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Abstract

For a finite real reflection group W and a W -orbit O of flats in its reflection ar-
rangement – or equivalently a conjugacy class of its parabolic subgroups – we intro-
duce a statistic noninvO(w) on w inW that counts the number of “O-noninversions”
of w. This generalizes the classical (non-)inversion statistic for permutations w in
the symmetric group Sn. We then study the operator νO of right-multiplication
within the group algebra CW by the element that has noninvO(w) as its coefficient
on w.

We reinterpret νO geometrically in terms of the arrangement of reflecting hyper-
planes forW , and more generally, for any real arrangement of linear hyperplanes. At
this level of generality, one finds that, after appropriate scaling, νO corresponds to a
Markov chain on the chambers of the arrangement. We show that νO is self-adjoint
and positive semidefinite, via two explicit factorizations into a symmetrized form
πtπ. In one such factorization, the matrix π is a generalization of the projection of
a simplex onto the linear ordering polytope from the theory of social choice.

In the other factorization of νO as πtπ, the matrix π is the transition matrix
for one of the well-studied Bidigare-Hanlon-Rockmore random walks on the cham-
bers of an arrangement. We study closely the example of the family of operators
{ν(k,1n−k)}k=1,2,...,n, corresponding to the case where O is the conjugacy classes of

Young subgroups inW = Sn of type (k, 1n−k). The k = n−1 special case within this
family is the operator ν(n−1,1) corresponding to random-to-random shuffling, fac-
toring as πtπ where π corresponds to random-to-top shuffling. We show in a purely
enumerative fashion that this family of operators {ν(k,1n−k)} pairwise commute. We
furthermore conjecture that they have integer spectrum, generalizing a conjecture
of Uyemura-Reyes for the case k = n− 1. Although we do not know their complete
simultaneous eigenspace decomposition, we give a coarser block-diagonalization of
these operators, along with explicit descriptions of the CW -module structure on
each block.

We further use representation theory to show that if O is a conjugacy class
of rank one parabolics in W , multiplication by νO has integer spectrum; as a very
special case, this holds for the matrix (inv(στ−1))σ,τ∈Sn

. The proof uncovers a fact
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vi ABSTRACT

of independent interest. Let W be an irreducible finite reflection group and s any
reflection in W , with reflecting hyperplane H. Then the {±1}-valued character χ of
the centralizer subgroup ZW (s) given by its action on the line H⊥ has the property
that χ is multiplicity-free when induced up to W . In other words, (W,ZW (s), χ)
forms a twisted Gelfand pair.

We also closely study the example of the family of operators

{ν(2k,1n−2k)}k=0,1,2,...,�n
2 �

corresponding to the case where O is the conjugacy classes of Young subgroups in
W = Sn of type (2k, 1n−2k). Here the construction of a Gelfand model for Sn shows
both that these operators pairwise commute, and that they have integer spectrum.

We conjecture that, apart from these two commuting families {ν(k,1n−k)} and
{ν(2k,1n−2k)} and trivial cases, no other pair of operators of the form νO commutes
for W = Sn.
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CHAPTER I

Introduction

This work grew from the desire to understand why a certain family of combi-
natorial matrices were pairwise-commuting and had only integer eigenvalues. We
start by describing them.

1. The original family of matrices

The matrices are constructed from certain statistics on the symmetric group
W = Sn on n letters. Given a permutation w in W , define the k-noninversion
number 1 noninvk(w) to be the number of k-element subsets {i1, . . . , ik} with 1 ≤
i1 < · · · < ik ≤ n for which wi1 < · · · < wik . In the literature on permutation
patterns, one might call noninvk(w) the number of occurrences of the permutation
pattern 12 · · · k. Alternately, noninvk(w) is the number of increasing subsequences
of length k occurring in the word w = w1w2 · · ·wn.

From this statistic noninvk(−) on the group W = Sn, create a matrix ν(k,1n−k)

in Z|W |×|W |, having rows and columns indexed by the permutations w in W , and
whose (u, v)-entry is noninvk(v

−1u). One of the original mysteries that began this
project was the following result, now proven in Chapter VI.

Theorem 1.1. The operators from the family {ν(k,1n−k)}k=1,2,...,n pairwise
commute.

It is not hard to see (and will be shown in Proposition II.2.2) that one can
factor each of these matrices ν(k,1n−k) = πTπ for certain other integer (even 0/1)
matrices π. Therefore, each ν(k,1n−k) is symmetric positive semidefinite, and hence
diagonalizable with only real non-negative eigenvalues. Theorem I.1.1 asserts that
they form a commuting family, and hence can be simultaneously diagonalized. The
following conjecture also motivated this project, but has seen only partial progress
here.

