains to show that each of the sets on the right is actually in
Av, xv, (w®T), L.e. we need to show that

f2 € Ay, (we®), wy' (f1) € Ay, (wy®F), and wyw; = w
imply
L. {a, f1) > 0 Va € wd*

2. (o, fi) = 0 for some a € wd* =
(a, fo) > 0 and
(a, fo) > 0if @ € WOt N —Pt

To prove 1, note that

w;'(f1) € Av, (w1 @) = (B,w7'(f1)) > 0 V8 € w (d+),
(8,05 (f1)) > 0 VB € wi (@) N -+

= (w2(B), f1) 2 0 Ywz(B) € waw, (D7),
(wa2(B), f1) > 0 Vwe(B) € wawy(®1) Nwy(—3F)

= (a, f1) >0 Va € wd™t,
<C¥,f1> > 0 Va € 'I.Uq)+ N wg(—®+).
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This proves assertion 1 (and a bit more). To prove the first assertion in 2, assume
(e, f1) = 0 for some o € wPT. Then a & wy(—P1), so a € wo(P), and hence (o, fo) > 0
since f; € Ay, (w2®1).

To prove the second assertion in 2, assume that this same « is in w®* N —®*. Then
wy'(a) € wy'(—=®T). Since wy'(a) € ®F (see the previous paragraph), we can write
wy () = ¥ cjo; with ¢; > 0 and o; € I1. Hence we must have o; € w;*(—®*) for some

1o (else wy'(a) € wyt(—=®t)). Therefore

(a, fa) = ciy(waleiy), f2) + Y ci{wa(ew), f2) > 0

i#ig

since fo € Ay, (w®7). =

Proof of Theorem 3.4.2: We use induction on r. The case r = 1 is trivial, and r = 2
is the specialization of the previous lemma to V4 = Vo =V, R; = R, = R. For r > 3, we
have

A (wdt)

= Avxvr_l(w(l)+)
= U 2 (flr(f'z ----- fr))EVXVr—lz
= (wy,wp)eEW (f2,,..,fr)E.Ar_l(w?q)-f)’w;l(fl)EA(wl¢+)

— H w2 H ;o , 1 (f1.f2sen fr)EVT: .
CpSly® g oS | whuly o) )EAGE ) iz, g () €A Y)
a

2
= H(ﬁ‘,&""'"l“i‘."‘ffffy {(fisfor - o) € VT i (wpwy—q - wigr) 7 Si) € A(w; @) Vib.
The second equality above comes from the previous lemma applied with V; = V|V, =
V=1 Ry = R, Ry = R™™!. The third equality is by the induction hypothesis. The fourth
equality is because wy' = (wlw!_, - w}) " l.m

Just as we used Proposition 3.1.1 to partition and shell ¥(W,S) in Section 3.2, we
will now use Theorems 3.4.1, 3.4.2 to partition and shell X(W",rS) . We now consider
W™ acting on V" by

(Wi, 0w ) f1y ooy o) = (Wi(f)y -y we (f))-

Given f = (fi1,..., fr), we can extend the definition of our map F (from Section 3.1) by
setting

F(f) = (’U)l, . .,’U),-)I/V(Jl’. ) -,Jr) = w1WJl X e X ’LUTWJ,_
where w; Wy, = F(f;).

Theorem 3.4.4

E(WT’ TS) - H H[wrw'r‘—l ce wiWS-D(w.')a WrWyp_y -+ wiWG]

(wl v---,wr)EW" i=1
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is a partitioning of L(WT,rS) .

Proof: Applying Propositions 3.4.1, 3.4.2 to the empty parset P = gives

vio= [ A(wdt)

welV

= I #H o f) €V (wrwry - win) T (fi) € A(wi®F) Vi)

Applying the operatidn F — F(f) to both ends of the above equation gives

UFH= U  {F(f- ) s (e win) 7H(fi) € A(wi®F) Vi)

fevr (w1, wr)EWT

which in light of Lemma 3.2.1 gives

E(I/VT, TS) = H H[wrwr_l v wiWS——D(wg)a WpWp_q 'wiW@]

(’LUI 1"-aw7‘)€Wr i=1

as desired.m

We now put a shelling order on the facets of L(W",rS) .
Definition: Wesay (wq,...,w,) <gew (wi,...,w.) in reverse lezicographic weak order,
if there exists & > 2 such that

/ ! ! !
W, = w,,,,wr_l - 'LUT_l, N ,wk - wk,wkv__l <R wk_l

Theorem 3.4.5 Order W™ by any linear extension of <rcw. Then the partitioning in
the previous theorem is a shelling.

/

Proof: It suffices to show that if we have (wy,...,w,), (w1,...,w.

) satisfying
ww, - wiWy € wow,_y -+ wiWs_pwy) Vi

then (wq,...,w,) <pew (Wi,...,wl).

Since w;. € w,Ws_p(w,), we have 7s_p(w,)(w;) = w, and hence w, <p w,. If w, <p
w,., then we're done, so assume w, = w,. Then from ww,_1W§ € w,wr_1 Ws_p(w,_,)» we
conclude that w;_; € wr,_1Ws_p(s,_,) and hence w,_; <p w;_,. Continuing this process,
we eventually get (wq,...,w,) <gcw (wi,...,w.)m

Remark: There is a much more straightforward partitioning and shelling based on the
fact the Z(W",rS) = B(W,S) *-. -+ E(W,S) , and E(W,S) is shellable. However, this
partitioning will not be as useful for our purposes, because it does not behave as nicely
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I{w3as)

Figure 3-4: Shelling of S(W?,2S) for (W, S) = (S, {(12)})

with respect to the diagonal action of W on E(W7,rS) .

Example: Let (W, S) = (S5,,{(12)}) in its usual realization as permuting coordinates
on R% and let r = 2. What do some of the theorems of this section say in this case?
Choosing P = 0, Proposition 3.4.1 says that

sy = ()5, (o ey s (I
{((f11s fr2), (fr, fo2)) € R* x R} = {(f ) = (fzz)}ﬂ{<f22> we <f21>}

and Theorem 3.4.2 refines this further as

{<f11> (f12>} = {fi1 > fio, fa1 2 faa} W{f11 > fiz, fr < foz}
fa f22

{(fm) > (fn)} ={f12 > fir, fa 2 f2} L {f12 > fi1, fo2 > far}
f22 [z

The shelling and partitioning asserted by the last two theorems goes as follows:

(W2 2S8) = [(ud, zd) (zd,zd)Ww)

I (((12),2 ) ((12) id) ]
o {((12),(1 )) s0), ((1 ),(12)) 0.0)]
I [(ed, (12))W (Z , (12))Weo0 ]

Figure 4 shows how this decomposes X(W? 2S5) as a simplicial poset and its topological
realization (where we have labelled the intervals in this shelling in order as Iy, Iy, I, I4).

Q__J
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Chapter 4

Quotients by reflection and
alternating subgroups, and their
diagonal embeddings

4.1 Reflection subgroups and their diagonal embed-
dings

In this chapter, we return to the subject of quotients £(W, S)/G and study some specific
classes of subgroups G. This section deals with reflection subgroups along with their
diagonal embeddingsin W'. Recall that W’ C W is a reflection subgroup if it is generated
by the reflections it contains.

Definition: The diagonal embedding A™ : W — W™ is the map given by A"(w) =
(w,...,w). Given a subgroup G C W, let A"(W') denote the subgroup of W’ which
is the image of G under A". It turns out that the theory of P-paritions and r-
partite P-partitions developed in Chapter 3 will help us to understand the quotients
(W, rS)/A™(W') by providing us with a fundamental domain for the action of A™(W")
on V7.

.. ‘ _ ——PLC
Definition: Given a reflection subgroup W’ C W, define the parset P(W') = &,
(vecall that ®},. = {a € &t : r, € W'}). It is clear from the definitions that

LPW)) ={weW: : I(w)nW = 0}.

Proposition 4.1.1 A.(P(W")) is a fundamental domain V" for the action of A™(W'),
i.e. every orbit W'f of a vector f € V™ has a unique representative in A, (P(W')) .
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For the proof, we require a lemma giving a multipartite generalization of the fact
after the first definition in Section 3.2. '

Lemma 4.1.2 Let the multipartite fundamental chamber C, be defined by
Cr={feV i{a,f)2c 0 Va e dt}

Then w(f) € C. =

L {veW:vu(f)€eC} =Wyw where
J={ael:{o,u(f) = 0}

(Notice that we are abusing notation in our usual way by not distinguishing between

J and {ro : a € J}).
2. v(f) €Cr = v(f) =w(f) (i.e. the W-translate of f lying in C, is unique).

Proof: Note that « € J = rqw(f) = w(f), since rq fixes all vectors orthogonal to a.
This shows that Wyw C {v e W : v(f) € C,}, and also that 1 implies 2.

Thus we need only show that the reverse inclusion holds in 1. Let f = (f1,..., f)
and suppose v(f) € C.. Looking at first coordinates, this implies v(f1),w(f;) € C.
Then by the standard (non-multipartite, r = 1) version of this lemma, we conclude that
v(fi) = w(f1) and v = vw for some u € Wk, where

Ky ={a€ell: {a,w(f)) =0}

Now let Vi, be the linear span of Ky, and let wg, : V — Vg, be orthogonal projection
onto Vg, (with respect to (-,-)). Note that (Wk,, I{;) forms a Coxeter system on Vg,
with simple roots ;. For all a € K, we have

<a’ 771\"1(“’(f2))> = (a’w(f2)> 20

since a € % and similarly for v(f;). So by applying the standard version of this lemma
again (this time to the Coxeter system (W, K1)), we conclude that

WKl(w(fZ)) = 7k (v(f2))
= T, (uw(/fs))
= UTK, (w(fz))

The last equality holds because u € Wy, implies v commutes with 7g,. Applying the
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standard version of this lemma again tells us that u € Wg, where
Ky ={a € Ky : (a,rx,(w(fp))) =0}
= {a € Ky : {a,w(fy)) = 0}

Repeating this process, we eventually conclude that u € Wy, where

K' = {a€ll:{aqu(fi)) = (a,u(f,)) = 0}
{a T au(f)) = 0}
= J

This shows that v € Wju, as we wanted.m

Proof of Proposition 4.1.1: From Proposition 3.4.1, we know that

APW)) = ] A(wd")

weL(P(W"))

and we also know that
LP(W") ={weW:I(w)nW =0}

Thus we need to show that in each orbit W'f there exists a unique e such that e €
A (w®*) for some w with I(w) N W’ = 0.

Evistence: Given e € W'f, we know that e € A, (w®*) for some w € W (by 3.4.1
applied to P = 0). So choose e € W' such that {(w) is minimal, and we will show by
contradiction that I(w) N W' = 0.

Assume not, i.e. let 75 € I(w) N W for some § € ®*. Let v satisfy rg(e) € A, (v®t)
(we know such a v exists). Our strategy will be to show that /(v) < {(w), and hence
get a contradiction. We have v=irg(e) € C,, so by the previous lemma, we have that
v lrge) = w™l(e) and rpv = wu for some u € Wy where

K={aell:(a,vrs(e)) = 0}.

Furthermore, since (a,v™'rg(e))>, 0 Va € D(v), we must have K C S — D(v). Thus
I(v) < l(vu~t), since u™' € Wk C Ws_py,) implies v = g (vu™'). But vu™ = r,w, and
l(row) < l(w) since ro € I(w). Hence {(v) < l(w), as we wanted.

Uniqueness: Suppose e € A,(w,;®*) and v’ € A, (w,®*) for some v’ € W and I(w;) N
W' =0 for i = 1,2. Then w;'w'(e), w;'(e) € C,, so by the previous lemma we conclude
that wy'w!(e) = wi'(e) and w'~'wy = wyu for some u € Wx where K C D(wq)N D(ws).
Thus wy = w'wyu, and hence we have w, = w;, since in each double coset W/wWx there
is a unique element w satisfying I[(w) N W' = § and K C S — D(w) (by Proposition
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A.0.12). Thus w'(e) = c.m

Example: The previous theorem is nearly trivial for W = S, . Recall that in this
case a reflection subgroup W’ is the set of all permutations within the blocks of some
partition w of {1,2,...,n} . It is easy to see that a vector f € A.(P(W')) corresponds
to a sequence of n vectors (vy,...,v,) in R” in which the v;’s corresponding to the same
block of m appearing in decreasing order lexicographically. Thus our theorem states the
obvious fact that we can use W’ to permute (vy,...,v,) uniquely so as to make this
condition hold. For example, if r = 2,n = 6 and W’ = Sgy 45 X Spa63 X S(ay, then for
every f = ((fi1, ..., fie),(fa1,- .-, f26)) there is a unique element e € W' f satisfying

e e e
( 11) >, ( 14) >, ( 16) and
€21 €24 €26
)22
€22/~ \ege

Theorem 4.1.3
S(WrrS)/ AT (W) =

H H[AT(VV')wTwT_l s wiWs_ puwy, AT (W w,w,_q - - w; W]

(wy,...,wr)EWT 1==1
I(wrwp_q - w )nW/=0

18 a partitioning.

Proof: Let V7/W’ denote the set of orbits W’f of all vectors f € V". Then from the

previous theorem we conclude that

VIIW! = {W'f: fe A (P(W")}
= H {W,(fla"'afr)': wrwr—l"'wi+1(fi) EA(wi(D+) }

(wy o Wy )EWT
H{wrwp_q1-wy)NW =0

where the second equality follows from Propositions 3.4.1,3.4.2. For any orbit G'f, define

F(Gf) = Ugecs F(9(f)) and note that F(Gf) = GF(f). Thus applying the map
W'f — F(W'f) to both ends of the above equation (and using Lemma 3.2.1) gives

S(WT,rS)/AT(W') =

T

H [TA" (W w,w, 1 - - 0;Ws_ D), AT (W wpw, _q - - - w; W]

(w1, wr)EWT 1=1
I(wrwy_qwy) )NW'=0

as we wanted.m
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This theorem allows us to give a combinatorial interpretation to the 3;’s of the quo-
tient complex (W7 rS)/AT(W') :

Corollary 4.1.4
Brn,a, = #{(wr,...,w,) s D(wi) = J;, [(wpwy_q - -wy) N W = 0}
Proof: see Proposition 3.2.3.m
Corollary 4.1.5 Ifr is even then VJq,...,J, €S we have
#{(wr, ... wr) € W72 I(wy - wy) 0 W' =0,D(w;) = J;}
= #{(w1,...,w,) € W : I(w, - -w) "W =0, D(w;) = S — J;}

.....

Remark: We do not know how to prove this last corollary bijectively. However, Gessel
(personal communication) has shown how to prove an even stronger result for the special
case of W = S, using the theory of symmetric functions and their canonical involution.

For shellability results, we require another partial order on W and W".
Definition: The (strong) Bruhat order <g on W is defined to be the transitive closure
of the relations wt <g wifw € Wt € T and {(tw) < {(w). We will say (w,...,w,)<rcs

(w),...,w!) in reverse lexicographic Bruhat order if for some k > 2 we have

/ ' ' /
Wy = W,, Wr_t = W, _1y...y Wt = Wy, Wk-1 <B Wp_3-

Theorem 4.1.6 Forr = 1,2, if we order W™ by any linear extension of <gcs, then the
partitioning of the previous theorem is a shelling.

Proof: For r = 1, we need to show that if wy,w, both satisfy I(w;) N W’ =0, then
W/’U)ll/Vq) g ‘/V,'UJQ‘/VS_D(UJQ) = Wy SB wy.

But this follows immediately from Proposition A.0.12 which says that the unique element

w € W'wW; satisfying I(w) N W' = 0,D(w) C S — J is the least element of W'wWj in

Bruhat order.
For r = 2, we need to that if (u1,us), (v1,v;) satisfy

1. I(ugul) n W/ = I('U'zvl) N W' = (D
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2. A%wg,v1) € A (ug, u1) W(s-D(w1).5-D(u2))

then (ug,uy) <pcs (vi,vz). We thank M. Dyer for supplying the proof of a slightly
stronger technical lemma, which appears in the Appendix as Lemma A.0.15.m

Corollary 4.1.7 Forr = 1,2, 5(W",rS)/AT(W') is CM/k for all fields k.

Proof: see the remarks after the definition of shellability in Chapter 3.m

Remark: It is easy to see by example that the previous theorem is tight, in the sense
that S(W™,rS)/A™(W') may be non-shellable for r > 3. In fact, we have already seen
that if (W,S) = (Za,{s}) and W' = W, then E(W7,rS)/A"(W') is homeomorphic to
RP"!. For r > 3, this is not Cohen-Macaulay over fields of characteristic 2, and hence
non-shellable.

Theorem 4.1.8

1. ©(W,8)/W' is homeomorphic to an (#S — 1)-ball.
2, T(W?,28)/A*(W') is homeomorphic to a (2#S — 1)-sphere.

Proof: We use a fact which is a special case of ([Bj2], Proposition 4.3): If P is a shellable -
simplicial poset which is also a pseudomanifold with boundary, then P is homeomorphic is
either to a sphere or disk, depending on whether P is a pseudomanifold or not. When r =
1,2, from the previous theorem we know that (W7, rS)/A"(W’) is shellable, and from
Proposition 2.4.2 we know that ¥(W, S)/G is always a pseudomanifold with boundary,
and a pseudomanifold if GNT = 0. It is easy to see that W/NT # @, while A*(W')NT = 0,

so the result follows.m

Example: As noted earlier, for (W,S) = (Zs, {s}) and W' = W, then the quotient
S(WT,rS)/AT(W') is homeomorphic to RP™!. Notice that RP? is a ball, and RP' is

a sphere, in agreement with our last theorem.

4.2 Application: invariants of permutation groups

We now return to the application mentioned in the introduction which motivated much
of this work. We beg the reader’s pardon in advancé for the seemingly unavoidable use
of multi-indices.

Definition: Let
Rr :Q[mla"-,mn] ®"‘®Q[(E1,...,$n])

~-fold tensor product
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= Q[:z:gl),...,zgl),a:§2),...,azng),~~~,mgr) oz

and let permutations o € S, act on R, by permuting the variables :cEj) as follows:
o) = ).

Given any subgroup G of S, , G also acts on R, , and our problem is to find a
certain “nice decomposition” of the invariant subring RS (suggested by Gessel in the

case G = S, ). In order to say what this “nice description” is, we need a few more
definitions.

Definition: Define an N"-grading on R, by setting deg(z") = ¢; = the 7' standard
basis vector in IN". Note that our S,-action preserves this grading. For an N"-graded
Q-algebra @, let its Hilbert series F(Q,t) be the formal power series in the variables
tW .t given by
F(Q’t) = Z dzmQQa - 1%,
a€NT

where 1 = (tM)21 ... (t™)or if ¢ = (a),...,,). One nice description of RS that we
seek is its Hilbert series (R, 1).

Definition: Let

e,-(:l:(j)) — Z ngj)

IC{1,..,n} #I=i l€]

be the 1*" elementary symmetric function in the variables :vgi), ooz Tt is easy to
see that e;(z(9)) C RS5» C RE Vi,j. A less trivial fact, which follows from more general
results about Cohen-Macaulay rings ([HE], Proposition 13) is that RS is actually a free

module of finite rank over the subalgebra generated by these {e;(2())} i=t,..n. Thus there

cery

exist n1,...,m: € RY such that any f € RY can be written uniquely in the form

f =Y mp(ei(z))
I=1

where each p; is some polynomial in rn variables with coefficients in Q. The nicest

description of RY that we will seek is an explicit choice of such a basis 7y, ... ,7;.
Garsia and Stanton ([GS]) examined this problem for the case 7 = 1. Their approach

was to introduce a different ring Q having an S, -action such that nice descriptions for

QY yield the same for R, ¢ = R, We introduce an analogous ring Q, for the general
case.