Conjecture 1.2. The operators {ν(k,1n−k)}k=1,2,...,n have only integer eigen-
values.

In the special case k = n − 1, this matrix ν(n−1,1) was studied already in the
Stanford University PhD thesis of Jay-Calvin Uyemura-Reyes [76]. Uyemura-Reyes
examined a certain random walk on W called the random-to-random shuffling op-
erator, whose Markov matrix is a rescaling of ν(n−1,1). He was interested in its
eigenvalues in order to investigate the rate of convergence of this random walk
to the uniform distribution on W . He was surprised to discover empirically, and

1The terminology comes from the case k = 2, where noninv2(w) counts the pairs (i, j) with
1 ≤ i < j ≤ n that index a noninversion in a permutation w in W , meaning that wi < wj .

1
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conjectured, that ν(n−1,1) has only integer eigenvalues2. This was one of many un-
expected connections encountered during the work on this project, since a question
from computer science (see §III.5) independently led to our Theorem I.1.1 and
Conjecture I.1.2.

2. Using the W -action

One can readily check that the matrix ν(k,1n−k) in Z|W |×|W | represents multi-
plication on the right within the group algebra ZW by the following element of ZW
(also denoted ν(k,1n−k), by an abuse of notation):

ν(k,1n−k) :=
∑
w∈W

noninvk(w) · w.

Consequently, the action of ν(k,1n−k) commutes with the left-regular action of RW
on itself, and the (simultaneous) eigenspaces of the matrices ν(k,1n−k) are all repre-
sentations of W . This extra structure will prove to be extremely useful in the rest
of the work.

In fact, Uyemura-Reyes [76] conjectured descriptions for the RW -irreducible
decompositions of certain of the eigenspaces of ν(n−1,1), and was able to prove
some of these conjectures in special cases. Furthermore, he reported [76, §5.2.3]
an observation of R. Stong noting that one of the factorizations of ν(n−1,1) = πTπ
mentioned earlier can be obtained by letting π be the well-studied random-to-top
shuffling operator on W . These operators are one example from a family of very
well-behaved random walks on W that were introduced by Bidigare, Hanlon, and
Rockmore, BHR for short, in [10] and [11]. These authors showed that the BHR
random walks have very simply predictable integer eigenvalues, and the W -action
on their eigenspaces are also well-described.

We exploit this connection further, as follows. First, we will show (in
Proposition II.6.1 and Corollary IV.2.2) that more generally one has a factorization
ν(k,1n−k) = πTπ in which π is another family of BHR random walks. Second, we
will use the fact that this implies ker ν(k,1n−k) = kerπ, along with Theorem I.1.1,
to obtain a W -equivariant filtration of RW that is preserved by each ν(k,1n−k),
with a complete description of the RW -structure on each filtration factor. This has
consequences (see e.g. §VI.12) for the RW -module structure on the simultaneous
eigenspaces of the commuting family of ν(k,1n−k).

3. An eigenvalue integrality principle

Another way in which we will exploit the W -action comes from a simple but
powerful eigenvalue integrality principle for combinatorial operators. We record it
here, as we will use it extensively later.

To state it, recall that for a finite group W , when one considers representations
of W over fields K of characteristic zero, any finite-dimensional KW -module U is
semisimple, that is, it can be decomposed as a direct sum of simple KW -modules.

2In addition, the thesis [76, p 152-153] mentions other shuffling operators that have “eigenval-
ues with surprising structure”. We have been informed by Persi Diaconis, the advisor of Uyemura-
Reyes, that among others this refers to computational experiments on shuffling operators that
are convex combinations with rational coefficients of the shuffling operators corresponding to
ν(k,1n−k). Uyemura-Reyes observed integral spectrum for small n after suitable scaling. Clearly,

using Theorem I.1.1 this fact for general n is implied by Conjecture I.1.2.
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When considering field extensions K′ ⊃ K, the simple KW -modules may or may
not split further when extended to K′W -modules; one says that a simple KW -
module is absolutely irreducible if it remains irreducible as a K′W -module for any
extension K′ of K. Given any finite group W , a splitting field (see [20, Chapter X])
for W over Q is a field extension K of Q such that every simple KW -module is
absolutely irreducible. Equivalently, K is a splitting field of W over Q if and only
if every irreducible matrix representation of W over Q is realizable with entries
in K [20, Theorem 70.3]. For such a field K, the simple KW -modules biject with
the simple CW -modules, that is, the set of simple KW -modules when extended
to CW -modules gives exactly the set of simple CW -modules corresponding to the
complex irreducible W -characters χ. For finite W the splitting field K over Q can
always be chosen to be a finite, and hence algebraic, extension of Q [20, Theorem
70.23]. If W is a reflection group, then there is a unique minimal extension K of
Q such that K is a splitting field for W in characteristic 0 (see [9, Theorem 0.2],
[6, Theorem 1], and [39, §1.7]).