Definition: Let B, denote the Boolean algebra of rank n, i.e. the poset of all subsets of
{1,2,...,n} ordered under inclusion. Let @ = Q[B,, — 0] be the Stanley-Reisner ring of
B, -0, ie.

Q = Q[y_] . (Z) 75 J g {1,2,...,77,} ]/(nyK 0 J SZ I{,I{ g J)
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Let

Q =Q®---®Q=QWY 0 #£JC{1,2,...,n} /v T K K € ).

Define an N™-grading on Q, by setting deg(j&j)) = €uyj, Where €; ; is the (4, §)* standard
basis vector in N™. Define an S, -action on Q, by a(yy)) = y‘(yj()J), and note that this
action preserves the grading.

As Q-vector spaces with S, -actions, @, and R, are closely related.

Definition: The transfer map T : Q, — R, is defined by first setting T(y(Jj)) = [Ties 1,
then extending multiplicatively on non-zero monomials y(h) . y‘(,f‘) (i.e. jm = jn implies
either J,, C J, or J, C J,), and then extending Q- hnearly to all of @, .

Define the rank-row polynomials

D S

JC{1,...,n}
#J=i

fori=1,...,nand 7 =1,...,r, and note that T(9§j)) = ¢;(2)).

Example: Let n = 3,7 = 2. Then

T(ys” - ys” - yish - o ol + oV - ld) =

20 o) WMl 0 @0 @ 0,0

(9 eaf? + (o),

It is an easy exercise (or see [Gal, Section 6) to show that T : Q; — R; is a Q-linear
isomorphism, and hence that T : @, — R, 1is also. Furthermore, since 7' commutes
with the S, -actions on @, and R, , this implies 7' : Q% — RY is a Q-linear isomorphism
also. This yields the following:

Proposition 4.2.1 Let

F(Q, , N = ¥ dimq(Q%) )\

aEN’"’

(where A* = I, H;zl(/\z(-j))"‘"i if a = Y a;i6; € N') be the Hilbert series for QF.
Then _
F(R?at) = F(Q?V\)L\(‘J)H(t(j))i'

Proof: Note that y{) is counted as Al a7 in F(Q, , ), while T(y$) is counted as (t¥)#7 in
F(RE,t). Since T preserves the gradmg in this fashion, and is a Q-linear isoomorphism,
the result follows.m
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We would like then to compute F(Q%,\). To do this, we follow the lead of [GS], by
relating Q, and ¥((S,)",rS5) explicitly.
Note first that @, = Q;[yié)n :7=1,...,n] where

o =QW p£Tc{1,2,...,n},i=1,...,n]
and that 3% € QF for all j, so -
Q% = Q%ygm:j=1,...,n]
Proposition 4.2.2
Q! = Q[X((S,),rS)] = the face ring of £((S,)",rS)

Proof: Recall that 3(S,,S5) is the barycentric subdivision of the boundary of (n — 1)-
simplex having vertices {1,2,...,n} . Thus the vertices of ¥(S,,S) may be identified
with subsets § # J C {1,2,...,n}, and faces of £(S,, S) may be identified with chains
of such subsets. But this means Q[EX(S,,S)] = Q}, by definition of Q). Clearly, Q' =
Q1 ® .- ® Q}, and we have already noted that X((S5,)",rS) = £(S5,,5) * - - x £(S5,,5).
Thus by the fact that k[A * B] = k[A] ® k[B] for any two simplicial complexes A, B, the
result follows.m

It is important to keep track of the correspondence between the two labellings we are
implicitly using for £((S,)",7S) and X(S,,S). On the one hand, a vertex of %(S5,,5)
thought of as a coset wWs_, has the label s € {(12),...,(n — 1 n)}. On the other hand,
a vertex thought of as a subset § # K C {1,2,...,n} has thelabel #K € {1,2,...,n} .
By chasing through the definitions, one can check that if s = (2 ¢ + 1), then wWs_; is a
vertex corresponding to a subset L with #L = ¢. This labelling correspondence extends
straightforwardly to X((S,)",rS). Finally, we can state:

Proposition 4.2.3

F(Q,) = L Y Ban (S(S) AT I IT A
S

n T J)
e = (= A7) 0,070 s=11el,

Proof: From the relation between Q¢ and Q' we have

1

F(Q%\) = —

F(QE,N).

A Q-basis for Q¢ is in one-to-one corrspondence with G-orbits Gm of non-zero mono-
mials m € Q.. Thus we have

F(Q/TG, )\) — Z/\deg(m)_
Gm
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Given a monomial m = []; (y(f‘))m', we will say its support is the square-free monomial

supp(m) = [1; yJ () Notice that two monomials m,m’ are in the same G — orb:it if and

only if G'supp(m ) Gsupp(m’) and deg(m) =deg(m’). Thus we have
FQSNy = X X

Gm Gm!
m square—free Gsupp(m/)=Gm

Z )\deg(m)
P s

m square—free

T {s)
— Z # {Gm /\deg H H } . Hs:l HIEJ,' )‘l

s=11el; ey [Ties, (1 — /\fs))

Now if we convert the label sets J; € {1,...,n—1} into subsets J; C S (using the scheme
discussed above), then the previous proposition implies

#(Gm A9 = [T TI M} = an, o (B((S0),78)/A7(G))

and hence

FQEN= Y an.a(B(S),rs)ar(e)—t=ile ik
' Jreendr C{L,n=1} v [15=1 HzeJ,.(l—A§s))

Bringing this over a common denominator (and a little algebra) gives

1 Yoo Bia (B((SR)7,rS)/AT(G)) fI AP

1 M
T (1 =) 5 s s=11€J,

Q7)) =

and combining this with the first sentence of this proof gives the result.m

Corollary 4.2.4 Let W/ C S, be a reflection subgroup. Then

' 1
F(QY',)) = SOOI I A
e (1= 2 o Sohesn s=11en(on)
I(or- o) 0W!'=0
and . .
F(RY' ) = =—— - (1) ymailed
( ) 1=1 HJ:l(l - (t(‘]))t) (o1 Z H

I(gy. 0 )NW/=0

where maj(o) = 3 (i i+1)ep(o)? 18 called the major (or greater) index of the permutation
om

Having found one of our “nice descriptions” of R, we now look at the other. The
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following two theorems may be proven as straxghforward extensions of the analogous
results for the » = 1 case given in [GS].

Theorem 4.2.5 (cf. [GS], Theorem 9.2) If vi,...,v. € QF are homogenous and
form a basis for QF as a free module over the subalgebra Q[O(J)]. . then
1=1,

yeres T

m = T(’h), = T(%)

form a basis for RS as a free module over the subalgebra

Qlei(«")]

1,..,n .B

=
J=1,..., T

Theorem 4.2.6 (cf. [GS], Theorem 6.2) Let £((S,)",rS)/A(G) = iy [Fi, M;] be
a shelling, and for F € X((S,)",rS)/A(G) let

where Gm is the orbit of monomials in Q, corresponding to the orbit of faces I'. Then
v = SC(F), ..., v = SC(F,) form a basis as in the hypothesis of the previous theorem.

We are now but a definition away from our goal.

Definition: Given J = {(¢; iy + 1),..., (s 4+ 1)} C S and 0 € S, , let

"7’_(]])(0') = y¢]71""7\'1 yf,l,_.c,,.z T yil...ail €Q,

and let '
Vit (01, 02) = A5 (01) 45 (o)
and
Ny rndi (01, 00) = Ty, 0, (01, 00)).

Let S¢ denote the symmetrization operator defined in the previous theorem.
Theorem 4.2.7 Forr = 1,2 the set
{SWl7D(w1),...,D(wr)(arar~1 0 01,0:0,1 02y 00 vy UT) . I(wrwr—l v wl) N Wl = ®}

form a basis as in Theorem 4.2.5 for Q¥', and hence their images under T' (the corre-
sponding n’s) form a basis for RV,

Proof: Since Theorem 4.1.6 gives a shelling of X(W7,rS)/AT(W') for r = 1,2, we can
apply Theorems 4.2.5 and 4.2.6, yielding the result.m

Example: Let n = 3,r =2, W' =W = G5, ertmg the permutation ¢ = (1 2 3)

a1 0203
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as 010203, and putting a dot between o, 0:4y iff (1 ¢+ 1) € D(0), we have the following
table: '

[(w%i’%"\yz}:@ (wowr,we) S 7D(w1)D(W2)(w27~U1,w2) SY D (wn),D( )(wzwl w2)

(123,123) (123,123) S"' s
(13-2,13-2)  (123,132) Sy Dy sV %g%@ ()
(2-13,2-13)  (123,213) SW'y{Hy ) SW'z{Ng{
(23-1,3-12)  (123,312) SW’yg’y:(f’ S MMz
(3-12,23-1)  (123,132) SW' )y SW' (07 ()
(3-2.1,3.2-1) (123,321) syl yg)y;(f)ym Sz (” 2V 7B ()

From the previous theorem, we conclude that the symmetrized monomials in the third

column form a basis for Q3° as a free module over Q[Gtm] j=12 , and those in the fourth
t=1,2,3

column form a basis for R3® as a free module over Q[e;(z(9)] ;=12 . Notice also that the
1=1,2,3

data about descents shown in the first column verifies an instance of Corollary 4.1.5.
Conjecture 4.2.8 Theorem 4.2.7 holds without the restriction to r = 1,2.

This conjecture cannot be proven in general by appeal to Theorem 4.2.6, since we have
seen in an earlier remark that %((S,)",rS)/A"(W’) may be non-shellable. However,
Garsia and Stanton prove for 7 = 1 (and it easily generalizes to all r), that the conclusion
to Theorem 4.2.7 is equivalent to the weaker hypothesis that £((S,)",rS)/A"(W') =

t_[F:, M;] is a partitioning for which the incidence matriz

Lif F; < M;

4 —
(miyj)i,jzl where My = { 0 else

is invertible. It is clear that [['_,[Fi, M;] is a shelling exactly when (m;;) is upper
triangular (and hence invertible, since m;; = 1).

Admittedly, the evidence in support of the invertibility of (m; ;) for r > 3 (and hence
for the above conjecture) is small, since there are only two special cases for which we can
prove it:

1. For W' = 1, since in this case ©((S,)",7S)/AT(W') = £((S,)",S), and then the

above partitioning is the same as the shelling of Theorem 3.4.5.

9. Forn =2 and W/ = W = S,, by an ad hoc induction on r (which we mercifully
omit).

Remark: Forr = 1,2 and W = W = 5, , Theorem 4.2.7 gives an explicit description
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of a ring considered by Solomon in his invariant-theoretic proof of Gordon’s Theorem. To
be precise, in the notation of Theorem 4.12 of [So3], if we take G =1, W = C,p =1, and
Y] = Xi, then Theorem 4.12 (Gordon’s Theorem) asserts that a certain formal power
series P, has non-negative integral coefficients. The proof proceeds by showing that P, is
the Hilbert series of a ring which Solomon calls I(T™C"™ ® W"). With the above choices

for G, W, p, Y}, this ring is the same as (in our notation) the ring
R (ei(29))

Thus Theorem 4.2.7 gives a Q-basis for this ring if n = 1,2, and the succeeding conjec-
ture asserts the same for all n.

Remark: All the results of this section have analogues for Weyl groups W other than
S, . For information on this, see [GS], Sections 8,9.

4.3 Alternating subgroups and their diagonal em-
beddings |

In this section we examine quotients by another class of subgroups, related to reflection
subgroups.

Definition: Let W’ be a reflection subgroup of W. The alternating subgroup E' of W’
is defined by E' = {w € W : sgn(w) = 1}. For example, if W/ = W = S, , then E' is
the subgroup of all even permutations in .S, .

For the remainder of this section, let (W, S) be a finite Coxter system, W' a reflection
subgroup of W, and E’ the alternating subgroup of W’. We now propose to study
quotients Z(W7,rS)/AT(E") , just as we did for Z(W7,rS5)/A™(W’) in Section 4.1. We

need one more piece of Coxeter group theory before we can proceed.

Definition: The longest element wq of W is the unique element of W satisfying I(wg) =
dt (ie. we®t = —®F). We will also need the fact that w} = 1 (see [Bo], Chapitre VI
Section 1, Corollaire 3 for facts about wg). Since W' is a Coxeter group in its own right,
it also has a unique longest element (which we will call w)) satisfying I(wp) "W’ = O,
Of course, we also have wj? = 1.

Example: For W = S, , wo = (Tlmzl e T{) For W C W = S, , if W’ corresponds to

the partition 7 of {1,2,...,n} , then w) is the unique permutation in W' that has the
numbers in each block of 7 in decreasing order. E.g.,if n = 6 and W’ = S{1,451 X S{2,63 ¥

- 123456
Siay then wh = <563412)'
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For the remainder of this section, we fix a particular reflection ¢t in W' (i.et € W'NT).

Proposition 4.3.1
A (P(W")) 1T two A, (—P(W"))

is a fundamental domain for the action of E' on V", i.e. every orbit E'f of a vector
f € V" has a unique representative in the above set.

Proof: First we show that the above union is indeed disjoint. Suppose not, i.e. let
e € A (P(W')) NtwpA,(—P(W")) . Let t = rp with B € 93/, and let o = w)(8) € =P,
(since wi®fy,, = —®f,). Then we have

(ﬂve> = _<t(ﬂ)ae> = —<tw(/)w/0(:6)>e> = _<tw6(a)’e> = —<aaw6t(e)><ﬁ 0

since e € twpA,(—P(W’)) and @ € —P(W’') N —d*. But (8,e)<, 0 contradicts e €
A, (P(W")) , since 8 € ®},..
Ezistence: Given E'f, let €' be the unique representative of W’ f which lies in A, (P(W"))
(and whose existence is guaranteed by Proposition 4.1.1). If ¢ € E'f, then let e = ¢
and we are done. Otherwise ¢ € W'f — E'f, so let e = t(e') € E'f. We claim that in
this case, e € twj A, (—P(W")) , i.e. wht(e) € A,(—P(W')) . To see this, let « € —D/,
and we have

(e () = () = (whla), )2 0
since wy(a) € @ and ¢ € A, (—P(W')) . We actually need the previous inequality to
be strict. But if it were not strict, that is if (wg(a),e’) = 0, then €' = ry (y(e’) € E'f,
a contradiction.
Uniqueness: Let er, e, € E'f both liein A, (P(W')) HtwyA,(—=P(W')) . We must show
€1 = €.
Case I: e; € A (P(W')) for ¢« = 1,2. Then e; = e, by the uniqueness statement in
Proposition 4.1.1.
Case 2: e; € twjA.(—P(W')) . It is easy to check that

e € tw) A, (—P(W") = t(e) € A(P(W")) .

Hence in this case we have t(e;),t(e;) € A, (P(W')) NW'f, so t(ey) = t(ez) and e; = e,.
Case 31 e1 € A, (P(W")) ,e2 € twy A (—P(W')) . We want show that this leads to a
contradiction. Since eq,t(eq) € A (P(W')) N W'f, we have ey = t(e;). On the other
hand, since ey, e2 € E'f, we have e; = ¢(ez) for some € € E'. We will get our contradiction
by showing that ¢ = ¢ (impossible since ¢t € E'). To see this, let Vi be the R-span of
&, and let 7 : V — Vi be orthogonal projection with respect to (-,-). Given a € ®3,,,
we have
(1) = (@ t(e2) = ey wfutt(en)) = (wh(a), wht(ea)) ¢ O

since wy(a) € —®3,, and wit(ey) € A.(—=P(W")) . Thus
(0 w(er)) = o, m(Hea)))>c 0 Var € By,
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and since W’ preserves Viy: and commutes with 7, this means
<a’ 577(62» = (a,tﬂ'(eg)>>5 0 Va € @?;V"

But @3, is a positive root system for W’ on Vi (Appendix, Proposition A.0.9), and
hence by Lemma 4.1.2, we have e = t.m

Example: The previous proposition is easy to understand when W = 5, ;| and particu-
larly simple when W/ = W = S, and r =1 (although the more general case of W’ and
7 is very similar). In this case, the proposition says that given (fi,..., f,) € R", we can
either use an even permutation € to get fo1) > ... > feq) (ie. €(f) € A(P(W')) ), or
else this is impossible. If it is impossible, then all of the f;’s must be distinct, and by an
odd permutation o we can get fy(1) > ... > fy(n). Hence if we fix ¢t = (12), the using the
even permutation to we can get

fio(2) > Fioq) > fro(3) > fro@) -+ > fio(n)

ie. ot(f) € twgA(—P(W")) .

Theorem 4.3.2
S(Wr,rS)/AT(E') =

H H[AT(E/)wrwr_l B -wiWS_D(wl.), Ar(El)wer_l s w,,'I/V@]
=1

(wy,..., wr)
I{(wr-wy)NW/ =0

H H[AT(E')twéwrwr_l o w; W pwy, AT(E twpwrw,_y - - - w; W)

(wy,ens wp) =1
I(wrmwl)nW’=<b"tvl

15 a partitioning.
Proof: The previous proposition asserts that
VIIE'={E'f: f € A(P(W') MiwgA.(-P(W)) }.
Since
L(=PW") ={weW: -0}, Cwdt}={weW: I(w)nW =3o},},
we conclude from Proposition 3.4.1 that

VIIE'={E'f:fe ][I A(wd*) I [T twhd (wdt) }.

w:I(w)nW'=0 w:I(w)ﬂW’:@;V,

Proceeding as in the proof of Theorem 4.1.3, we apply Theorem 3.4.2, then apply the
map E'f — F(E'f), and use Lemma 3.2.1 to reach our conclusion.m
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Corollary 4.3.3
Bya (E(WT, 0 S)[AT(E) ) = #{(wr, .. wp) t I(wy - wn) VW =0 or Oy} m
Corollary 4.3.4
(0, wr) s D(we) = Jiy I(w, - wy) VW =0 o7 B} =

#{(wy,...,w): D(w;) =S = J;, [(w, - --w)) "W =0 or &F,}
forall Jy,..., J, C 8.

Proof: By definition, sgn(e) = 1 for all € € E’. Apply Proposition 2.4.4 and the previous
corollary.m

Remark: The exact same remarks as after Corollary 4.1.5 apply to the previous corol-
lary.

When r = 1, we can put a shelling order on the above partitioning. But prior to
doing this, =t us to write the partitioning more succinctly. Note that

u € L(—P(W")) —&%, C ud*t
whd3, C udt
o, C whud™t
Hwju) N W' =10
u € wyL{P(W"))

RIS (X

Thus for r = 1 we can rewrite our partitioning as

(W, S)/E' = H [E'st_D(w), E/qu)] i [E’tU)WS—D(w(’)w), Eliwﬂf@]
weL(P(W"))

= I [E"uWs_p(p(w)), £'uWo]
weL(P(W))LLLL(P(W'))

where v : L(P(W')) LL¢tL(P(W')) — W is the set map defined by

[ uwifueL(P(W)
p(u) = {w’otu if u € tL(P(W"))

Theorem 4.3.5 Forr = 1, the above partitioning is a shelling, if we order
{ue LP(WY)TLtL(P(W")}
by any linear eztension of Bruhat order <p on {(u)}uec(piw ))iecip(w))-
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Proof: We need to show that if
uy,ug € L(P(WH) L tL(P(W'))

and
E'uy C E'usWs_pyp(uy)),

then ¥ (u1) <p 1p(uy). There are four cases:

Case I: uy,ug € L(P(W')). Then we have E'u; C E'u;Ws_p(,,) which implies
Uy € WurWs_p(u,). Henceu; <p uy, since uy is the least element of W'uy Ws_ p(y,) under
<p (Appendix, Proposition A.0.12). But u; = ¢(u;) for it = 1,2 and thus ¢(u1) <g ¥ (us).
Case 2: uy € L(P(W')) ,uz € tL(P(W')) . Then we still have uy; € Wu1Ws_p(u,), and
hence wjus € W'uiWs_p(u,), 50 w1 <p wyug. But uy = P(u1), woug = P (uz).