Denote by o the ring of integers within the unique minimal splitting field K for
the reflection group W in characteristic 0; that is, the elements of K that are roots
of monic polynomials with coefficients in Z. An important example occurs when W
is a crystallographic reflection group or equivalently a Weyl group. Here it is known
that one can take as a splitting field K = Q itself (see [62, Corollary 1.15]), and
hence that o = Z.

Proposition 3.1 (Eigenvalue integrality principle). Let W be a finite group
acting in a Z-linear fashion on Zn and let K be a splitting field of W in characteristic
0. Further let A : Zn → Zn be a Z-linear operator that commutes with the action
W . Extend the action of A and of W to Kn

Then for any subspace U ⊆ Kn which is stable under both A and W , and on
which W acts without multiplicity (that is, each simple KW -module occurs at most
once), all eigenvalues of the restriction of A to U lie in the ring of integers o of K.

In particular, if W is a Weyl group these eigenvalues of A lie in Z.

Proof. An eigenvalue of A is a root of its characteristic polynomial det(t ·
IKn −A), a monic polynomial with Z coefficients. As usual IKn denotes the identity
matrix. Hence, it is enough to show that the eigenvalues of A acting on the K-
subspace U all lie in K.

Because K is a splitting field for W , one has an isotypic KW -module decompo-
sition U =

⊕
χ U

χ in which the sum is over the irreducible characters χ of W . Since
A commutes with the W -action, it preserves this decomposition. The assumption
that U is multiplicity-free says each Uχ is a single copy of a simple KW -module.
Schur’s Lemma asserts that, on extending K to its algebraic closure, A must act
on each Uχ by some scalar λχ. However, λχ must lie in K since A acts K-linearly.
Thus, the isotypic decomposition diagonalizes the action of A on U , and all its
eigenvalues lie in K (and hence in o). �

4. A broader context, with more surprises

Some of the initial surprises led us to consider a more general family of oper-
ators, in the context of real reflection groups W , leading to even more surprises.
We describe some of these briefly and informally here, indicating where they are
discussed later.
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Let W be a finite real reflection group, acting on an R-vector space V , with
set of reflecting hyperplanes A, and and let L be the (partially-ordered) set of
subspaces X that arise as intersections of hyperplanes from some subset of A. The
hyperplanes in A dissect V into connected components called chambers, and the
set C of all chambers carries a simply-transitive action of W . Thus, if 1 denotes the
identity element of W , then one can choose an identity chamber c1 and an indexing
of the chambers C = {cw := w(c1)}w∈W .

Given a W -orbit O of intersection subspaces, define noninvO(w) to be the
number of subspaces X in O for which the two chambers cw and c1 lie on the same
side of every hyperplane H ⊇ X. In the case where W = Sn acts on V = Rn by
permuting coordinates, if one takes O to be the W -orbit of intersection subspaces
of the form xi1 = · · · = xik , one finds that noninvO(w) = noninvk(w).

Consider the operator νO representing multiplication by
∑

w∈W noninvO(w) ·w
within ZW or RW . As before, one can show that νO = πTπ for certain integer
matrices π, and again one such choice of a matrix π is the transition matrix for
a BHR random walk on W . In this general context, but when O is taken to be
a W -orbit of codimension one subspaces (that is, hyperplanes) one encounters the
following surprise, proven in §III.3.

Theorem 4.1. For any finite irreducible real reflection group W , and any (tran-
sitive) W -orbit O of hyperplanes, the matrix νO has all its eigenvalues within the
ring of integers of the unique minimal splitting field for W . In particular, when W
is crystallographic, these eigenvalues all lie in Z.

This result will follow from applying the integrality principle (Proposition I.3.1)
together with the discovery of the following (apparently) new family of twisted
Gelfand pairs. This is proven in §III.2.

Theorem 4.2. Let W be a finite irreducible real reflection group and let H be
the reflecting hyperplane for a reflection s ∈ W .