Case 8 uy,ug € tL(P(W')). Let u; = tv; for ¢ = 1,2. Then F'uy € E'usWs_p(ym))
implies E'tvy C E'tviWs_pusey)- Let tvy € etvWs_p(yy) for some e € E'. Then we have

te v, € viWs_Dp(wju) = whte vy € wov1 Ws_D(wlu) = Wov1 <B whte v,

since wou; is the least element of wouWs_p(us.) under weak order <g and hence under
<p. We also have wjte 't <p w)}, since wy is the greatest element of W' under <p.
Hence wite~ v, <g wjvy, since I(vy) N W' = () implies that multiplication of elements
of W' on the right by v, preserves <p (Appendix, Proposition A.0.10). Thus

() = wyvy <p wpte vy <p wyvy = P(ug).

Case 4: uy; € tL(P(W') ,uy € L(P(W’)) . We will show that this leads to a contradic-
tion. Let uy = tvy. Then E'uy C E'uiWs_p(y(u,)) implies E'uy C E'tvyWs_p(uye,)- Let
up = etvyw where e € E',w € Ws_p(ugwy). We then have

Uy = etvw
telu, = vw
wote™ug = wivw
I(whte ™ ug) = I{whvw)

If we let 4+ denote the operation of symmetric difference of sets, then applying Lemma
A.0.11 of the Appendix to the last equation, we get

I(wh) 4+ whI(te™ )w) + whte ™ I (uy)etwl = (I(wh) + whl(vi)w§) L whvy ] (w)v] twy
If we intersect both sides of the above equation with W’ and note that

I(v) "W = I(u)) N W' = §
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implies
wh I (v)wy N W' = wite ™ I (ug)etw) N W' = @,
we get

Ty — (wol(te™ wo N W) = Ty T (whvy I(e)vy wh N W)

This implies wyl(te ™ )wg N W’ = 0, and hence that I(te™))N W' = 0, so t = e. But
t¢ E' e € F', so this is a contradiction.m

Corollary 4.3.6 S(W,S)/E' is CM/k for all fields k and homeomorphic to an (#S —
1) — sphere.

Proof: See the proof of Theorem 4.1.8.&

Remark: Similarly to Theorem 4.1.6, one can give examples to show that Theorem
4.3.5 is tight in the sense that L(W7,rS)/A™(E') can be non-shellable for all r > 2. For

example, let (W,S) = (S5, {(12),(23)}), W' = W = S5, B' = ((}2)) = Zs. It is easy to
see that E' gives a free Zz-action on L(W,S) , and hence A"(E") gives a free Zs-action
on (W, rS) for all r. Hence for r > 1, since X(W",rS5) is a (2r — 1)-sphere and simply-
connected, the quotient map Z(W7,rS) — L(W7,rS)/A"(E’) is the universal cover for
S(Wr,rS)/A™(E") . We conclude that the fundamental group of L(W",rS)/A(E’) is
E' = 7, and thus Hy(S(W",7S)/A™(E') ) = Zs. Thus for r > 2, B(W",7S8)/A™(E') can
not be shellable, since it is not C'M/k for fields & of characteristic 3.

It is now a simple matter to apply the results (and notation) of Section 4.2 to prove
the following results about invariants.

Theorem 4.3.7 Let W' be a reflection subgroup of S, , and E' C W' its alternating
subgroup. Then

. 1 r
F(QY' )) = . > I I
LT = A L Shess atiiebion
I(oy--01)NW!=0 or ‘tjvl

and
' 1 r '
F(RTE yA) = — (t(S))maJ(oe)..
=1 j:l(]‘ - (t(]))’l) (01»-»§)€5,ﬂ sz]Il

I{op 01 )NW/'=0 or (bt‘V/

Theorem 4.3.8 Let W', E' be as in the previous theorem. Then the set
{SE,AI/D(U)(O') . I(U) M W, = @ or (D?’-V’}

form a basis as in Theorem 4.2.5 for RE', and hence their images under T (the corre-
sponding n’s) form a basis for RE' m
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Example: Let (W,S) = (S, {(12),(23),(34)}), W' = ((13),(34)),E" = ((134)). We
know that X(W,S) is the barycentric subdivision of the boundary of a tetrahedron
with vertices labelled 1,2,3,4. In order to understand this particular E’-action, pic-
ture 2(W,S) as the suspension of a circle C, in which the circle C' is the boundary of
the triangle with corners 1,3, 4, and the suspension points are the vertices labelled 2 and
134 in the barycentric subdivision (see Figure 1). Since E’ fixes both suspension points,
and acts simplicially, it is not hard to see that in this case X(W,S)/E’ = Susp(C)/E’ =
Susp(C/E'). 1t is easy to see that C'/E' is a 1-sphere, and hence that %(W,S)/E’ is the
suspension of this 1-sphere, i.e. a 2-sphere in accordance with Corollary 4.3.6.

If we choose t = (13), then using the same notations as in the example of Section 4.2,
we have the following table:

w: [(w)yNW =10 w S® yp () (w) S¥ v (w)

1234 1234 SE'1 SF'1
2.134 2134 SF'y, SF' ¢,
13 .24 1324 SE Y13 SF 2123
134 -2 1342 S y1a4 SE' 217524

whw: Iw)NW' =0 tw SEI’YD(w;,w)(tw) SE/’YD(w{)w)(tw)

24 .31 2314 SE yaayias SF'¢y22a;
4.23.1 3214 SF'yspas SP' p12q02
4.3.12 3142 SE yayr3 S gy 22

4.3.2.1 3124 SF'ysyiay10s SF ¢2zqal

From the previous results, we have that the symmetrized monomials in the third column
form a basis for QF' as a free module over Q[0;];=1 234, and those in the fourth column
form a basis for RE' = Qlz1, z2, 3, x4]E' as a free module over Q[e;(z)]i=1,2,3,4. Notice also
that the data about descents shown in the first column verifies an instance of Corollary
4.3.4
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c/e! T(WSIE
= Susp(C/E)

Figure 4-1: An example of £(W,S)/E’
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Chapter 5

Quotients by a Coxeter element

5.1 Introduction and definitions

In this chapter, we study quotients 3(W,S)/G for another class of subgroups GG, namely
cyclic subgroups generated by a Coxeter element.

Definition: Let (W, S) be a finite Coxeter system. We say ¢ € W is a Cozeter element
if ¢ = 5189 - - 8, for some ordering of S = {sy, $2,...,8m}. It is a fact (see [Bo], Chapitre
V, Section 6) that for W finite, any two Coxeter elements are conjugatein W,i.e sy sp,
is conjugate in W to s,, - -+ 8, for any permutation o € S,,. Thus for our purposes, we
can fix one ordering of S and hence fix c for the remainder of the chapter. The Cozeter
number h is defined to be the order of any Coxeter element, i.e. h = #(c). The ezponents
of W are defined to be the unique integers

1<y << .<ep < h

2mie

such that {e " };=1,..m are the eigenvalues of any Coxeter element ¢ when c acts in the

canonical representation of W as a reflection group.
Example: Let (W, S) = (5, ,{(12),(23),...,(n —1n)}) . Then
c=(12)(23)---(n —1n) = (12 - - n),

an n-cycle. Hence the Coxeter number h is n. To find the exponents, recall that
in its canonical representation, S, acts as permutations of the coordinates in V =
{(fi,.- ., fn) € R* : = f; = 0}. The characteristic polynomial for ¢ acting on V is

n

then %, so ¢’s eigenvalues are the non-unit n** roots of unity, and hence

{e]}]zl,,m = {1’2’ A )n - 1}'
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f }
. Coneter |
(W,S) Coxeter Dtagmm S umber % EXQC'nehtS
|
AL O—g— =+ TO—O0—0 |  n¢! L 5a3,..,n
|
g
|
B, o—o— v+ s —o—oto an ; 1,35, ... an-|
Dn OO 2 ¢ —'O-°<z c'.l(n-|) . 43,5,...,dh-3, n-|
E, D I o ([4,5,7,8,9
: o
“‘.I. E7 O—O’i" 18 L5, 7,9,0,13,17
_ & Qe @ e O OO ©
| Eg i 30 L7,0,13,17,19,23,
; ” '
Fy O—0—0—0 ] 1,5,7,11 ,
1
H3 o———o—s—o O 1,8,9
S
Hy o—=o—0——0 30 L, 19,29
Lm) oo m Lomed
|

Table 5.1: Classification of irreducible finite Coxeter systems

Definition: The Coxeter system (W, S) is irreducible if one cannot partition S = 51115,
in such a way that every element of S; commutes with every element of 5,
Clearly every Coxeter system can be decomposed uniquely as

(W,S) = (Wy x - x W,, §; II... 1L S,)

where each (W;, S;) is an irreducible Coxeter system. Notice that a Coxeter element ¢
of (W,S) can in this case be written as ¢ = (¢y,...,¢,) where ¢; is a Coxeter element
of (W;, S;). Irreducible finite Coxeter systems will be easier for us to work with, in part
because they have been completely classified (see Table 1).

Proposition 5.1.1 Let (W,S) = (Wy x--- x W,, S O---1S,) with (W, S;) finite and

irreducible. Then

1. (W, 8)/{c) is a pseudomanifold ezcept in the following instance: (Wi, S;) = A;
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for some i (i = 1 without loss of generality) and for alli > 1, (W;, S;) has an odd
Cozeter number (hence from Table 1 we must have (W;, S;) = Agx or (20 + 1) for
i>1).

2. (W, S)/{(c) is an orientable pseudomanifold if and only if #5 is even.
Proof:

1. By Proposition 2.4.2, %(W, S)/{c) is a pseudomanifold except when t € (c) for
some reflection t, so assume t = c* for some k. Decompose ¢ = (c1,- -, ¢, ), with ¢
a Coxeter element of (W;, S;), so t¥ = (c¥,...,c*). We will use the following fact
(see [Bo], Chapitre V, Section 6): if (W,S) is irreducible and finite and #S5 > 1,
then there exists a 2-plane in V on which ¢ acts as a rotation through an angle of
2x Since t is a reflection, its multiset of eigenvalues is {—1,+1,+1,...,+1}. By
the above fact, for each i with #S; > 1, either ¥ will either have two non-unit
eigenvalues, or else ¢ = 1. Thus in order to match ¢’s eigenvalues, we must have
#S; = 1 for exactly one 7 (and we may choose i = 1 without loss of generality).

So (W1, S1) = A, and we have ¢ = (s,¢p,...,¢,) and t = (s¥,ck, ..., cF). Again to

T

match t's eigenvalues, we must have ¢& = ---cf = 1 and s¥ = s. Thus k must be
odd, and ¢, ..., ¢, must have odd orders. But this is exactly the instance described
in 1.

o

By Proposition 2.4.2, 3(W,S)/{c) is an orientable pseudomanifold if and only if
sgn(g) = 1 for all g € {(¢). But sgn(c) =sgn(s1-- sm) = (=1)*°, so this occurs
exactly when #5S is even.m

Corollary 5.1.2 If#5 is even then
Bi(Z(W,5)/{c) ) = Bs—s(E(W,S)/(c) ) ¥J C S.

Proof: Apply Proposition 2.4.4 along with the previous proposition. =
One might ask if there are any other relations that hold among ;s for X(W, S)/(c) .
One way in which they can arise is from symmetries of the Coxeter diagram.

Definition: Let (W,S) be a Coxeter system. The Cozeter diagram of (W,S) is the
graph with vertex set S and having an edge labelled m;; between node s; and node
s; if my; is the order of s;s; in W. When drawing the diagram (as in Table 1), it is
conventional to omit the edges labelled 2, and omit the labels on edges labelled 3. A
diagram automorphism of (W, S) is a bijection ¢ : S — S such that for all 7,7, s;s; and
#(s:)¢(s;) have the same order in W (and hence ¢ is a symmetry of the Coxeter diagram
as a graph with lablelled edges). Because the pairwise order relations (s;s;)™7 = 1 form
a presentation of W as a group ([Bro], Chapter II, Section 4), a diagram automorphism
¢ induces a well-defined group automorphism W - W.

67




Proposition 5.1.3 Let ¢ be a diagram automorphism of the finite Cozeter system
(W,S). Then
Br(Z(W,8)/(c) ) = Ban(E(W, S)/{c) ) VJ C S.

Proof: We will show that
ay(B(W,5)/{c) ) = g (B(W,5)/(c) )VJ C S

and the result then follows. By the fact mentioned after the first definition of this section,
since ¢(c) is another Coxeter element, we have ¢(c) = u='cu for some u € W. Define a
map

¥ : W — {double cosets (c)wWy)}
by o )
p(w) = (7 (u)()wWy) = u - u ()ud(w)Wy(s) = (c)ud(w)Wy(a).

The first expression above for ¢ shows that it actually induces a well-defined map
1 : {double cosets (c)wW;} — {double cosets (c)wWy)}.

This first expression also shows that 1) is bijective (since ¢ is an automorphism), and so
we are done.w

When #5 is even, Corollary 5.1.2 tells us about a duality between £; and fs_; for
N(W,S)/{c) . Is there anything we can say when #5 is odd? In many instances, we still
have a form of weaker “local duality”.

Definition: Given a subgroup G of W and s € 5, we will say G is s-dual if

sgn|y-1Guwrws_, = 1 Yw € W.

Proposition 5.1.4 (s-local duality) If G is s-dual for some s € S, then (abbreviating
B1(2(W,S)/{(c) ) by Bs) for all J C S — s, we have that

By + Brys = Bs—g + Bs—i—s.

Proof:

Byt Bres = S (D) Hgpr 4 3 (—1)#UT Ry

KCJ KCJ+s
— Z (_1)#(J+S—K)aK
sEKCJ+s
= > (-D)*Hag,,
LcJ
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Now by definition

arys = #{double cosets GwWs_r_, C W}
S douste cosets #{double cosets GwWs_r_s C Gu;Ws_,}.

Gu;Wg_ CW

l

We interject here a group-theory lemma that will help us to re-interpret this sum.

Lemma 5.1.5 Let W be a finite group with subgroups G, H,I and H C I. Givenz € W,
we have

#{(z7'GzenNzH CT:z€l} =#{GyH C Gzl :y e W}

Proof of lemma: Define a set map
Y1 — {GyH C Gzl :y € W}

by 9(z) = GzaH. Clearly ¢)(z) depends only on the double coset (27*Gz N I)zH, and
hence 1 induces a well-defined map ¥ between the two sets in the statement of this
lemma.

Y is surjective: Given GyH C GzI, we have y € GzI and hence we can write y = gzz
for some z € I. Then ¢(z) = GzaH = GyH as we want.

?,Z; is injective: Assume Gzz\H = GzxyH for some z;,z; € I. Then z, € 27'Gzz.H,
so we can write ©; = yzoh with v € 27'Gz,h € H. But then v = z;h7'z;! € I, so
z; € (27'Gz N I)zyH as we want.m

Continuing the proof of Proposition 5.1.4, we apply this lemma with W =W, G =G, H =
Ws_p_s, ] = Ws_,, and z = w; to conclude that

Opgs = Z #{double cosets (wflei NWs_s)wWs__s C Ws_s:w € Ws_,}

double cosets
Guw;Wg_ ,CW

= > a(E(Wses, S — s)/w; Guw; N Ws_,).
GuiWsaCw

Therefore

Br+Brrs = D(=DFVD ST (B(Ws_y, S ~ s) /w7 Gw; N Wa_,).

LCJ double cosets
- Guw;Wg_ ,CW

= Y B(E(Ws_y, S - 8)fwiGwi 0 Ws_,).

double cosets
GuwWg_ ,CW

= S Bseg—s(EWsos, S — 8)/wi Guw; N Ws_y).

double cosets
GuwiWg_ ,CW

= Bs—g-s+ Ps-J.

The second-to-last equality comes from the assumption that G is s-dual (and Proposition
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2.4.4). The last equality follows from reversing all the previous steps.m.
Our next result asserts that among finite Coxeter systems and s € S, the property of
(c) being s-dual is the rule rather than the exception.

Proposition 5.1.6 Let (W,S) = (W) x .- x W,, S 1L ..- 1 S,) with (W,, S;) finite and
irreducible. Let s € S;. Then (c) ts s-dual except when #5S is odd and one of the following
holds:

LWy, S) = Anor 2(S, ,{(12),(23),...,(n—=1n)}) and s=(5 j+ 1) where j has
odd order (additively) in Z,

2. (W, S;) = L(m) with m odd

3. (W;,S;) = Eg and s is either one of the simple reflections which are farthest from
each other in the Cozeter diagram of Eg (see Table 1).

Proof: Suppose z € w™!{c)w N Ws_, for some s € S,w € W. Then z = wldw for
some [, and ¢ € wWs_,w™!. Clearly if #S5 is even then sgn(z) =sgn(c)' = 1, so (c) will
always be s-dual. Thus we may assume that #S is odd. Write ¢ = (c1,...,¢,) with ¢
a Coxeter element for (W, S), and write w = (wy,...,w,). From ¢! € wWs_,w™?, we
conclude that ¢! € w;Ws,_,w7!. This implies that ¢! fixes some non-zero vector v € V
(e.z. let v = w;(v') where v is constructed to be orthogonal to « if r, € S; — s). Hence
¢; iuust have some eigenvalue A for which A! = 1, which means (W;, S;) has an exponent
e for which le = 0 mod h. We now check cases using the data from Table 1.

Case 1. (W, S;) has even Coxeter number h, and all odd exponents e; (this condition
holds for B, Do, E7, Es, Fy, H3, Hy, I;(2m)). In this case le = 0 mod & implies that [ is
even and hence sgn(z) =sgn(c)’ = 1, so {c) is s-dual.

Case 2. (W;, S;) = Dypyr. If € is an odd exponent, then as in Case 1 we have sgn(z) = 1
so (c) is s-dual. If e is an even exponent, then e = m and A = 2m. Thus le = 0 mod A
implies { is even, and as in Case 1, {(c) is s-dual.

Case 3 (W;,S;) = An1 2 (S, ,{(12),(23),...,(n —1n)}) . Here we have c = (12-- - n)

and

¢ = (11+12l+1---(-7;—1)l+1) (2l+22l+2---(?—1)l+2>-~-(n2n3n---n)

:w<123---ﬁ> <3+1 Ly ---23).--<(1—1)3+1 (=
1)\l l l ! !
for some w € W. Thus ¢! € w™'Ws_,w for some w exactly when s = (j j + 1) for some
j with order [ (additively) in Z/n. As before, (c) will be s-dual except if [ is odd (since
sgn(z) =sgn(c)'), which is exactly the first exceptional case in the proposition.

Case {: (W,,S;) = I(m) with m odd. IL,(m) is the dihedral group of order 2m with
generators {s1, sz} and relation (s152)™ = 1. Since ¢; = 152, in this case we can have
¢t € w;Ws_,wi! if and only if [ = m. Hence sgn(z) =sgn(c)™ = —1 since m and #S are
odd. Thus neither of (¢) is neither s; — nor s,-dual. This is exactly the second exceptional

-I—2---n)w—1
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case.

Case 5 (W;,S;) = Es. Here (W, S;) has exponents 1,4,5,7,8,11 and Coxeter number
h =12. Asin Case 1, if e is an odd exponent then (c) is s-dual. Since the even exponents
e = 4,8 both satisfy 3e = 0 mod 12, we need only check for which s € 5; do we have
¢ € w;Ws_,w! for some w; € W;. Using the results of [Cal, one can show that this

occurs exactly when s is as described in the third exceptional case of the proposition,
but we omit the details.m

Example: Let (W,S) = (S, {(12),(23),(34)}). By brute force, one may calculate the
table below for (W, S)/(c) .

L oy Py

0 11

(12) 1 0

(23) 2 1

(34) 1 0
(12),(23) 3 1
(12),(34) 3 2
(23),(34) 3 1
(12),(23),(34) 6 O

Alternatively, one could use the relations given by Propositions 5.1.3 and 5.1.4 to reduce
the work. There is a single non-trivial diagram automorphism ¢ : (12) — (34),(23) —
(23), so Proposition 5.1.3 tells us that

B(12) = B(aa)

B2y, 23) = Bi2s),(34)-

By our last proposition, we see that for all s € S, (¢} is s-dual, and hence we have

Bo+ Bazy = Bs)(2e) + Buz),(23),(39)
B23) + B(12),(23) Baay + Bray,34)

Bo+ Basy = Brzyee) + Baz),23).(34)

Bazy + Bazy,esy = Baay + Bes).e4)

( )

) 23)

Bo+ Baey = Brz),e3) + Biz),23),(39)

Bz) + Bazyeey = Bs) + Bs) ey

This gives a total of 8 linear relations, however one can check that the last 4 are linear
combinations of the first 4. Since there are 8 (;’s, we only need to calculate 4 of them
in order to fill in the rest using these relations. Since we always have By = 1, and in this
case s = 0 (via Proposition 2.4.1), we only need to calculate 2 further 3;’s by brute
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force, e.g. B2y, Bas)-

5.2 Primitivity

It would be very desirable to have a partitioning or shelling of X(W,S)/(c) like the ones
in Chapter 4 for E(W",rS)/A"(W’) and X(W",rS)/A"(E’) . This however seems to be
a difficult problem. In fact the next example shows that £(W,S)/(c) is not in general
shellable, but even a general partitioning of %(W,S)/(c) has eluded us.

Example: Let (W,S) = (S, ,{(12),(23),...,(n —1n)}) with n prime. Then ¢ =
(12---n), and it is not hard to see (using the description of X(W,S)/(c) as the barycentric
subdivision of a simplex having vertices {1,2,...,n} ) that (c) gives a free Z,-action on
the sphere. By the same reasoning as in the example after Theorem 4.3.5, we conclude
that the quotient (W, S)/(c) is not shellable.

Even though ¥(W,S)/(c) has not been partitioned, there is a large “chunk” of
S(W,S)/(c) (the primitive part) which is in some instances more tractable.

Definition: We will say a face wW; of ¥(W,S)/(c) is primitive (with respect to c) if
cwW; # wWy unless ¢! = 1, or in other words, (¢) N wWyw™ = 1. We will say a
face (c)wWy of B(W,S)/{c) is primitive if wW; is primitive (this clearly only depends
on (c)wWj). We will say a vector f € V is primitive if ¢!(f) # f unless ¢! = 1, and an
orbit (c) f of vectors is primitive if f is primitive.

One can easily check that f or {(c)f is primitive if and only if F(f) or F({c)f) =
(c)F(f) is primitive, respectively. We will let X(W,S), i denote the subposet of
Y(W,S) consisting of all primitive faces wWj, and similarly for £(W,S)/(c)prim -

Our next proposition gives (in some cases) a fundamental domain for the action of
(c) on the primitive vectors of V.

Proposition 5.2.1 Let (W,S) be one of the infinite families A, By, Dy, Ix(m) of finite

irreducible Cozeter systems. Let
A={(bf) €W x V :bis a conjugate u"cu of ¢, and b(f) € A(bD*) }.

Then the map ¢ : A — {orbits (c)f': f' € V'} given by (b, f) = (c)u(f) is well-defined,
and a bijection onto {primitive (c)f': f' € V}.

Proof: To show ¢ is well-defined, we need to see that if & = u=lcu = v~lcv for some
u,v € W, then (c)u(f) = (c)v(f). But u=tcu = v~'cv implies vu™' commutes with c,
and it is known ([Ca], Proposition 30) that if (W, S) is irreducible then the centralizer of
cin Wis {(¢). So vu! € (¢} and (c)u(f) = (c)v(f).

The fact that ¢ is a bijection onto the primitive orbits for (W, S) = A, is a special case
of result of Gessel (mentioned in [Gel] and described in [Wa2], Proposition 2.1). We will
give Gessel’s construction of ¢!, leaving it to the reader to verify the rest of the details
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(namely that ¢(b, f) is always primitive, and that ¢=*({c)f') = (b, f) always satisfies
b(f) € A(b®*) ). We will then mimic this construction of ¢~! for (W, S) = B,, D,. The
case of (W,S) = I(m) is easy to check using the description of I,(m) as the dihedral
group acting on R?, with ¢ acting as rotation through 27”

Gessel’s construction of ¢' for A,_; = S, goes as follows. In this case, ¢ = (12---n).
Given (c) f' primitive with (f{,..., f.) € V,let w; for i = 1,...,n be the word of length
n defined by

wi = feT (f )i ()i T

(i.e. w; is the sequence of numbers that pass through the :** coordinate as one repeatedly
applies ¢! to f’, or in other words, w; is the word gotten by reading f’ starting from the
i*" coordinate and moving to the right with a wraparound from f! to f/). Rank these
words {w;}i=1,.» in lexicographic order from largest to smallest (primitivity of (c)f’
assures that no two of them are equal). Let r; be the rank of w;, e.g. if wy is third largest
lexicographically, then 7y = 3. Then u™! = (Tll e T’;) and ¢~ ({c) ') = (v teu,u™1(f")).

For example, let n =8 and ' = (1,2,2,1,4,3,2,4). We then have
wy = 12214324, wy = 22143241, wy = 21432412, etc.
and the ranking is

W5 2> Wg 2 We 2 W7 2 Wy 2 W3 = Wy 2> Wy,

_1 __ {12345678
Sou™ = (85671342) and

12354768

SV ) = (b, f) = (uTeu,u= (') = ((85671342) _ <38426715

) ,(4,4,3,2,2,2,1,1)) |

Notice in this example that f satisfies f; > ... > f,, and f; > fi;1 whenever (174 1) €
D(b), which are the same conditions as b(f) € A(bDT) .

We now vary this construction for B,,. Here W is the set of all permutations and sign
changes on the coordinates in V' = R"™, with simple reflections

s={@.e),.. mn-1,(" )}

and

c=(12)(23)---(nn—1)(n ):(12 Ll n>

—n 23 n -1

Given (c) f' primitive with (f{,..., f.) € V, again we let w; for 1 = 1,...,n be the word
of length n defined by
wi = fie T (f)ie (f )i )

i.e. w; is the word gotten by reading f’ starting from the :** coordinate and moving
g y g g
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to the right with a wraparound and persistent sign change after f.). Whenever the first
non-zero coordinate in w; is negative, we negate all of w; to make it positive. Rank these
words {w; }i=1,..n in lexicographic order from largest to smallest (as before, primitivity of
(c) f" assures that no two of them are equal), and let r; be the rank of w;. Next we put
signs on the positive numbers r; to get integers r; as follows. If f/ # 0, then 7. has the

same sign as f!. If f/ = 0, then let 7! have the same sign as r/_, if ¢ < n, and opposite
g 1 1 D g t+1 PP

sign as 7, if i = n. We then let v™! = (Tl, ") and ¢~ '({c)f") = (v eu,u"([f")).
1

’
Tn

For example, let n =5 and f' = (+1,0,-1,0,+2). Before negations, we have

wy = +10-1042,w; = 0—-1042—1, w3 = —1042—-10,wq = 04+2—1041,ws = +2—10+10

and we must negate wy, w3 to get wy = 04+10—241, w3 = +10 —2 4+ 10. The ranking is
Ws 2 Wy 2 W3 2 Wy 2> Wa,

so (r1,...,75) = (2,5,3,4,1). Then (r},...,75) = (+2,-5,-3,44,+1), so u™! =
(1 2 3 4 5)and

+2 -5 =3 +4 +1

1 2 3 4 5
ey 1) = (b, f) = (u™eu,u 2 (f :<< > 2,41, +1 ).
o) =00 = e = (1, 50 5 2 241,00
We now vary this construction for D,,. Here W is the set of all permutations and an
even number of sign changes on the coordinates in V = R", with simple reflections

S={(12),(23),...,(n n—1), ("‘1 " )>}

-n —(n-1

and

= ton-n (1) = (TS )

Given (c) f' primitive with (f{,..., f!) € V, we define the words w; and their rankings r;
as we did in the B, construction. The difference lies in the signs we put on r; to get the
integers r;. If r; # n and f/ # 0, then r! has the same sign as f/. If vl # n and f/ =0,
then there are three case depending on whether i <n—1,i=n —1, or 7 = n. The third
case cannot occur, since then w, = 000..., and hence r, = n. In the first case, let r} have
the same sign as r{,;, and in the second case, let them have opposite signs. This only
leaves r; undetermined when r; = n, and we let r; = £n so as to make the total number
of negative r! even. We then let u=! = (r1; e T';) and ¢ ((c) f') = (uteu,u(f)). For

example, let n =6 and f' =(-1,0,0,4+2,41,0). Then

wy = +100 -2 —1,w, =004+ 2+ 141,03 =0+2+1+10,
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wy = +2+ 14100, ws = +1 4+ 100 — 2, wg = 000000.
The ranking is
Wy = Ws 2 Wy 2 W3 > Wp 2 We,

s0 (ry,...,76) = (3,5,4,1,2,6). Then (r},...,r5) = (=3,+5,+4,+1,42, —6), so u™t =
(1 2 3 4 5 6) and

-3 +5+4 +1 +2 -6

1 2 3 4 5 6

#(c)f) = (b,f) = (uleu,u™!(f') = <(+2 354144 -6

) ,(+2,+1,+1,0,0,0)> .

The previous proposition suggests the following conjecture:

Conjecture 5.2.2 The map ¢ of the prevous proposition is a bijection as stated for all
irreducible Cozeter systems (i.e. it holds for the exceptional groups FEg, Er, Eg, Fy, H3, Hy
as well), and with a more unified proof.

Theorem 5.2.3 For (W,S) = A,, B,, D,, or I,(m), we have

S(W,S8)/(C)prim = H [<C>UWS—D(U“CU)’ <C>UW®]'

cosets {c)uCW

Proof: According to the previous theorem, if we let V/{c)
orbits {¢) f’ in V, then

be the set of all primitive

prim

V/{€) ppim = 1{c)u(f) : b is a conjugate uteu of ¢, and b(f) € A(bDT) }

= {{)u(f) : {()u € W,u cu(f) € A(utcud?) }.

Applying the map (c)f' — F((c)f') to both sides, and using Lemma 3.2.1 gives the
result.m :

Note that 5(W,S),rim and E(W, S)/(c)prim are only subposets of the simplicial posets
(W, S) and ©(W,S)/(c) respectively, and not simplicial posets themselves. Nevertheless
we can still define oy for both as usual, and then let §; = Ekrgj(—l)#(J‘K)aK.

Corollary 5.2.4 For (W,S) = Ay, Bn, D, or Iy(m), we have
B (Z(W, 8)/{(c)prim ) = #{b € W : D(b) = J,b conjugate to c}.
Proof: same as proof of Proposition 3.2.3.m

Remark: Note that the Coxeter element ¢ for (W7,rS) is the same as the diagonal
embedding A"(c;) = (c1,¢1,-..,c1) of the Coxter element ¢; for (W,S). Thus using our
standard multipartite techniques from Sections 3.4 and 4.1, we can soup up the proof of
Proposition 5.2.1 (replace all inequalities > by >.) and prove that the same proposition
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holds if we replace V by V" and A(:) by A,(-) . From this we can then deduce the
following multipartite analogues of Theorem 5.2.3 and Corollary 5.2.4:

LW, S8)/(€) prim = 1I 11 [Tlwrw,—1 -+ - w;Ws_pawg), wrwr—1 - - - w; Wp]

cosets {c)uCW (w1, wr)EWT =1

wr~~w1=u"1 clu

IB(le"y‘]T(E(WT’TS)/<C>pT’im) =
#{(wy,...,w) € W : D(w;) = J;,w,wr_y - - - wy conjugate to ¢;}.

Since we have a combinatorial interpretation for 8;(X(W, S)/(¢)prim ) in the instances
above, we would like to know when to expect some kind of duality like 8y = fs_;, as in
the fine Dehn-Somerville equations. Since (W, S)/(c)prim is not even a simplicial poset,
we cannot simply apply Proposition 2.4.4. Our strategy is to filter X(W,S)/(c) into
pieces according to their primitivity, and then use Proposition 2.4.4 on the pieces.

Definition: Let (W,S) be a finite Coxeter system (not necessarily irreducible) with
Coxeter number h, and a Coxeter element ¢. Given j dividing A, let

Yo = {wW; e (W, S) : dwW; = wW,}

o =2g -UZa
il

Note that X_p = (W, S)prim -

Proposition 5.2.5
B3(B(W, 5/ (ehpin ) = %E;u(d)ﬁj(zgg )
dlh

for all J C S, where u denotes the number-theoretic Mobius function ([HW], Section
16.3).

Proof: By linearity it suffices to prove the same result replacing 8; by ay on both sides.
Note that primitivity of wWj is equivalent to the property that {c¢'wWjy}iz,..» are all
distinct. Hence we have

ay(B(W,8) /() prim ) = 7asB(W,S)prim = %QJ(Eﬂz)-

1
h

Since Y¢; = [I;); X< implies aj(E¢; ) = Ly ay(X=;), we can apply Mobius inversion
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([HW], Section 16.4) to conclude that
Z H ( > aJ E(z )
ils

and hence
as(S00,5) ehin ) = 1 T (5 ) (B )

ilh

Replacing % by d gives what we wanted.m
Theorem 5.2.6 In the following instances, we have

Ba(B(W, 8)/(C)prim ) = Bs-a(E(W, S)/{c)prim )
forallJ CS:

Proof: The instances above all share the following property: for all d|k, the subposet
Y. 5 is a balanced simplicial poset triangulating a sphere and having label set R for
some subset R of S. In this situation, we have

Bi(Een) = 2 (-1)#Pag(S sy )
KCJ
= (-D)*R S (—1)FEag(Res )
KCJNR -

= (=D)* P B1p(Sen )

d

and hence by Proposition 2.4.4 applied to the sphere E<% , we have

Bs(Eg 1)#U ,BR nRr) (B¢

(—1)#
(—1)*=PBs_nnr(S

~(—1)E- R+#SJR)ﬁ
(1)

1)#E-Rgs (2 %)

) =

als

t/)
L.
~
[
IN
als
S

7




We will apply this equality in each of the cases above, and using explicit descriptions for
E(W,S) in each case.

1.

o

(W,S) = An_1,n £ 2 mod 4. Here ¢ = (12---n), h = n and ¢ has % cycles, each
of size d. X(W,S) is the barycentric subdivision of the boundary of an (n — 1)-
simplex, and thus has vertices corresponding to the subsets of {1,2,...,n} . From
this we see that ¥<n is the barycentric subdivision of the boundary of the (§ ~1)-

simplex having vertices corresponding to all unions of orbits of ¢d. Thus the label
set £ C S for Ugn has #R = 7 — 1, and we have

(=1)#E=B) = (_1)(-D=(G-D = (_1);’3(4—1)_
Thus

Br(S(W, S)prim ) = >_ 1(d)Bs(Ecn ) = D pld)(=1)34 Vs 5(Tcn ).

din din

Hence our conclusion will follow when u(d)(—1)%=Y = u(d) for all d dividing n.
One can check that this occurs exactly when n # 2 mod 4.

. (W,S) = B, with n even. Here ¢ = (1 2...nmlm ) h =2n, and ¢ acts differently

23" 0 -1
depending on the parity of d. If d is odd, then ¢ has Z cycles, each of size d, and
in which the total number sign changes in each cycle is even. For example, if n = 6

and d = 3 then
cz_;,__c4_(13 5)(24 6)
T T \5-1-3/\6-2-4

If d is even, then ¢ has an odd number of sign changes in each of its cycles.
Y(W,S) is the barycentric subdivision of the boundary of an n-cube, whose vertices
correspond to all signed subsets of {£1,...,4n} (i.e. all subsets of the previous set
that contain no pair ¢ and —¢). Thus when d is odd, we get a pair of opposite signed
subsets for each cycle of c%, and unions of these over all the cycles give the vertices

n

of ESQTn , which is the barycentric subdivision of the boundary of an %-cube. Thus
if d is even, the label set R of ¥ 2x has #R = 7, and (—1)#-B) = (—1)3-1), Ifd

is even, ¢ fixes only the empty signed subset, so #R = 0 and (—1)#-8) = (—1)".
Therefore, '

Bi(2(W, S)prim ) = 32 w(d)By(Zg

di2n
d odd

=+ Y ud)Bs(Zey)

df2n
d even

2 )

d

78




= Z p(d)(=1)atd- 1)55—J(E§2—I— )

d2n
d odd

+ > wd)(=1)"Bs-g(Z<z )

d2n
d even

Hence our conclusion will follow when pu(d)(—1)341) = u(d) for all odd d dividing
2n and p(d)(=1)" = u(d) for all even d dividing 2n. A bit of thought shows that

this is true exactly when n is even.

. (W,S) = D, with n — 1 a power of 2. Here c = (l.u”‘?”_l "),h = 2(n — 1)

27 " n-1 -1 -n

and d|h implies that d is a power of 2. One can check that 5 breaks up
into the singleton cycle (Z), and all other cycles having an odd number of sign
changes. %(W, S) is the subdivsion of the boundary of the n-cube having vertices
corrseponding to all signed subsets of {#1,...,%n} except for those of cardinality

n —1. Hence ¥_zn-1) is the O-sphere with vertices corresponding to the signed
- d
sets {n}, {—n}. Thus #R =1, and (=1)*5-F) = (~1)"=1. Therefore,

BJ(E(W7S)prim ) = Z /J‘ <_(_'_‘_l_ )
d|2(n-1)
= 2 wd(=D)"Bsos (B ann )
d|2(n-1)

But (—1)""! = 1 since n — 1 is a power of 2, so the result follows.

(W,8) = Iym. Then c is the rotation through 2 acting on L(W,S) , which is
the barycentric subdivision of a regular m-gon in the plane. It is easy to compute

directly that for (W, .S)/(c),rim We have

:B(b:ﬂS:Ov ﬂslzﬂszzl

where S = {s1,5,}.®

Remark: Once can do a similar analysis for (W7, rS),mm and get that Gy, =

-~

,,,,, s—J, for all J; € S in the following instances:

A,_1 and either r even or n # 2 mod 4

B,, and either r even or n is even

,S) =
,5) =
W,S) = D, and n — 1 a power of 2
,S) = L{m).
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Corollary 5.2.7 In the instances listed in the above remark, for all J; C S we have
#{(wy,...,w,) € W : D(w;) = Ji,w,w,_1 -+ - wy 18 conjugate to ¢} =
#{(wy,...,w,) € W : D(w;) = S — Ji,w,w,_1 -+ - wy 18 conjugate to c}.

Proof: Combine Theorem 5.2.6 (and its succeeding remark) with Corollary 5.2.4 (and its
succeeding remark).m

Remark: As in remarks after Corollary 4.1.5, Gessel (personal communication) has
shown how to prove an even stronger result in the case of W = S, using the theory of
symmetric functions. Presumably an analogous technique might work for the cases of B,

and D,.