Then the linear character χ of the W -centralizer ZW (s) given by its action on

the line V/H or H⊥ has a multiplicity-free induced W -representation IndWZW (s) χ.

We mention a further surprise proven via Proposition I.3.1 and some standard
representation theory of the symmetric group. With W = Sn acting on V = Rn

by permuting coordinates, for each k = 1, 2, . . . , �n
2 	 consider the W -orbit O of

codimension k intersection subspaces of the form

{xi1 = xi2} ∩ {xi3 = xi4} ∩ · · · ∩ {xi2k−1
= xi2k},

where {i1, i2}, . . . , {i2k−1, i2k} are k pairwise disjoint sets of cardinality two. Let
ν(2k,1n−2k) denote the operator νO for this orbit O.

Theorem 4.3. The operators from the family {ν(2k,1n−2k)}k=1,2...,�n
2 � pairwise

commute, and have only integer eigenvalues.

Interestingly, the proof of this given in Chapter V tells us that the non-kernel
eigenspaces Vλ in the simultaneous eigenspace decomposition for {ν(2k,1n−2k)} should
be indexed by all number partitions λ of n, and that Vλ carries the irreducible RSn-
module indexed by λ, but it tells us very little about the integer eigenvalue for each
ν(2k,1n−2k) acting on Vλ.
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More generally, we can define an operator νλ for each partition λ=(λ1, λ2, . . . , λ�)
of n by considering the Sn-orbit of the subspace

{x1 = x2 = · · · = xλ1
} ∩ {xλ1+1 = xλ1+2 = · · ·= xλ1+λ2

}
∩ {xλ1+λ2+1 = xλ1+λ2+2 = · · · = xλ1+λ2+λ3

} ∩ · · · .

In light of Theorem I.1.1 and Theorem I.4.3, it is natural to ask whether these
operators commute and have integer eigenvalues. Our computer explorations led us
to conjecture the following, which we verified for 1 ≤ n ≤ 6.

Conjecture 4.4. Let λ and γ be distinct partitions of n, both different from
(1n) and (n). The operators νλ and νγ commute if and only if they both belong to{
ν(k,1n−k) : 1 < k < n

}
or
{
ν(2k,1n−2k) : 0 < k ≤ �n

2 	
}
. Furthermore, νλ has integer

eigenvalues if and only if νλ belongs to one of these two families.

5. Outline of the paper

We will define and study the operators νO at various levels of generality.

(H) For hyperplane arrangements A (see §II.1).
(L) For hyperplane arrangements invariant under a (linear) action of a finite

group W (see §II.3).
(R) For reflection arrangements corresponding to a real reflection group W

(see §II.5).
(W) For crystallographic reflection groups or, equivalently, Weyl groups W .
(S) For the symmetric group Sn (see Chapter V and Chapter VI).

Different properties of the operators νO manifest themselves at different levels of
generality.

In Chapter II we define νO as in (H) for all hyperplane arrangements A, and
prove semidefiniteness by exhibiting a “square root” π for which νO = πTπ. We
also explain how νO interacts with any finite group W acting on A as in (L). We
then particularize to case (R), and exhibit a second square root π that will turn
out to be the transition matrix for a certain BHR random walk. The rest of this
chapter contains some general reductions and principles, including a reduction to
eigenspaces and an analysis of the Perron-Frobenius eigenspace.

In Chapter III, we discuss and prove Theorem I.4.2 and deduce from it
Theorem I.4.1. We also discuss some interesting conjectures that it suggests, and a
relation to linear ordering polytopes.

In Chapter IV we review some of the theory of BHR random walks, with features
at different levels of generality. In particular, some of the W -equivariant theory of
the BHR random walks presented here have neither been stated nor proven in the
literature in the generality required for the later results, so these are discussed in full
detail here. This equivariant theory extends to a commuting Z2-action coming from
the scalar multiplication operator −1. Whenever W does not already contain this
scalar −1, the W ×Z2-equivariant picture provides extra structure in analyzing the
eigenspaces of νO. This chapter concludes with some useful reformulations of the
representations that make up the eigenspaces, which are closely related to Whitney
cohomology, free Lie algebras and higher Lie characters.

The remainder of the paper focuses on the case (S), that is, reflection arrange-
ments of type An−1, where W = Sn.
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In Chapter V we discuss ν(2k,1n−2k) and prove Theorem I.4.3. As mentioned
earlier, although the proof predicts the RW -module structure on the simultaneous
eigenspaces, it does not predict the eigenvalues themselves.