Example: Let (W,S) = A; = (53,{(12),(23)}),r = 2. We can compile the following
list of pairs of permutations (w;,w;) such that wyw; is conjugate to ¢ = (123):

(123,23-1)  (3-2-1,2-13)
(13-2,2-13)  (2-13,13-2)
(2-13,3-2-1) (23-1,123)
(13-2,3-2-1) (3-12,123)
(23-1,23-1)  (3-12,3-12)
(123,3-12)  (3-2-1,13.2)

Note that they have been listed so that pairs within the same row have complementary
descent sets, illustrating an instance of the previous corollary.
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Chapter 6

Bp-parsets

6.1 Introduction

In this chapter we take a closer look at the theory of P-partitions for the Coxeter system
(W,S) = B, associated to the hyperoctahedral group. We will be most interested in
extending the generating function results known for posets P and P-partitions. (i.e. the
case of (W,S) = A,; see [St4]). We will also generalize the connection between a poset
P and its distributive lattice of order ideals.

Definition: Let

(W, 8) = (Bn, {(1‘2), (23),-..;(n = 1 n), (n_—nl ~(nn— 1)> })

be the hyperoctahedral group of all permutations and sign changes of the coordinates in
R". Let

d={te;:1<i<njU{re;tej:1<i<j<n}

where e; denotes the 1** standard basis vector. Let
Ot = {+e:1<i<n}U{+e;+ej,+e;—e;:1<i<j<n}

and
O={e;—eip1:1 <i<n}U{+e,}.

It is easy to check that (®,II) forms a positive root system for (W, ), which we will call
the usual realization of B,. When we talk about B,-parsets, this is the realization to
which we are referring. We will also abuse notation a bit by referring to the (abstract)
hyperoctahedral group by the name B,.

Recall that a labelled poset on {1,2,...,n} (i.e an A,_i-parset) can be represented
by a directed graph in which there is a directed edge from j to ¢ whenever : <p j. It is
convenient to have such a pictorial representation for B,-parsets.
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Figure 6-2: Configurations not allowed

Definition: Given a B,-parset P, we can represent it by its signed digraph D(P) defined
as follows. D(P) is a graph on vertex set {£1,...,£n}. D(P) has a loop labelled +
attached to node ¢ if +¢; € P, a loop labelled — attached to node ¢ if —e; € P, and no
loop attached to node i otherwise. D(P) has an edge between nodes : and j with a +
label near node i and a — label near node j if +e; — e; € P, an edge between nodes 1
and j with a + label near both nodes if +e; + e; € P, and an edge between nodes % and
j with a — label near both nodes if —e; — e; € P. An example is shown in Figure 1.

Remark: The terminology “signed digraph” was chosen to be consistent with the theory
of signed graphs developed by Zaslavsky [Za].

The axioms of parsets (Section 3.1) dictate that certain configurations of edges in
D(P) cannot occur, and certain configurations imply the existence of more edges. These
rules are summarized in Figures 2 and 3.

It turns out that many results about posets are special cases of results about B,-
parsets, provided that we “embed” the posets correctly as By-parsets.

Definition: Given an A,_,-parset P (i.e. a labelled poset on {1,2,...,n} ), we define
its positive embedding Pt as a B,-parset to be

Pt =PU{+e;,te; +e:1<i<j<n}
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B By = QB%‘ZU A

Figure 6-4: An example of B,-isomorphism

The action of the signed permutations of B, on a By-parset P may be visualized
on D(P) by permuting the nodes, and changing the signs of the near ends of attached
edges. The orbit of a B,-parset under this action is by definition its isomorphism class
(Section 3.1). Note that every parset P is isomorphic to one which is natural; simply
choose w € L£L(P) and then P is isomorphic to w™'(P) C ®*. An example is shown in
Figure 4.
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6.2 P-partitions, generating functions, and J(P)

In this section we investigate various generating functions of integer-valued P-partitions
for B,-parsets P. We also introduce the poset J(P) of ideals of P. Our notation and
exposition is intended to parallel that of [St4]. All of our results, when particularized to
the natural embedding Pt of a labelled poset P, yield an analogous result from [St4].

Definition: Let P be a Bj,-parset. We denote by Ay (P) the set A(P) NZ" of P-

partitions (see Section 3.1) with integral coordinates. For m € N, define

Az(Pim) = {(f1,.... fa) € Az(P) :|fil < m Vi}

Define F(P,x) to the formal power series variables z,,z_;,...,%,,z_, given by
FPx)= > x/
feAg(P)

where x/ = ], le;i,ib(fi)_i (e.g. x(=513=2) = 25 214322 ). Let Un(P, z) be the formal

power series in one variable z defined by

Un(Pz)= Y glhlt-ifl
fE.Az(P;m)

and
U(P,z) = limp—cUn(P,z) = 2 gillnl = F(P,X)|oyi—a-
fE.Az(P)

Define a poset
J(P)={f€{+1,-1,0}": (a,f) > 0 Va € P}

with partial order inherited from {41, —1,0}" by setting +1 > 0,—1 > 0 and extending
componentwise. We will call an element I € J(P) an ideal of P.

Example: Let P = {+e; — €1, +€3}. Then

Az (P) ={(fi,f2) € Z*: f, > f1, f > 0}

and
f2>f1,/220 fo>f120 f220>f
. p) n T
N (1 —332)(1 —.’IJlfCQ) (1—(13_1)(1—.’1,'_1332)
and thus 2 g
U(P,m): z n T _ z°+ 2z

I-oF (-oi-e) (-o)0-2)




(-1)1!) (%l)u)

rRYd

- : -1,0) (o,ﬂ) ICP)
{:., 6\*6}3)‘%%4% \ /

(0,0)

Figure 6-5: An example of D(P) and J(P)

D(P) and J(P) are shown in Figure 5.

The next definition shows how to relate a vector in Z" to a chain in {+1,—1,0}"
Definition: Given f € Z™, let {|fi|}i=1,.n. = {n1,..., 7k} with ny > ... > ny. Define a
chain ¢(f) of vectors I; < ... [ in {+1,-1,0}" by

oo ) osgn(fi) i |fil >
L(y) = { 0 else

for j = 1,...,n. For example, it f = (=5,41,+3,-2,-3) then {|fil}iz12345 =
{5,3,2,1} and ¢(f) is

(=1,0,0,0,0) < (=1,0,41,0,—1) < (=1,0,+1,-1,=1) < (=1,+1,+1, =1, =1)

One way to visualize this is as follows. Given f, make a histogram that has the
coordinates f; along the bottom, and a column of +1’s (depending on sgn(f;)) of height
|fi| above each f;, filling in zeroes elsewhere. Then Iy, ..., I} are the set of (distinct) rows
read from top to bottom. For instance, in the example above, we have

-1 0 0 0 0 « L
-1 0 0 0 O

-1 0 41 -1 =1 « I3
-1 41 41 -1 -1 « I

5 +1 43 -2 -3 « f

Given ¢ a chain [; < -+ < I in J(P), we will say ¢ is P-compatible if it satisfies the
following condition: for 0 < ¢ < k, when we restrict [;1; to the set S; of coordinates
where it differs from [; (setting Iy = @), we get a vector in A(P’;1) , where P’ is the
parset gotten by restricting P to those roots which only have non-zero coordinates in S;.
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The next proposition gives the basic relation between Az (P) and J(P).

Proposition 6.2.1 A vector f is in Ay (P) if and only if ¢(f) is a P-compatible chain
in J(P) 0.

Proof: A look at the histogram picture should convince one that {«, f) > 0 Va € P if
and only if (o, [;) > 0 Vo € P,Vi, ie. if and only if ¢(f) is a chain in J(P). It then
remains to show that (o, f) > 0 Va € PN —®t if and only if ¢(f) is P-compatible. One
can check this for the various cases of « € PN —®7, i.e. « of the form —e;, —¢; — ey,
or +e; — e, for 7 > k. We illustrate this for the second case; the others are similar. If
a = —e; —¢; then (o, f) > 0if and only if f;+ fi < 0. This is equivalent to the condition
that whenever [;4; and I; differ in coordinates j and & we have [;41(5) = Liy1 = —1,
which is one of the conditions for ¢(f) to be P-compatible.m

There is a further connection between Az (P), J(P), and the Coxeter complex
Y (B,,S). We use the explicit description ([Ti], Section 7.3) of ¥(B,, S) as the barycen-
tric subdivision of the boundary complex of the n-dimensional hyperoctahedron. The
vertices of £(B,,S) correspond to vectors in {+1,—1,0} and faces correspond to chains
of such vectors in our componentwise partial order with +1 > 0,—1 > 0. To compare
labellings, identify S with {1,2,...,n} by the indexing

s1=(12),82 = (23), ... 8ny = (n — 1 1), 85 = (_"n) .

Then one can check that for I € {+1,—1,0}, the vertex of ¥(B,, S) corresponding to [
is of type sy where #1 = #{i: I; # 0}, i.e. it a coset of the form wWs_,,,.
Recall (Section 3.3) our definition of

Ep={FeX(W,S) : F=F(f) for some f € A(P) }.
Proposition 6.2.2 The correspondence above gives a bijection between P-compatible

chains in J(P) — 0 and faces of $p.

Proof: Given a chain ¢ = ) < ... < Iy in {+1,-1,0}", it corresponds to the face F(c)
of (B, S) having I1,...,I; as vertices, which has barycenter bp() = 1(I1 + ... + Ii).
But we have

~

F(c) e Lp & bp) € A(P) & I <...< I is a P-compatible chain in J(P) — 0

by the previous proposition.m
Example: Let P = {4+e; — e, +e3}. £(B,,S) and £p are shown in Figure 6, along with

the correspondence of the previous proposition.
With this correspondence in mind, we make the following definitions.

Definition: Given J C {1,2,...,n} let
aj(P) = #{P — compatible chains I < ... < Iy in J(P) with {#L}i=1,.x = J}
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i) o;4) /s o
B ¢ <€ 7 P- compatible
R b7 chain in 3(P) face d Zp
(e /7 1,0) a
(e3 : 7 C")“) b
P (0,4+1) c
/ (1,0) < G1,4) A
V4 g (Di*‘)‘( ("E)*Q B
©,41) < (at+1) C

Figure 6-6: An example of the correspondence between P-compatible chains and faces of
Lp

Corollary 6.2.3
aJ(P) = Ot](Ep) = #{w € L:(P) D(’U)) Q J}
Bs(P) = Bs(Ep) = #{w € L(P) : D(w) = J}

Proof: The first equality on both lines comes from the previous proposition, and the
second comes from Corollary 3.3.2.
We return now to our generating functions.

Proposition 6.2.4
XII e XIk

F(P’X):Z(I—Xh)“-(l—xl")

where the above sum ranges over all P-compatible chains I} < ... < I in J(P).

Proof;

FPx) = > x/

feAg(P)

- ¥ ¥

P—compatible )‘GZ"
I < <IRE€HP) o(fy=Iy <...<]}

I Iy

o X

X
- P—comzpatible (1 - xll) e (1 — XIk)
L <..<I€J(P)

where the second equality comes from Proposition 6.2.1.m
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Example: For P = {+e; — ey, +e3} as before, the P-compatible chains in J(P) are
(=1,0), (0,41), (—1,+1)

(—=1,0) < (=1,41), (0,41) < (=1,41), (0,+1) < (+1,+1)
and thus according to the previous proposition,

Tr_1 I9 L1292

(1—z_1) + (1 — z9) + (1 —z_12,)

F(P,x) =

T_q-T_ 1Ty N Ty T_1To N Ty T2y
(1 =2 )1 —2_129) (I —z9)(1 —z_q129) (1 —z9)(l —z12q)
With a great deal of manipulation, one can check that this agrees with our earlier calcu-
lation of F(P,x).

We can also get expressions for our generating functions using Proposition 3.1.1, once
we have understood what it means for f € Z" to be be w-compatible (i.e f € Az (w®T) )
for some w € B,. The following lemma is a straightforward unravelling of the definitions:

+

Proposition 6.2.5 Let w = <w11 ) € B,. Then f € Ag(w®*) if and only if:

1. sgn(w;) = sgn( flu)

2. | fron] ~1 - ~nt [ flumll ~n 0 where " = ¢ <" ifs; € D(w) and " ~f= ¢ <7
else.

Example: If w = ( 128 A ) then D(w) = {(12),(34), (_55)}, and f € Ag(wdt)

—3 41 -4 45 -2/

if and only if f2, fa 2 0, f1, f3, fs < 0 and

If3] > 1Al = 1 fal > 1fs] > |fol > 0.

Proposition 6.2.6

. Toyy Ty * * * Ty
F(P, X) _ Z Hs.eD(w) 1wy

n
weL(P) i:l(l = Ty L ’mwi)

and hence j(w)
pmailw
U(Pz) = Z (1_33)(1_;1;2)-.-(1—1:")

weL(P)

where maj(w) = ¥, ep(w) t-
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Proof: We have

FPx)= > x= 35 > X

feAg(P) wEL(P) fEA(wdT)

and from the previous proposition, one can see that

T X = Moien) TuiTun = Tuy
fEA(wd) Pl = Ty Ty Tayy)

To get expressions for the other generating functions, we need a little terminology.
Definition: Let
W(Pz)= ) g™ (W)
weL(P)

be the numerator in the above expression for U(P, z), and for 0 < s < n let
Wy(Pz)= Y, g™ (W)

weL(P)
#D(w)=s

so that W(P,z) = 37 Wi(P,z). The Gaussian coefficient [Z] is defined by

z

[n} _ (1 - xn)(l _ :En—l) Ce (1 — wn—k-}-l).
kg (1_;clc)(1_mk—1)(1__m)

Proposition 6.2.7

1 Un(Pr2) = Tieg ["3°]. Wss(Py2)

n

m ?: qg*W,(Px)
2. ZmZO Um(va)q - (1_q)(1qu)...(1_qzn)

Proof:

1.
Un(Pz)= 5 glhlttil= % Y gl

feAg (Pim) weL(P) feAg (wdtim)

By Proposition 6.2.5, f € Az (w®*;m) if and only if sgn(w;) = sgn(f;) and
M 2 | flugg] 2+ 2 | flwall 20

with strict inequalities at the descents of w. If we let

| A = Iflw.‘ll - #(D(w) N {Si73i+17"'>3n})
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then we have

Ifil + -+ fal =maj(w) + A+ Ay

and
m—#D(w)> A >...2 A, 20.
Thus
Un(Pyz) = Z gmei(w) Z gt in
weL(P) m—#D(w)>A12>.. 22,20
— Z Z ajf\1+~~)\n Z xmaj(w)
s=0m—s>A12..2An 20 weL(P)
#D(w)=s

= L[] wpe)

where the last equality follows from a result of Euler (see e.g. [HW], Theorem 349).
Our result now follows upon replacing s by m — s and noting that W (P, z) = 0 for
s> n.

2. From the last equation we have

ST Un(P2)g™ = Y. > [”“L:‘SL Ws(P,z)q™

m>0 m>0s<m
= Y ¢W(Pa) 3 [ g
s>0 m—3s2>0

2320 qus(PPT)
(1-9q)(1—qz) (1 —qz™)

where the last equality is also Euler’s result (ibid).m

Example: For P = {+e, — ey, +e,} as before, we have

LP) = {(—11- +22) ’ <+12- +21) ’ <j2 —21->}

(with descents indicated by dots). Thus by Proposition 6.2.6, we have

T_q I9 T_1T2

PP = T )0 T T —wizs) T = o)1 - 012

and

:r:+:z:+:c2
(1—z)(1~-z?)’

U(P,z) =

90




both of which agree (after a little manipulation) with our previous calculations. By the
previous proposition,

Un(P,z) = ["77Y] (2 + 20)

T
and

m q(z* + 2z)
7;0 UniBy2)a" = (1—q)(1 - qz)(1— qa?)’

Our next result gives reciprocity formulas that hold between the various generating
functions for P and —P = wyP, where

_(1 2 n)
wo = —1-2 -7

is the longest element of B, (see Section 4.3).

Theorem 6.2.8 (Reciprocity)

loi
Ty

1. F(=P,x)=(=1)"F(P,x)

2. By(—P) = Bs-s(P)

nt1

3. Wy(=P,z) = 20T IW,_ (P21

{. W(=P,z) =" Jw(P,z™)

5. U(=P,z)=(-1)"U(P,z™")

6. U_n(=P,2) = (=1)"Up_1(P,z~?)
Proof:

1. From Proposition 6.2.6, we have that

HS'ED(w) $wl$w2 v Loy
F(Px) = s '
we;(P) M (1 T~ TunTwp Tw;)
mcl (w) e Q:C"(w)

_ E wi U

weL(P) H?:l(l — Tuy Loy :L’wi)

where ¢;(w) = #D(w) N {si,Si+1,...,5,}. Note that L(—P) = woel(P), and

ci(wow) =n+ 1 -1 — ¢i(w). Thus we have

za (W) L. gen(®)

F(-Px) = 3 ——u T

w€L(=P) i:l(1 — Luy Luy " xu.‘)
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c1{wow) cn(wow)

T oo D
_ Z (wow)1 (wow)n
weL(P) T (X = T (o) T(wow)s - T (wow);)
n—ci(w) n—l-co(w)  _1-cn(w)

T

_ Z T _wy —wy ) —Wn
- n

weL(P) P (=2 @y o)

Multiplying numerator and denominator above by 17, (2w T—w, * ** Tow;) ™" gives

gl gmae) | pmen(w)
F(_Pax) = Z n (;_1 x—zl — = "— 1) = (——l)nF(P, X)II'_,I;,
wel(P) Lhi=1\Y~w1 —wy —wj —i

2. Follows from the fact that 8,(P) = #{w € L(P) : D(w)v = J}, since L(—-P) =
woL(P) and D(wow) = S — D(w).
3. Since #D(wow) = #(S — D(w)) = n — #D(w), and maj(wow) = (”H) , we have

2

Ws(_—Pvaj) = Z“EL('—P) xmaj(u)

#D(u)=¢
= Yuwecp)®

maj(wow)

n+1) —-maoj(w)
— § weL(P) T 2
#D(w)=n—s

(n+1
z\ 2 ) W,_s(P,z7 1)
4. Follows from 3 and the fact that W(P,z) = Yoo W,(P, ).

5. Follows from 1 and the fact that U(P,z) = F(P,x)|z+;i — =
6.

Uon(=Pz) = i["‘m‘s]IWs(—P,x)

= 5 o) wpy
— i(—l)”["”’,f’l]x_l W,_s(P,z™")
=y [ wipe )

s=0

= (=1)"Un-1(P,27")
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where the third equality comes from the easy to check fact that

n+1

e, =CF) <)

n

and the fourth equality comes from replacing s by n — s.m

We will explore one further counting function of P.
Definition: The order polynomial Q(P;m) of P is defined as

Q(Pym) = #AP,m —1) =Un_1(P;1)

(its name anticipates the soon-to-be-proven fact that it is a polynomial in m). Define
the P-FEulerian numbers wo(P),...,w,(P) by '

we(P) = #{w € L(P) : #D(w) = s} = W(P,1).
For 1 < j < n, define the numbers ¢;(P), ¢i(P) by
ei(P)=#{f € Az(P) : {Ifilli=1,.n. = {1,2,...5}}
e;(P) = #{f € Az(P) : {Ifilli=1,n = {0, 1,...5 = 1}}.
Proposition 6.2.9
1 QUPym) =37, (ej(P)(m.‘1> + eé-(P)(’?_‘f) ) and hence Q(P;m) is a polynomial

7
inm of degree n.

2. QPim) = Thoo (") wa(P)

i

n:w3P s+l
3. EmZqu:Z= Sl

e
4. (Reciprocity) Q(—P;m) = (—=1)"Q(P;—m + 1)
Proof:
1. We consider two classes of f € Az (P;m —1): those f having f; # 0 for all ¢,
and those having some f; = 0. For those f in the first class, if we know the set

R(f) = {|fil}i=1,.n has cardinality j, then there is a unique f' € Ay (P) such
that R(f) = {1,2,...,7} and ¢(f) = ¢(f’). Conversely, f' and R(f) completely
determine f, so there are 3-7_; e;(P) (mJTl) elements in the first class. Similarly,
for f in the second class we must have {0} C R(f) C {0,1,...,m — 1}, and hence
if #R(f) = j then there is a unique f' € Az (P) with R(f") = {0,1,...,5 — 1}
and ¢(f) = ¢(f'). Again, f' and R(f) determine f, so there are 3°%_; ej(P)(""l)

7—1
elements in the second class.
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2. Plug £ = 1 in Proposition 6.2.7, Part 1.
3. Plug ¢ = 1 in Proposition 6.2.7, Part 2.
4. Plug z = 1 in Theorem 6.2.8, Part 6.m

Example: Let P = {+e; — €1, +ea}, so —P = {—ez + €1, —e2}. One can check that
e1(P) = 1,e9(P) = 3,e1(P) = e3(P) =0

and

’U)g(P) = ’LU2(P) = O,U)l(P) = 3.
Thus by the first part of the previous proposition, we have

apm) =1(71) +3(7") +o(7") +2(77) =3(3)
or by the second part of the previous proposition, we have
Q(P;m) _ (2+m2—1—0) 0+ <2+m;1—1> 34 (2+m;1—2> 0= 3(73) ’

so the two agree. To check a case of the third (reciprocity) part of the proposition, note
that wo(—P) = wy(—P) = 0,w;(—P) = 3, and hence Q(—P;m) = 3(';) also. Therefore
we have

3(=m+ 1)(-m) 3m(m—1)

(1P, —m +1) =3(3") = 5 = > = Q(P;m)

as expected.

6.3 The lattices j(P)

In this section, we take a closer look at the posets J(P). Our goal is to show that they
give a B,-analogue of distributive lattices, by proving an analogue of the Fundamental
Theorem of Distributive Lattices ([St2], Theorem 3.4.1) or Birkhoff’s Theorem.

Definition: Let j(P) be the poset obtained from J(P) by adjoining a (new) greatest
element 1.

Proposition 6.3.1

1. J(P) is a sublattice of the lattice {+1,/—\1,0}" (i.e. the lattice of faces of the n-
hyperoctahedron).
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(*‘)D> (O, 'l)
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(0,0)

Figure 6-7: Possibilities for (g;, g;) if (+e; —ej,9) >0

2. J(P) depends (up to lattice-isomorphism) only on the isomorphism class of P.

Proof: We prove 2 first. If P = P, then P = wP’ for some w € B, and hence we have
(fya) > 0Va € P & (w(f),w(a)) >0Vae P& (w(f),B)>0V8cP.

So w maps ideals of P onto ideals of P’, and since w is an automorphism of the order on
{+1,-1,0}", w is an order-isomorphism of J(P) onto J(F’).

To prove 1, let A,V denote meet and join in the lattice {+1, 1,0}". We must show
that if g, f € J( ), then g A f,gV f € J( ). Clearly we may assume g, f,g A f,gV f
are all unequal to 1. Given a € P, we want to show that (a,¢) > 0 and (e, f) > 0
imply that (a,g A f) > 0 and {(a,gV f) > 0. We may assume « is of the form +e; or
+e; — e, since otherwise we could apply an element w of B, to make it of this form, and
use assertion 2.

If o = +e;, then g;, f; € {+1,0}, and hence (g A f)i,(gV f)i € {+1,0}. Thus we have
(a,g A fy > 0and (a,gV f) > 0 as desired.

If @ = +e; —¢;, then the possibilities for (gi, g;), (fi, f;) are exactly the vectors shown
in Figure 7. One can see that the vectors in Figure 7 are closed under meets, and also
closed under joins whenever their join is unequal to 1. Hence as long as gV f # 1 we
have (a,g A f) > 0 and (a,g V f) > 0, as desired.m

We now assemble some properties of the lattices J (P) that will help us to characterize
them intrinsically.

Proposition 6.3.2 J(P) is locally distributive, i.e any interval [z,y] in J(P) is dis-
tributive. '

Proof: It is easy to see that any interval in {+1,—1,0}" is a Boolean algebra and hence
distributive. Since an interval [z,y] in J(P) is a sublattice of an interval in {+1 -1,0}»
(Proposition 6.3.1), it must also be distributive.m

Definition: Given a finite lattice L, let G(L) be the graph whose vertex set is the
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maximal elements of L — I, and having an edge between two vertices m; and my if
mq, my both cover my A my in L.

Proposition 6.3.3 G(J(P)) is connected.

Proof: First, we claim that f € j(P) — 1 = J(P) is maximal if and only if every
coordinate f; # 0. To see this, assume f; = 0 for some i. We may assume P C &%
by applying some element w=! with w € L(P). Then f € J(P) implies f € A(P),
so f € A(w®*) for some w € L(P) by Proposition 3.1.1. Let f' = f 4 w(4ep,-1)),
and note that w(+ep,-1|) = *e;, so f{ € {+1,—1} and hence f < f' in the order on
{+1,-1,0}. Furthermore, if « € ®*, then

(w(a), f) = (w(a), f) + (w(e), wteu-19))) = (w(a), f) + (@ +ep-16) 2 0.

So f' € J(P) (since P C wd*), contradicting the maximality of f.

Now suppose f, g are two distinct maximal elements of J(P), and we will show that
there is a path in G(J(P)) connecting them. By restricting attention to the coordinates
where they differ, we can assume f; # g;-for 1 = 1,...,n, and by applying an element
w € B,, we can assume f = (+1,+1,...,4+1),9 = (=1,-1,...,—1). This implies that
P can only contain roots of the form +e; — e;, and thus P corresponds to a poset on
{1,2,...,n} (in which 7 <p j when +e; — ¢; € P). Let 1 be minimal in this poset, and
let ¢’ be the vector with all —1’s except for a +1 in the i** coordinate. Then g and ¢’
cover g A ¢', and we have that f and ¢ differ in one fewer coordinate than f and g did.
So by induction we can find such a path.=

Definition: An element f € J(P) is said to be join-irreducible (written f € Irr(J(FP)))
if f#0,and f =z Vy implies either f =z or f=y. For 1 <7< n,if —e; & P, let It
denote the least element f € J(P) having f; = +1 (i.e. IT' = A{f € J(P): fi = +1}).
Define I~ similarly.
Proposition 6.3.4

feIrr(J(P) & f=1I"or I"* for some .

Proof:(«): Suppose f = It for some ¢ (the f = I case is identical, or apply w = (_’1>)
Then if f =z Vy, either z; = +1 or y; = +1, so either > [t = fory > It = f.
(=):Suppose f € Irr(J(P)). Let

T={+i:fi=4+1}U{-i: fi=-1}.

Clearly, f > I' Vt € T, and f < V,ept. Using the fact that f is join-irreducible, and
induction, we have f = I* for some t € T'.m

Definition: Given a finite lattice L, and I;, I, two join-irreducibles in L — 1, we will say
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I, ~ I, if there exist two maximal elements my,my in L — 1 that are adjacent in G(L)
and satisfy I; < m;, but I; € my Amg for i =1,2.

Proposition 6.3.5 Let I, I, € Irr(J(P)). Then Iy ~ I, if and only if for some 1 €
{£1,...,4n} we have [y = I' and I, = .

Proof:(=): Given Iy ~ I and my,m2 as in the previous definition, by applying some
element w € B,, we may assume m; = (+1,+1,+1...,+1),my = (=1, 4+1,+1,...,+1).
Then the conditions that I; < m; but I; € my Amy imply I, = [T', [, = I7%
(«<): Given that I', I~ both exist in J(P), we must exhibit my,m, as in the above
definition. Let

My = {m € J(P) : m mazimal, and m > I'}

M, = {m € J(P) : m mazimal, and m > I"*}.

Since we saw (in the proof of Proposition 6.3.3) that every maximal element m in J(P)
has all non-zero coordinates, these two sets M;, M, disjointly cover all the maximal

A

elements of J(P). Since G(J(P)) is connected, there must exist a pair of elements

A

mi € My,my € M, such that my, my are adjacent in G(J(P)). It is easy to see that
these my, my satisfy the conditions of the definition for IF'~I'm

Proposition 6.3.6 Suppose Iy, Iy, I3, I, € Irr(J(P)) satisfy Iy ~ I, and Is ~ Iy. Then
11§I3¢>12214.

Proof: From the previous proposition, we have Iy = I, I, = [7", I3 = I’ I, = [79 for
some i,j € {£1,...,£n}. But

['< P o —sgn(j)e +sgn(iley € P& I > 177
so the result follows.m

Proposition 6.3.7 Let {L;}izy,..m € Irr(J(P)). Then V2, I; = 1 if and only if there
exists some k € {1,2,...,n} andr,s € {1,...,m} such that I** < I, and I~% <1,

Proof: V7, I; = 1 if and only if there exists some k € {1,2,...,n} such that
I,(k),...,I.(k) have no upper bound in the partial order +1 > 0,—1 > 0. This is
equivalent to saying that there exists r,s € {1,...,m} with L.(k) = +1, (k) = —1,
which is the same as [T* < I, ["* < I, m A

It turns out that Propositions 6.3.2, 6.3.3, 6.3.6, 6.3.7 characterize the lattices J(P).
Definition: We will say that a finite lattice L is B, -distributive if

1. L is locally distributive

2. G(L) is connected
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3. U1y, I, I3, 1y € Irr(L — i) satisfy I} ~ I, and I3 ~ I, then we have

L < LelL>1

’ and 7,5 € {1,...,m} such that Iy ~ Ij and I, < I, I§ < I,.

We have not mentioned how the number n (in the name B,-distributive) enters the
picture. However it is easy to see that Conditions 1 and 2 together imply that L is
ranked, and then we require that n be equal to the rank of L.

Theorem 6.3.8 (B,-Birkhoff’s Theorem) A finite lattice L is isomorphic to J(P)
for some B,-parset P if and only if L is B,-distributive. Furthermore, P is determined
by L up to isomorphism as a B,-parset.

Proof:(=): This is the content of Propositions 6.3.2, 6.3.3, 6.3.6, 6.3.7.
(<): Assume L is B,-distributive. We give a procedure to extract a B,-parset P from
L with the property that L = J(P).

Let mi,ma,...,mpy be an ordering of the maximal elements in L — 1 such that myyq
is adjacent to my in G(L) for all k& > 1 (such an ordering exists since G(L) is connected
by Condition 2). We will construct P by a sequence Py, P,,..., Py of approximations.

The first approximation P; is defined as follows. Let +e;, +e; + e; € P for all
1 <i<j<n Wewill “think” of m; as being the ideal (+1,+1,...,+1) and label the
elements of Irr(L — 1) underneath my arbitrarily as It?,..., I*". Then we add +¢; — ¢;
to Py if and only if I** < I*7. This completes the construction of P;.

Having gotten to stage k and constructed Py, we proceed inductively as follows. Since
my and My are incomparable, there exists at least one element I € Irr(L — i) satisfying
I < mybut I € myyq, and at least one I' € Irr(L— 1) satisfying I' < myyq but I’ € my.
Any two such I, I’ will have I ~ [’ by definition. But Condition 3 implies that a given
join-irreducible J can have J ~ J' for at most one element J': if J ~ J' and J ~ J”,
then we have J < J = J' > J” and vice-versa, so J' = J”. Thus there is a unique pair of
join-irreducibles I, I’ such that I ~ I', 1 < my, I’ < mgsy. Since I < my, by induction,
I has already been labelled I* for some ¢ € {#1,...,4n}. We then label I’ as I,
and “think” of my,, as the ideal that differs from m; exactly in the it* coordinate and
nowhere else. We produce Py, from P), by removing +e;, and then removing +e; + ¢; if
and only if I=% # I’ for some previously labelled join-irreducible I7. This completes the
construction of Py. Proceeding through all of the elements mq,mo, ..., mp yields our
final approximation Pp; = P.

We want to show that L = J(P). The labelling of join-irreducibles during the above
procedure gives a map ¢ : Irr(L — 1) — Irr(J(P)). A little thought shows that ¢ is
a bijection (because of the way we removed roots of the form +e;). Also, ¢ is a poset
isomorphism, because of the way we included roots of the form +e; — ¢; in P; (along
with Condition 3), and the way we removed roots of the form +e; 4+ ¢;. We now use this
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Figure 6-8: Recovering a B,-parset from a B,-distributive lattice

bijection ¢ to define two maps ¢ : L — J(P) and ¢ : J(P) — L. We let ¢(1) = 1, and
d(x) = V; ¢(L) if z # 1 and = = V/; I; is the unique irredundant decomposition of z into
join-irreducibles (assured by the fact the [0, z] is distributive). Similarly, we let (1) = 1,
and () = V; ¢~ 1(I') if f # 1 and f =V, I' is the unique irredundant decomposition of
f. One can easily check that Condition 4 implies that qz(x) =1ifand only if 2 = 1, and
that #(f) = 1 if and only if f = i. Also, since ¢ is a poset-isomorphism, ¢ and P are
inverse poset-isomorphisms. Hence L = J(P).

If L = J(Q) for some other B,-parset ), we can produce an element w € B, such
that wP = Q as follows. For 1 <1 < n, a given join-irreducible of L labelled I* during
the above procedure must correspond to some join-irreducible I of J(Q), and we know

that I must in fact be of the form I* for some w; € {£1,...,+n}. Let w = (ui e 1;171),
and it is not hard to see that wP = Q.=
An example of the procedure in the preceding proof is shown in Figure 8.

6.4 More about J(P)

In this section, we investigate the interval structure of J (P), and compute some of its
combinatorial invariants. We also give an EL-labelling (and hence a shelling) of a larger
class of lattices which are B,-analogous to upper-semimodular lattices.

Proposition 6.4.1 Let [z,y] be an interval in J(P).
1. Ify=1, then [z,y] = J(P") for some B,-parset P'.
2. Ify #+ 1, then [z,y] = J(P") for some poset ) (where here J(P") = J(P"*) is the

usual distributive lattice of order ideals in P").

Proof:

1. Given [z,1], let T = {1 : z; = 0}, and let P’ be the parset containing the roots
in P whose coordinates outside T are zero. We consider P’ as a Bgr-parset by

99




\ Gy, l)
EAE
\\\

. 11,234
\,
S 1,4 Lvl i) (4e1,0) \u 4Lt {‘\ 19,31
\ )

) @50 G\l
Qﬂu@i) \\ / LoMA) [N \/v(q-u (o, 0)\ /‘T/JO \\ /

{o o)) (0,0) Clep) ¢ ‘
)q‘ﬁ' A vod fat st av] s I3 oy £ “‘ 0! N
[eem il n 5¢°) TP [loee) a0l in TP J(P ) for P

Figure 6-9: Some examples of intervals in J(P)

re-indexing the coordinates in 7" to make them {1,2,...,#7}. Then the map from
[z,1] to J(P') which ignores all coordinates outside T is clearly an isomorphism.

2. Given [z,y], let T = {i : z; # y;}. Then by an element of B,, we can make the
restrictions of  and y to T look like (0,...,0) and (+1,...,+1) respectively. Let
P" be the partial order on the numbers in T' determined in our usual fashion by
{+e; —e; € P :4,57 € T}. Again, the map from [z,y] to J(P) which ignores all
coordinates outside T is clearly an isomorphism.m

In light of the previous proposition, rather than looking at intervals, we can concentrate
our attention on the structure of the whole distributive lattice J(P) for posets P and the
whole B,-distributive lattice J(P) for B,-parsets P.

Example: Let P = {+e; — e1,+e; + €3, +es}. Then the interval [(0,0,4+1),1] in
J(P), along with J(P') (where P’ = {4e; — e;}) is shown in Figure 9. The interval
((0,0,0), (41, +1, +1)], along with J(P") where P” is the poset determined by {+e;—e1 },

is also shown in Figure 9.

Definition: Let L be a lattice with a least element 0, and a greatest element 1. L
is complemented if Vo € L Jy € L such that z Ay = Qandzvy =1 (y is called a
complement of z). A minimal element of L — 0 is called an atom. L is called atomic if
i - Vatoms zT.

It is well-known (see e.g. [St2], remarks after Proposition 3.4.4), that for posets P on
n elements, the following are equivalent:

1. J(P) is complemented
2. J(P) is atomic
3. J(P) is the Boolean algebra {1,0}"

Proposition 6.4.2 Let P be a B,-parset. Then
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1. j(P) is complemented if and only if J(P) is the lattice {—{—1,:\1,0}” of faces of the
n-hyperoctahedron, i.e. P = .

j(P) is atomic zf and only if some coordinate i € {1,2,...,n} is vacuous in P,

i.e. every a € P has zero it* coordinate.

Proof:

o

1. Clearly {«I—l,/—\l,O}” is complemented, since the complement of f is given by —f.
We must show then that P # § implies J(P) is not complemented. Let o € P.
Since J (P) only depends up to lattice-isomorphism on the isomorphism class of P,
we can assume P C &t so a € ®T. If @ = +e¢;, then one can check that It has no
complement in j(P) If « = +e; +¢€; or +¢; —e; then one can check that Jtiv It7
or I*' v 77 has no complement in J(P), respectively.

2. By proposition 6.3.7, j(P) is atomic if and only if for some s € {1,2,...,n} , both
It and 7" are atoms. One can check that this means that ¢ is vacuous in P.m

Definition: The Mdbius function ug of a poset @ is the map from the intervals of () to
Z defined recursively as follows:

IU'Q(:E';:E) =1Vze Q,

nole,y)=— X wa(e,2)

zix<z<y

If @ is ranked with rank function r, and has a least element 0, then the characteristic
polynomial x(Q), A) is defined by

QAN =3 ug(h, z) A (@@,

z€Q

See [Ro] for more on these definitions.
It follows from [Bj1], Theorem 3.3, that for a finite lattice L, pur(0,1) = 0 unless L is
complemented. Hence for a poset P, we have

0 else
Proposition 6.4.3 If P is a B,-parset, then

s A 1\ +fP=
P»j(P)(O,l):{( Y / )

A —1)* if P is an antichain
(0, 1) ={ -

0 else

Proof: If P # 0, then P is not complemented by Propositon 6.4.2, so /Lj(P)(O, 1) =o0.

If P =0, then ,U/J“(P)(O,i) = (=1)""! since J(P) is the poset of faces of a reqular cell
decomposition of an (n — 1)-sphere (see [St2], Proposition 3.8.9).m

101




Proposition 6.4.4 Let P be a B, -parset.

1. If P =10, then )
(P A) = A= 2+ (—1)*,

2. [f P10, let k be the nurpber of coordinates i which are vacuous in P, and let a be
the number of atoms of J(P). Then

X(J(P),A) = Aotk () — )220 () — 2)F,

Proof:

1. Since J(P) = {-}—1,:\1,0}", we can just compute directly. For any z € J(P) we
have p(0,2) = (—1)"®, since [0, ] is a Boolean algebra of rank r(z). There are
(?) 2t elements of rank ¢ in {+1,—1,0}, and thus

X(J(P),N) = 3 p(d,z)AviorE)

zeJ(P)
— (_1)n+1 + Z(_l)i (7:) 2i/\n+1—i
1=0

— A= 2"+ (=)™

2. QOur first observation is that

But pj(P)(@, 1) = 0 by the previous proposition, so X(J(P),\) = Ax(J(P),\).