In Chapter VI we discuss the original family of matrices {ν(k,1n−k)}k=1,2,...,n,
starting with a proof of Theorem I.1.1. We then proceed to examine their simul-
taneous eigenspaces. Here one can take advantage of a block-diagonalization that
comes from a certain W -equivariant filtration respected by these operators. One
can also fully analyze the irreducible decomposition of the filtration factors using a
close connection with derangements, desarrangements and the homology of the com-
plex of injective words. We review this material, including some unpublished results
[50] of the first author and M. Wachs, and extend this to the W × Z2-equivariant
picture mentioned earlier. Some of this is used to piggyback on Uyemura-Reyes’s
construction of the eigenvectors of ν(n−1,1) within a certain isotypic component;
we show with no extra work that these are simultaneous eigenvectors for all of the
{ν(k,1n−k)}k=1,2,...,n.
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CHAPTER II

Defining the operators

1. Hyperplane arrangements and definition of νO

We review here some standard notions for arrangements of hyperplanes; good
references are [48] and [66].

A (central) hyperplane arrangement A in a d-dimension real vector space V will
here mean a finite collection {H}H∈A of codimension one R-linear subspaces, that
is, hyperplanes passing through the origin.

An intersection X = Hi1 ∩ · · · ∩Him of some subset of the hyperplanes will be
called an intersection subspace. The collection of all intersection subspaces, partially
ordered by reverse inclusion, is called the intersection lattice L = L(A). This turns
out to be a geometric lattice (= atomic, upper semimodular lattice), ranked by the

rank function r(x) = dimV/X with bottom element 0̂ = V :=
⋂

H∈∅ H, and a top

element 1̂ =
⋂

H∈A H (see [77, Section 3.2.3]). We will sometimes assume that A
is essential, meaning that

⋂
H∈A H = {0}, so that L has rank d = dim(V ).

For each X in L, we will consider the localized arrangement

A/X := {H/X : H ∈ A, H ⊃ X}

inside the quotient space V/X, having intersection lattice L(A/X) ∼= [V,X]. Here
for elements U1, U2 ∈ L we denote by [U1, U2] the closed interval {U ∈ L | U1 ≤
U ≤ U2}. The complement V \

⋃
H∈A H decomposes into connected components

which are open polyhedral cones c, called chambers; the set of all chambers will be
denoted C = C(A).

Given any chamber c in C and any intersection subspace X, there is a unique
chamber c/X in V/X for the localized arrangement A/X for which the quotient
map q : V � V/X has q−1(c/X) ⊇ c (see Figure 1).

We can now define our main object of study.

Definition 1.1. Given two chambers c, c′ in C, and an intersection subspace
X in L, say that X is a noninversion subspace for {c, c′} if c/X = c′/X.

Given any subset O ⊆ L, define a statistic on (unordered) pairs {c, c′} of
chambers

noninvO(c, c
′) := noninvO(c

′, c) :=
∣∣∣{X ∈ O : c/X = c′/X

}∣∣∣.
Define the matrix νO in ZC×C whose (c, c′)-entry equals noninvO(c, c

′). Alter-
natively, identify νO with the following Z-linear operator on the free Z-module ZC
that has basis indexed by the chambers C:

(1)
ZC νO−→ ZC
c′ �−→

∑
c∈C noninvO(c, c

′) · c.

7
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H1

H2

H3

X

R3/X

H1/X

H3/X

c

c/X

q

Figure 1. Arrangement and its localization

Note that since by definition noninvO(c, c
′) = noninvO(c

′, c) it follows that νO
is a symmetric matrix.

Example 1.2. We consider the arrangement A = {H1, H2, H3} of the coordi-
nate hyperplanes in R3 from Figure 1. Chambers C are in bijection with {+1,−1}3,
where the image of the chamber is the sign pattern ε = (ε1, ε2, ε3) of any of its
points.

If X = H1 ∩ H3, then A/X = {H1/X,H3/X}. For c = (+1,+1,+1), the
chamber c/X in R3/X ∼= R2 can again be seen as the positive quadrant. The only
other chamber c′ ∈ C for which c/X = c′/X is the image c′ = (+1,−1,+1) of c
reflection through H2.

Example 1.3. Let V = Rn and A the reflection arrangement of type An−1,
whose hyperplanes are Hij = {xi = xj}1≤i<j≤n with the action of W = Sn per-
muting coordinates.