Next we note that J(P) factors as a direct product of posets in the following manner.
Let P’ be the parset having the same roots as P but considered as a B,_j-parset
by re-indexing the non-vacuous coordinates. Then one easily sees that

J(P) = {+1,-1,0}" x J(P').
Since it is easy to that the characteristic polynomial satisfies

x(Q1 % Q2,A) = x(Q1, M)x(Q2, A),

we have

x(J(P),N) = Ax({+1,-1,0}, )x(J(P"), )
= Ax({+1, 1,0}, MEX(J(P), \)
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= M) =2)" x(J(P), \).

It only remains for us to calculate x(J(P'), ). Since P’ has no vacuous coordinates
by construction, J(P’) is not atomic (by Proposition 6.4.2). Hence if we let z =
Vatoms zed(p) &> then z # 1 so z € J(P). Since any interval [0, z] is distributive,

(0, 2) = 0 unless z is a join of atoms, i.e. unless z € [0,2]. Thus

XI(P),A) = 3 (0, ) EN-

z€J(P")
— Z ﬂ((): x)/\n—k—r(a:)
z€[0,2]
— )\n—-k-—r(z) Z /j’(()v m)/\r(z) r(z)
z€[0,2]
= )‘n_kﬁr(z)X([Oa Z]v )‘)
— /\n—a+k()\ _ 1)a—2k

where the last equality holds because [0, z] is a Boolean algebra of rank a — 2k.
Thus, we have

X(J(P),A) = AvFi-atk(x _1)e=26 () — 2)F m

Example: Let n = 3, and P = {+e; — e3}. Then 1 is vacuous in P, so k = 1, and
a = #{(+1,0,0),(-1,0,0),(0,+1,0),(0,0,—1)} = 4. Thus by the previous proposition
we have

2).

), and the factorization J(P) =

X(J(P),2) = M = 1)?
Figure 10 shows J(P) labelled with the values u(
{+1a_1’0}a XJ( )
If we assume that P is natural,i.e. P C ®*, then the numbers fg(P) for K C S also
have a Mébius function interpretation.

(A—
0,

Definition: For K C S = {1,2,...,n}, let J(P)x be the subposet of J(P) consisting
of 0,1 and all ideals f whose rank is in K.

Proposition 6.4.5 For P a natural B, — parset and K C S, we have

Bi(P) = (=1)*  pyp), (0, 1).
Proof: We have that

ar(P) = #{P-compatible chains in J(P) — 0 with rank set K}
= #{chains in J(P) — 0 with rank set K}
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I

since P is natural. Hence

Br(P) = > (~1)*FPay(P)
LCK
= Y (=1)#F-Dg{P-compatible chains in J(P) — 0 with rank set L}
LCK

= (_1)#K Z (_1)#c

chains c€J(P)g
= (—1)#Kﬂj(P)K(O, f)

where the last equality is by P. Hall’s Theorem ([Ro], Proposition 6, [St2], Proposition
3.85)m -

Corollary 6.4.6
(C1# 5oy, (0, 1) = #{w € By : D(w) = K}
and hence 1s non-negative, for all K C S.

Proof: Combine the previous proposition with Proposition 3.3.2.m

The previous corollary is sometimes phrased as follows: the Mbius function of J(P)g
alternates in sign. We now show that there is an even larger class of posets (containing
all B,-distributive lattices) with this property.

Definition: We will say a finite lattice L is B,-semimodular if L satisfies conditions
2,3, and 4 in the definition of B,-distributive, along with the following condition (which
is weaker than the condition of local distributivity): every interval in L — 1 is (upper)-
semimodular (a lattice is upper-semimodular if whenever z covers £ Ay we have that zVy
covers y).
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We will make use of the notion of an EL-labelling ([Bj3]).
Definition: Let () be a ranked poset. Write z < -y if y covers z in Q. We say ) 1s
edgewise-lexicographically labellable or EL-labellable if we can label the edges £ = {(z,y) :
z < -y} in the Hasse diagram using a map A : E — A to a linearly ordered set A
satisfying:

1. For any interval [z,y] € @, there is a unique maximal chain
eyl iz =zo< a1 <. < mp < TH=Y

for which the sequence of labels

(Mzo, 1), M1, 22), . - ., A(@p—1, i)
is (we-kly) increasing in A.

2. c[z,y] is the least among all maximal chains of [z,y] when we order them by their
label sequences, using the lexicographic extension of A to A*.

In [Bj3], Bjorner shows that when Q is EL-labellable and has 0, 1, for any subset K of
the rank set of (), the Mobius function of @k alternates in sign for the following reason:

(—1)#1\'#’@1\’(0? i) =
#{maximal chains in () whose label set decreases exactly after the ranks in K}.

It is known ([Gal, Section 5) that all semimodular lattices are EL-labellable. We now
prove a B,-analogue of this result.

Theorem 6.4.7 If a finite lattice L 1is B, -semimodular, then L is EL-labellable.

Proof: We do the B,-analogue of the proof of Theorem 5.1 in [Ga].
First we describe the edge-labelling A. Let A be the following linear order on Z U

{oo} —{0}:
+1l<a4+2<a+3<p - <p00<p o <p =3 <y =2 < — 1

Now pick a maximal element m in L — 1, and label the elements of Irr(L — 1) which lie
under m by I*!, I*% ... I** in such a way that It <; I'*Y implies ¢ < j. We extend
this to all join-irreducibles as in the proof of Theorem 6.3.8, i.e. if I € Irr(L — 1) and
I ~ I* for some 4, then label I as I~ (it is not hard to check that all join-irreducibles
get labelled this way). Now given ¢ < -y in L, we label the edge (z,y) in the Hasse
diagram with A(z,y) defined as follows:

] ify=1
)\(m,y)—{ ming{s: 2V I' =y} else '
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Before we show that this is an EL-labelling, we note one property of our labelling of

Irr(L — i) if I' <p I’ then ¢ <4 j. To see this, we check cases:

Case I: i,j both positive. Then I' <y I’ implies ¢ <4 j by construction.

Case 2: i, both negative. Then I' <; I’ implies I=* >; I™7 by condition 3 of B,-
semimodularity, which implies —: > —j and hence 1 <, J.

Case 3: 1 positive, 7 negative. Then 1+ <, 7 anyway.

Case 4: 1 negative, j positive. Then I' < I’ implies I' < m, which contradicts the
construction, so this case never happens.

Now we show that it is an EL-labelling. Let z < y in L. We must exhibit c[z,y], and
show it satisfies the two properties in the definition. If z < -y, then c[z,y] is just z < -y,
which trivially satisfies the definition. Otherwise, we will show how to construct c[z,y]
by induction on the length of the interval [z,y].

Let

i =mina{j: I’ £ 2,19 <y, and F Ve +#1}

(if this set is empty, then y = 1 and ¢ < ). We claim that I' Az < I*. To see this,
assume not, i.e. let I* satisfy

Az <I*V(I'Az)<T.

Then ke {j: I £ &, <y, and 'V z # 1}, and I*¥ < I' implies k <, %, contradicting
the minimality of . Thus I' A z < -I', and using the fact that the interval 0,1 v z)
is semimodular, we conclude that z < -z V I'. Thus if we start our chain c[z,y] with
¢ < -x V I*, we can then continue by induction (replacing z by z V I%), and [z, y] will
certainly be the lexicographically smallest maximal chain from z to y.

We must check that this c[z,y] has increasing labels. This is clearly true by construc-
tion if y # 1, since at each stage, the edge z < -z V I' gets labelled 7. If y = 1, then
the labels are certainly increasing, until the last step which gets labelled co. Thus it
would suffice to show that ¢ is always positive. To see this, suppose not, i.e. 2 < 0.
Then I Vz # 1 implies that I™* ¢ z. We also can infer that I=* V z # 1, else
by condition 4 of B,-semimodularity there would be some [ for which I7" < I7% and
I < z and we would get the contradiction I' < I* < 2. Thus —i is also in the set
{(j: P £z, <y, and 'V z# 1}, and we have —i <, i, contradicting the minimality
of 1.

Thus we have exhibited the lexicographically smallest chain from z to y, and shown

that it has increasing labels. Now suppose ¢ is some other maximal chain from z to y
with increasing labels. It only remains to show that ¢ = c[z,y], which we will do by
induction on the length of ¢. Let cbe z = 75 < 'z3 < ... < -z; = y, and let j be the
unique index satisfying I* € z;, but I' < ;4.
Case I: Tj41 # I. Then z; V I' = z;,,. Thus by minimality of ¢, this edge of ¢ must be
labelled 7. In order for ¢ to have increasing labels, this must be the first edge of ¢, i.e.
j =0,z =z;,2,4,4 =2 VI. Socand c[z,y] agree in their first step, and we can apply
induction on the length of c.
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Case 2: ;41 = 1. We will show that one of the labels on ¢ between z and z; is negative,
and hence c is not increasing (since the last label on c'is o0).

To see this, let the labels on ¢ between z and z; be ¢1,...,4. Let z = JESTRVIRNRAVE &
be an irredundant decomposition of . Then we have

i=r'va;=FvaVvItv...vI*

=IVItv.. VIt

This implies (by condition 4 of B,-semimodularity) that for some r,s we have [* < I
and I=* < I'". Hence (by condition 3 of B,-semimodularity) we have I i L
as long as I~% exists in L. But I~ must exist, since ; is a maximal element of L — i
which does not lie above I*, so it must lie above I=* (it is easy to see from condition 1
of B,-semimodularity that every maximal element of L — 1 must lie above either I' or
I%). Now, if r > k + 1 then 7' < z contradicting the fact that I've#1. r <k,
then I~ < I'* implies that 7, is negative, as we desired.m

Remark: One can check that for a natural B,-parset P and L = J(P), if we choose m
in the above proof to be the ideal (+1,4+1,...,+1) € j(P), and label each of the join-
irreducibles I+ as themselves (i.e. label the least ideal having +1 in the i** coordinate
as I*%), then two nice things happen:

1. The label sequences of the maximal chains in J(P) are exactly the same as L(P)
(where we identify w € £(P) with a sequence of numbers in {£1,...,£n}).

2. The lexicographic order on label sets of maximal chains in J(P) corresponds to a
linear extension of Bruhat order on L(P) .

Example: Let L = J(P) for P = {+e;, +e; — e3}. Figure 11 shows an EL-labelling as
in the proof above, and a listing of L(P) .

6.5 P-partition rings

In [Ga), Section 6, Garsia introduced the partition ring R(P) associated to a naturally
labelled poset P (i.e. a natural A,-parset P), and showed how a shelling of the order
complex of J(P) leads to a decomposition of the ring R(P) . In this section, we define
partition rings for B,-parsets, and state an analogous result that also incorporates group
actions.

For posets P, there is a single canonical choice for R(P) . For B,-parsets, there are
two choices; one associated to each of the two root systems B, and Cl,. '
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Figure 6-11: An example of an EL-labelling for a lattice J(P)

Definition: Let (W, S) be the same Coxeter system as in B,, i.e. W is the hyperocta-
hedral group acting as all permutations and sign changes of the coordinates in V = R".
Let

O = {£2;,te; +e;: 1 <i<j<n}

Ot = {+2¢;,+e; +ej5,4e;—e;: 1 <i<j<n}
= {+e; —ei1:1 <t <n}U{+2e,}.

It is easy to check that (@, II) forms a positive root system for (W, .S), which we will call
the usual realization of C,.

Note that B, and C,, share the same Coxeter system, but have dn‘ferent positive root
systems. Given a root « in either of these two root systems, let & = ( ) Notice that

&=aanda€ B, & acC,, ie B, =C,and C, = B,. This gives us a way to identify
the B,-parset P with the C, -parset P (and explains why we have ignored C,,-parsets up
to this point). We again have the positive embedding of an A,,_; parset P as a C,,-parset,
given by

P+:PU{+26i,+e;+ej:1§i<j < n}.

We will define the partition rings for A, _;-parsets as a special case of (,-parsets using
this positive embedding.
The weight lattices A(B,), A(C,) are defined by

11 1
D=2+ (==, =) 2Z"
A(Bn) =2 +<2 2 2)
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Figure 6-12: Some examples of P-partition rings

A(C,) =2
We may now define our P-partition rings over a field k:
If P is a By-parset, then RE™(P) = k[x/]tea(Pyna(Bn)-
If Pis a C,-parset, then ’ch"(P) = k[xf]feA(P)nA(Cn)'
If Pis an A,_,-parset, then R{™(P) = R (P+).
When no ambiguity results, we will omit the subscript k& denoting the field. Note that
RAn-1(P) is a subalgebra of k[z1,...,2,], R (P) is a subalgebra of the ring

k[xl,xl_l,...,xn,:v;l]

(the ring of finite Laurent series in n variables), and RB*(P) is a subalgebra of

-1

1
klzy, a7t oz, )t (2 2a)2).

In fact, each of these rings is an example of a monoid algebra, i.e. an algebra of the form
k[x!]fem, where M is some additive submonoid of R™.

Example: Let P = {+e; — €2}, and we will think of P as an A;— or B;— or C,—parset.

We have 11
RP(P) = klatzy: (a,b) € 2% + (§,§)Z,a > 0]

RCQ(P) k[z$ ;1:2 : (a,b) € 7% a> b|

RAY(P) = klz%ah : (a,b) € N%, a > b].

The relevant submonoids M are shown in Figure 12.
Definition: Given a finite poset @, let A(Q) be the order complex of Q, 1.e. the

simplical complex having chains of () as simplices. Given A a simplicial complex, recall
from Section 2.3 that k[A] denotes the Stanley-Reisner ring or face-ring of A.
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We define three transfer maps T4+ TB» T as follows:

TBn . k[A({+1,-1,0}" — 0)] — k[:z:l,a;l'l,...,a:n,a: ! (2 - :cn)%]

is defined by starting with

x! A fi £ 0} #n
T(yf):{x’% H#{: fi#0=n "

then extending multiplicatively on non-zero monomials yy, - - - ¥y,, and then k-linearly to

all of k[A({+1,—1,0}" —0)].
T E[A({+1, =1,0}" — 0)] — K[zy, 27, ..., 20, 2]
is defined similarly, except that we start with T(y;) = x/.
TA~1: k[A({1,0}" = 0)] — k[zy,..., 2]
is defined similaﬂy, except we start with T'(y;) = x/.

Example: Let n = 3 and

P = Yo41,0)¥(~1,410)¥(<1,41,-1) F Y(o0,-1) € B[A({+1,-1,0}> = 0)].

Then we have )
TP (p) =y - (27" 32) - (27 2225")? + 23"

TO(p) = zy - (271 29) - (27 2025t) + 237

If we let
7 = Y(01,0¥11,0¥(11,1) + Yo01) € K[A({1,0}" —0)]

then we have
TA"1(q) = 25 - (2123) - (T12273) + T3

Definition:
Aut(P) = {w € W:wP = P}.

Note that if G is a subgroup of Aut(P), then G acts on J(P), A(J(P)—0), k[A(J(P)—-0)],
and R(®M(P) (where (®,1) = A,_;, B, or C,, depending on what type of parset P is).
Let k[A(J(P)—0)]¢ denote the invariant subring of k[A(J(P)—0)] under the action of G.
Let A(J(P)—0)/G denote the simplicial poset which is the quotient of A(J(P) —0) under
the action of G. Let SC denote the symmetrization operator S%(p) = ?15 Y gec 9(p)-
We now have enough terminology to cram all the results into one omnibus theorem,

for which we omit a detailed proof.
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Theorem 6.5.1 Let P be a (9,11)-parset where (®,11) is one of An_1, B, or Cy, and
let G be a subgroup of Aut(P) for which the characteristic of the field k does not divide
#G. We then have that:

1. T®M restricts to a k-linear isomorphism (but not a ring homomorphism)
K[A(J(P) = 0)] — REM(P)

which commutes with the action of GG.

~

2. k[A(J(P) = 0)]° is a free module over k[0;(P))iz1,..n, where 0;(P) =3 seur yy.

rank( f)=¢

2. REW(P)C s a free module over

E[T®MO,(P)izs,.. n-

4. If {n;}j=1,..c are a basis for kK[A(J(P) — 0)]¢ as a free k[0;(P))iz1,.. n-module, then
{T(q”n)nj}j:lmt are a basis for (R (I’H)P)G as a free module over

E[T®D0,(P))iy,. .

5. If A(J(P) — 0)/G = I\, [F, ,Ml] is a shelling, and we let n; = S%m; where m;
is the monomial of k[A(J(P) — 0)] corresponding to some chain in the G-orbit F;,
then {n;};=1,..: are a basis as in 3.

“Proof”: The case of G = (1),(®,II) = A,_;, and arbitrary P is contained in [Gal,
Section 6.

The case of P = ), and G, (®,1I) arbitrary is contained in [GS], Section 9.

The general case is a routine extension and combination of these methods.m

Remark: An EL-labelling of a poset @ gives a shelling of AQ ([Bj3]). Thus for the
case of G = (1), a shelling as in Part 4 of the previous theorem can be produced using
Theorem 6.4.7.

Example: Let P = {4e; — e;} as in the previous example, which we will think of as
both a B,— and C,—parset. Let us choose G to be all of Aut(P) = (( 12 )) Figure 13

2-1
shows A(J(P)—0) and A(J(P)—0)/G. By inspection, we can write down the following
shelling:

A(J(P) = 0)/G = [8,(+1,0) < (+1,+ 1] I [(+1, =1), (+1,0) < (+1, -1)].

From the previous theorem (Parts 4,5), we conclude that
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o

{1,y(+1,-1y} form a basis for k[A(J(P) — 0)]% as a free k[6,(P),02(P)]-module,
where
HI(P) = Y(+1,0) + Y(0,~1), 92(P) = Y(+1,+1) + Y(+1,-1) + Y(-1,-1)

{1, (212317} form a basis for RP?(P)% as a free klz; + 23, (z122)% + (z1271)7 +

(27 z31)3] - module.

{1, 2125} form a basis for R“2(P)% as a free k[zy + z5', 2122 + 2175 + 27 23] -

modaule.
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Chapter 7

A Coxeter group approach to the
Neggers-Stanley Conjecture

7.1 Order and Eulerian polynomials

In this section we extend the definition of Q(P;m) and w,(P) from B,-parsets P to
arbitrary parsets. We will see that they are related exactly as they are in the case of B,-
parsets. In the next section, we will use these extended definitions to phrase an extension
of the Neggers-Stanley conjecture. .

Throughout this section, (W, S) will denote a finite Coxeter system realized by som
positive root system, and P will denote a (W, S)-parset.

Definition: Recall the definition (Section 3.3) of
Yp={F(f): feL(P)}CEW,S5).

We define the order polynomial Q(P;m) to be the number of multifaces of Xp of car-
dinality less than or equal to m — 1, where a multiface of ¥p is a multiset of vertices
that all lie on a single face in £p. One can check that this definition is equivalent to the
one given for B,-parsets in Section 6.2 (the equivalence is a consequence of Propositions
6.2.1, 6.2.2). The fact that Q(P;m) is actually a polynomial in m will be proven in the
proposition below.

We also define the P-Fulerian numbers

w,(P) = #{w € L(P) : #D(w) = s}

for 0 < s < S, and the P-FEulerian polynomial

#S
Ep(q)= . g*PWF =3, (P)g"t".
weL(P) s=0
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Proposition 7.1.1

1. QUP;m) =3 faces Fesp fa <#F71‘1) , and is a polynomial in m of degree #5S.
2. Lo UP;m)q™ = 25

3. QP;m) = y#S (#S+$§1_S> w,(P).

Proof:

1. The expression given comes directly from our definition of (P;m). To see that it
is a polynomial of degree #S in m, note that its first difference is

AQPym) = QP;m) — QPim-1)= S (#m?)

m—1
faces FE€Xp

which is easily seen to be a polynomial of degree #5 — 1 in m.

o

(1—¢) S QPym)g™ = ¢ [QP;m) — Q(P;m —1))g"™

m2>0 m>1

= ¢y #{multifaces FeSpwith #F =m —1}¢™!

m>1

-q >

multifaces Fexrp
#F

= ¢ Z '("1"3_;5;?

faces FEXp
#J

q
= ngZSaJ(EP)—_—(l —

q3.rcs ﬂL(EP)q#L
1-gF
Y rcs #{w € L(P) : D(w) = L}q**
(1—-q)*°

Ep(q)
(1-q)#°

which is equivalent to our result.
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3. From Part 2 we have

#S
S QPim)g" = Zws(p)qsﬂ (1= g)#5-1

m>0

#S
— ;ws(mqsﬂ (Z(-#f*) (—q)r>

r>0

#S
- (S (2(#;?) qr)

r>0

m>0 \s=0

#5 s
= ¥ Zws(P)(# +$§s_1> "
Equating coefficients of ¢ gives the result.m

7.2 The Neggers-Stanley Conjecture

Conjecture 7.2.1 (Neggers-Stanley) For all A,_1-parsets P, Ep{q) has only real ze-
Toes.

This conjecture was made by Neggers ([Ne]) for natural P, and generalized to the above
statement by Stanley in 1986. One consequence of the conjecture would be the statement
that the sequence wy(P),...,w,_;(P) of P-Eulerian numbers is unimodal, and the con-
jecture may be considered a generalization of well-known facts about the usual Eulerian
numbers. Some recent work ([Bre, Wg]) has greatly enlarged the classes of A,_;-parsets
P for which the conjecture is known to hold, however the general case is still open (see
[Bre, Wg] for more details).

Our phrasing of the conjecture suggests the following definition.
Definition: Let (W, S) be a finite Coxeter system. We will say NS holds for (W,S) if
Ep(q) has only real zeroes for all (W, S)-parsets P.

We can also try to make sense of this definition when (W, S) is not necessarily finite.
In fact, the notion and construction of a root system (and positive roots) for arbitrary
Coxeter systems is well-known. The main difference is that the bilinear form (-, ) is in
general neither positive definite, nor non-degenerate. We can still define a parset P as
before, but we may no longer have that £(P) is finite, so we simply restrict our attention
to the cases where it is finite. There is a close connection (noted by Bjérner and Wachs
in [BW1]) between these sets £L(P) and the notion of convexity in W.

Definition: Let (W, S) be a (not necessarily finite) Coxeter system. A subset U C W is
said to be convex if whenever u,v € U and us;s;---3; = v with s; € S and k& minimal,
we have us183---s;fort=1,...,k.

The following is a translation of [Ti], Theorem 2.19.
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Theorem 7.2.2 U C W is convez if and only if U = L(P) for some parset P.m

In light of this last fact, we can rephrase our definition for arbitrary Coxeter systems
in a way that makes no mention of parsets.

Definition: Let (W, S) be an arbitrary Coxeter system. We say NS holds for (W, S) if
for all finite convex subsets U C W, the polynomial

E(U,q) = Y ¢*P®
well

has only real zeroes. ,

The remainder of this section will be devoted to reductions and special cases in the
search for which Coxeter systems NS holds.

The next proposition shows that we need only determine for which irrreducible Cox-
eter systems NS holds.

Proposition 7.2.3 NS holds for (W) x Wy, S1 11 S,) if and only if it holds for (W, S;)
and (W, S,).

Proof: Let (®;,1II;) be positive root systems for (W;,.S;) acting on V;, for 1 = 1,2. Then
((1)1 X (_)_U 0 x @2,1—[1 X _QU QX HQ)

is easily seen to be a positive root system for (W; x W5, S; IL S3). Given a finite convex
subset U C W, x W,, we know from the previous theorem that U = L(P) for some parset
P. We can write P = P, x QU 0x P,, and it is clear that P is a (W) x W, S111.53)-parset
if and only if P; is a (W;, S;)-parset for i = 1,2. Hence L(P) = L(P1) x L(P;) , and we

then have

Ep(q) = S gD w2)+1
(w1 w2)EL(PL)X L(P2)
— Z q#D(w1)+#D(w2)+1
(w1,w2)EL(P1) X L(P2)
T wecr) wa€L(Py)
1
= _BA0)Er(0)

Thus Ep(q) has only real zeroes if and only if both Ep,(¢) and Ep,(¢) do. Our result
follows.m

The condition that (W, .S) has an unforked Coxeter diagram turns out to be relevant
for the cases when #U is small.
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Definition: We will say (W, S) has unforked diagram if for all s € S, the degree of s in
the Coxeter diagram (see Section 5.1) is less than 3 (i.e. #{r € S:rs # sr} <2).

Lemma 7.2.4 If (W,S) has unforked diagram, then for all w € W and s € S, the
numbers #D(w) and #D(ws) differ at most by 1.

Proof: Without loss of generality, {(ws) = [(w) + 1. Recall that D(w) = I(w™')N .S, and

D(ws) = I(sw™)NS
(I(s) + sI(w™)s)N S
= {s}Os(I(w™)NsSs)s

where the second equality is by Appendix Lemma A.0.11, and the last equality comes from
the fact that {(ws) > l(w) implies s & I(w™"'). Thus we have #D(w) = #I(w=!) NS,
and #D(ws) = 1 + #I(w™') N sSs. Let s = r, for some a € II. We will argue by
contradiction in two cases.

Case I: #I(w=)NsSs > #1(w= )NS5+ 1. Then there must exist some r € S such that
srs € I(w™!) but r ¢ I(w™). Let r = rg for B € II. We have

8T8 = TalgTa = Tra(6)

and

—a—2<a’ﬁ> =a+c
Ta(/B)— <ﬂ’ﬂ>ﬁ"’ + ﬁ

for some ¢ > 0, by the fact ([Bro] Chapter II Theorem 5C) that (a, ) < 0 Vo, 5 € 11
Since 7,,(g) € I{w™'), we know w(r,(8)) € —®*. But

w(ra(B)) = w(a+ cB) = w(a) + cw(p)

and since w(a) € @+, we must have w(B) € —®*. This contradicts rg =r & I(w™).
Case 2. #I(w™')NsSs < #I(w=')NS —3. Then there must exist r;, g, 73 € S such that
r; € I(w™!), but srys & I(w™!) for ¢ = 1,2,3. Thus sr; # rys for 1 =1,2,3, so (W, S) has

a forked diagram.m

Proposition 7.2.5

1. If (W, S) has unforked diagram, and U C W with #U = 2, then E(U,q) has only

real zeroes.

2. If (W, S) is finite and has forked diagram, then there exists a U C W with U convez,
#U =2, and E(U,q) = q(1 + ¢*) (which has non-real zeroes). Hence NS does not
hold for (W, S).
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Proof:

1. By the definition of convexity, we must have U = {w,ws} for some w € W,s € §.
By the previous lemma, either E(U,q) = ¢* or E(U,q) = ¢**' + ¢* = ¢"*(¢ + 1) for
some k € N. In both cases, it has only real zeroes.

2. If (W, S) is finite and has a forked diagram, then a quick glance at Table 5.1.1
shows that it contains a subdiagram isomorphic to that of Dy, ie. there exist
r1,T2,73,8 € S such that sr; has order 3 for each ¢, and r;,7; commute for « # j.
Let U = {ryror3, riroras}, and one can easily check that the assertion is true.m

In light of the preceding proposition, we suggest that the following is the most plau-
sible general conjecture:

Conjecture 7.2.6 NS holds for all Cozeter systems with unforked diagram.

Since we only need to consider irreducible Coxeter systems, we may assume that
(W, S) has connected Coxeter diagram. Hence among the unforked diagrams there are
two classes- circular and linear.

Definition: A Coxeter system (W, S) has linear diagram if its diagram is unforked and
a loopless graph (i.e. each connected component of the diagram is a linear path).

In [Wal], Wachs shows that if P is a (W, S)-parset and (W, S) has linear diagram,
then there is a poset J(P) whose order complex A(J(P)) is isomorphic to ¥p whenever
P is natural. It can be shown that even if P is not natural, the faces of ¥p are in one-
to-one correspondence with those chains in J(P) that satisfy a certain P-compatibility
condition similar to Proposition 6.2.2. Thus Q(P;m) and E(P,q) have another (chain-
counting) interpretation in this case (see [Bre| for the relevance of this interpretation to
the original Neggers-Stanley conjecture). With this in mind, we suggest the following
weaker conjecture:

Conjecture 7.2.7 NS holds for all Cozeter systems with linear diagram.

We end by checking a trivial case of the above conjectures.
Proposition 7.2.8 NS holds for all Cozeter systems (W, S) with #S5 < 2.

Proof:

Case I: #S = 1. Then W = {1, s}, so either U = {1} or U = {1, s}. Hence E(U,q) =1
orl+gq.

Case 2: #S = 2. Then (W, S) = I,(m) is the dihedral group of order 2m, m € {2,3,...}.
If U = W, then we can compute explicitly that E(U,q) =1 + 2(m — 1)g + ¢%, which has
only real zeroes since m > 2. If U # W, then either 1 or the longest element wg is not
in U (as the convex hull of {1, wy} is all of W). Thus E(U, g) is either of the form 1+ ag
or aq + ¢* for some a € Z, both of which have only real zeroes.m
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Appendix A

Technical results on reflection
subgroups

Here we collect together most of the technical tools we have used in Chapters 3 and 4
concerning reflection subgroups. I am greatly indebted to Matthew Dyer for the proofs
of all of these results. Many of these may be paraphrased as saying that “reflection
subgroups behave almost as nicely as standard parabolic subgroups”.

For the remainder of this appendix, let (W,S5) be a Coxeter system (not necessarily
finite) realized by the positive root system (®*,II) on an R-vector space V, and let T
be the reflections of W i.e.

T= |J wsw'l={r,:a€dt}.

weW,seS

Let W’ be a reflection subgroup of W, i.e. W = (W'NT). Recall

Hw)={t €T :l(tw) <l(w)} ={ry : a € ¥ Nw™(-31)}.

Definition: The canonical generators S’ of W' are defined by

S'={teT:It)nW ={t}}.

Let &% = {a € ®F : 1, € W'}, Uy = {@ € & : 1, € §'}, and let Vi be the R-span
Of ®+ ‘.
The next theorem justifies the notation just defined.

Theorem A.0.9 ([Dy], Theorem 3.3) (W', S5") is a Cozeter system realized by the
positive root system (®F, Ilw:) on Viy: whose length function

U'(w) =min{r: w=sisy s, €5}

is given by I'(w) = #(I(w) N W').m
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Definition: Let Dy = {w € W : I(w) N W' = §} (this is the same as L(P(W')) from
Chapters 3 and 4).

Proposition A.0.10 ([Dy], Corollary 3.4)

1. Everyw € W can be factored uniquely in the form w = zy where z € Dy,y € W'

2, Ify € Dy, then the map z — zy from W' to W'y is an isomorphism of Bruhat
order <g. Hence y is the unique element of minimal length in W'y, and the least
element of W'y in Bruhat orderm

The next lemma will be used frequently in the proofs in this appendix.

Lemma A.0.11 ([Dy], Definition 2.1)

1. I(zy) = I(z) +zI(y)z~", where + denotes the operation of symmetric difference of
sets (i.e. A+ B=(A-B)U(B-A)).

2. Ifz € D‘Tvlj and y € Wy for some J C S, then I(zy) = I(z) U zl(y)z ' m
Proposition A.0.12 (Dyer) Fiz J CS.
1. Bvery w € W can be factored uniquely in the form w = zyz where z € W',y €
DWI N Dﬁ/lj, z e WJ N Dy—IW’y-

2. In the above factorization, we have xy € Dy, and l(zyz) > I(z) unless z = z = 1.
Thus ify € Dw: ﬂDv_VlJ, then y is the unique element of minimal length in W'yWj,
and the least element of W'yWj; in Bruhat order.

Proof: To prove 1, given w,J, and W’ we must show that there exists a unique such
factorization.

FEuistence: Let y be an element of W'yW; of minimal length. Clearly then y € Dy ﬂDv‘Vlj
and w = z'yz’ for some z' € W',z € W;. Now decompose 2’ = 2"z with 2" € y~'W'y
and z € Dy-1wrynw, using Proposition A.0.10. Then

! ! ! " ! -1_/n r_n
w=cays =cyrz=zy y T yrz =TT yz=1Y2

where z" € W',
Rather than showing uniqueness, let us first show 2. We have

Iyz)n W' = I(y)ynW' + y](z)y'l nw'
= 0+y(I(z) Ny Wiy)y™
= y(I()Ny ' WynW;)y™*
=0
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The first equality comes from Lemma A.0.11, and the third from the fact that z € W.
Thus zy € Dyw, and hence I(zyz) > l(yz) if @ # 1. But {(yz) = l(y) + I(z) > I(y) if
z # 1 (by Lemma A.0.11).

Uniqueness: Suppose w = z,Y121 = ToYz2, With ;,y;, z; as above. Since y;z; =
27 T9ya22, and y121, %2, 22 € Dy, we have

0= I(y120) N W' = I(z7 zyy220) N W'

= I(z7tzy)) N W' + a7 29I (ya29)2y ' oy N W = I(z7 2) N W

Hence :z:l_lmz =1, i.e. z; = z5. Thus y121 = ya29, and hence y; = y2,21 = 22 by
Proposition A.0.10.m

The next proposition is known as the Z-property or lifting property of Bruhat order
(see [BW1], Section 2).

Proposition A.0.13 Ifz,y € W,s € S satisfy l(sz) < l(z) and I(sy) < l(y) then the
following conditions are equivalent:

1. z<By
2. sx <y
3. sz <p sy.m

The next proposition will be needed in the proof of Lemma A.0.15, and is related to
Kilmoyer’s Theorem ([So2], Lemma 2). ~

Proposition A.0.14 (Dyer) Let z € Dy and J C S. Then
W nzWrz™! = (5" NaWyz™)

and hence is a standard parabolic subgroup of the Cozeter system (W', S"), where S' are
the canonical generators of W' (as in Proposition A.0.9).

Proof: Obviously
(S'NazWyz™y C W' NaWyz™!

so we only need to show that for all y € W/ NnzW,z™! we have y € (S’ N zWyz™!),
which we do by induction on I(y). We know we can write yz = zz for some z € Wj.
If '(y) = 0 it is trivial, so assume I'(y) > 0 and let s € S' N I(y). Since z € Dy,
s € I(yz) = I(zz) = I(z) + zI(z)z~". But s € I(z) since z € Dy, so s € zl(z)z~* C
gWyz~t. Thus sy € W NzWyz~! and I'(sy) < I'(z), so by induction sy € (S'NzW;z~1).
Hence y € (S’ NzWjz~!) as desired.m

The final result we need is the technical lemma needed in the proof of Theorem 4.1.6.
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Lemma A.0.15 (Dyer) If uj,uq,v;,v2 € W, w e W', and J, K C S satisfy
1. uquqy, vy € Dy
2. uy € Dv‘vlj,uz € D;VIK
3. wvavy = uquix for some x € W;
4. wuy = ugy for some y € Wk
then we have
1. ug < vy
2. Uy == U g vy
This lemma may be rephrased as follows:
A (W) (vav1, v2) Wig gy C A2 (W) (uguy, u2) Wi k)

along with hypothesis 2 above implies that

(ulau2)SE(v1a Uz)-

Proof:
Assertion 1: vy = w™luyy, so we need to show uy <g w™luyy. Claim: it suffices to show
uy < Bwlu,. To see this, write y = s1-+ - 8p, with s; € K. Then uy, <p w™luy; would
imply uy <p w~luysy, either trivially (if I(w= ugs;) > l(wuy)) or by the Z-property
(Proposition A.0.13) in the other case. Continuing in this way, we get that uy <p w™lu,

would imply
1

Uy <g W lugSy - Sy = W UgYy.
Our immediate goal in proving u, <p w™lu, will be to show that
Mw™ug) = I'(w™) + I'(ua),
where I'(g) = #1(g) N W'. Since
I(w™us) = Hw™) + 0 I(uz)uw,
this means that our goal is to show
(I(w™H N W N (w T (ug)w N W)

=0
or wl(w Hw ' NwWwNI(u)=70
or I{w)N W' N I(uz) = 0.
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So let t € I(w) N W'. Then w™'tw & I(vyv1) (since vovy € Dyyr), so
t € I(w) + wl(vov))w™ = H{wuvavy) = I{uguyz) = Iuguy) + uguq I(2)u] ug?

which implies t € wpuy I(z)ui'uy" (since ugu; € Dyr). Thus if we let ¢ = ul ug tuyu,,
then ¢t € I(z) C Wy. Since u; € Dy}, we know that {(uit'ui" - uq) = {(ust’) > (u;) and
hence that ust'u7' & I(uy). But ult’ul_l = uy'tuy, 5o t & ual(uy)uy’. Since ugu; € Dy
implies that

t & I(uguy) = I{ug) + upl (uy )u3?,

we must have t & I(u,). Therefore I(w) N W' N I(u;) = @ as we wanted.
Now write uy = 22’ with z € W’ 2/ € Dy (by Proposition A.0.10). Note that
I'(ug) = U'(z) and I'(w'u,) = I'(w'2), and thus we have

lw™2) = U w  ug) = U(w™) + Uug) = U(w™) 4 I'(2).

Hence z <g w™!z in W’. But then multiplying on the right by 2’ is an isomorphism of
p g g y p

<p (Proposition A.0.10), so we get

1 1

/ —_ -
Uy =27 <gw zz = wlu,

as desired.

Assertion 2: We are now assuming u, = v,. Since
UgU1T = WYV = Uy Vs,

we have uyz = yv; or v; = y~lu;z. Write uy = v, = zv3 with 2 € W, v3 € Dy (using
Proposition A.0.10) and let
W” = U:;IW,’U3 N WK

(a reflection subgroup by Proposition A.0.14) . Our goal will be to show that y=! € W”
and u; € Dww. This would imply that u; is the least element of W"u,W; (since we
already have u; € D;Vlj) and thus u; <g vy by Proposition A.0.12 (since u; = y~lujz €
W”Ul WJ)

To show that y € W”, note that

W2ZV3 = WV = Ul = 2V3Y

and hence .
y =v5'z lwzvs € Wi Nwg Wiy = W,

It only remains then to show that u; € Dw». We have

0= I(uguy) N W' = I{(zogu ) N W' = I(2) N W' + zI(vsuq)z™' N W'
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and hence

IGHaW = z7'UEzznW
= Y I(z)NnW')z
I{vsu) N W'
I(v3) N W' + val(uy st N W'
= val(up)vz' N W'

ll

Thus :
I{uy) N Ws = v3 (27 s N ot Wos

and hence we have

Iu) N W" = v [(z"Hug N W,
On the other hand,

IuZ M) Nog "Wy = uz'l(ug)ug Nuy Wiy,
= uy {ug N W u,
= vglz‘l(l(z) NW' + ZI(’Ug)Z_l NWHzvs
= v:;l](z—l)va N UB_IWI?)3
But u, € DQ}K, so I(uz') N Wg = 0. Hence
v (27 vs Ny Wiy N Wi = 0.

This last fact, combined with equation A.1, says that uy; € Dy» as we wanted.m
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