Intersection subspaces X, such as the subspace {x1 = x3 = x4, x2 = x7} inside
V = R7, correspond to set partitions of the coordinates [n] := {1, 2, . . . , n} into
blocks [n] =

⊔
i Bi which indicate which coordinates are equal; in this example, this

set partition is

[7] = {1, 3, 4} 
 {2, 7} 
 {5} 
 {6}.
The intersection lattice L is therefore isomorphic to the lattice of set-partitions of
[n], ordered by refinement, having the discrete (all singleton) partition as 0̂, and

the trivial partition with one block as 1̂.
Chambers in the reflection arrangement of type An−1 are the collections of

vectors (x1, . . . , xn) ∈ Rn for which xw1
< xw2

< · · · < xwn
given a fixed w ∈ Sn,

where wi = w(i) for i ∈ [n]. We will denote the chamber corresponding to a fixed
w by cw.

Given an intersection subspace X, corresponding to the partition [n] =
⊔

i Bi,
and a chamber cw, the information contained in the chamber cw/X records for
each i the linear ordering in which the letters of Bi appear as a subsequence within
w = (w1, w2, . . . , wn). Therefore, cu/X = cv/X if and only if for each i the letters
of Bi appear in the same order in both u and v.
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2. Semidefiniteness

As explained after Definition II.1.1 the matrix νO is symmetric and hence the
corresponding linear operator is self-adjoint with respect to the usual pairing 〈−,−〉
on ZC that makes the basis vectors c orthonormal. It is also positive semidefinite,
as it has the following easily identified “square root”.

Definition 2.1. Consider for each intersection subspace X the Z-linear map

ZC πX−→ ZC(A/X)
c �−→ c/X

and having chosen a subset O ⊆ L, consider the direct sum of maps πO :=⊕
X∈O πX

ZC −→
⊕
X∈O

ZC(A/X)

Proposition 2.2. One has the factorization

νO = πT
O ◦ πO.

In particular, when scalars are extended from Z to R, one has

ker νO = kerπO.

Proof. The (c, c′)-entry of πT
O ◦ πO equals∑

X∈O

∑
d∈C(A/X)

(πX)d,c(πX)d,c′

=
∑
X∈O

∣∣∣{d ∈ C(A/X) : c/X = d = c′/X}
∣∣∣

=
∣∣∣{X ∈ O : c/X = c′/X}

∣∣∣
= noninvO(c, c

′). �

3. Equivariant setting

Now assume that one has a finite subgroup W of GL(V ) that preserves the
arrangement A in the sense that for every w in W and every hyperplane H of A,
the hyperplane w(H) is also in A. Then W permutes each of the sets A,L, C, and
hence acts Z-linearly on ZC.

Proposition 3.1. If the subset O ⊆ L is also preserved by W , then the operator
νO on ZC is W -equivariant.

Proof. This is straightforward from the observation that since W preserves
O, one has

noninvO(c, c
′) = noninvO(w(c), w(c

′)). �
Example 3.2. We resume Example II.1.3 and let V = Rn and A the reflection

arrangement of the symmetric group W = Sn. Hence the intersection lattice L is
the lattice of set partitions of [n] ordered by refinement. The group Sn acts on Rn

by permuting coordinates. Thus, w ∈ Sn acts on L by sending the set partition
[n] =

⊔
i Bi to the set partition [n] =

⊔
i w(Bi), where w(Bi) = {w(j) | j ∈ Bi}.

Therefore, the Sn-orbits on L are indexed by number partitions λ � n. The orbit
Oλ consist of those intersection subspaces or equivalently set partitions of [n] for
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which the block sizes ordered in decreasing order are the parts of λ. We call such a
set partition a set partition of type λ.

For example, for λ = (k, 1n−k) we obtain as Oλ the
(
n
k

)
set partitions of [n]

whose only non-singleton block is a block of size k.

4. Z2-action and inversions versus noninversions

Let IV be matrix of the identity endomorphism of V . The scalar matrix −IV
acting on V preserves any arrangement A, and hence gives rise to an action of
Z2 = {1, τ} in which τ acts by −IV . When one has a subgroup W of GL(V )
preserving A, since τ acts by a scalar matrix, this Z2-action commutes with the
action of W , giving rise to a W × Z2-action. Of course, if W already contains the
element −IV , this provides no extra information beyond the W -action. But when
−IV is not an element ofW already, it is worthwhile to consider this extra Z2-action.

We wish to explain how carrying along this Z2-action naturally eliminates a
certain choice we have made. Instead of considering the matrix/operator νO, one
might have considered the matrix/operator ιO = (invO(c, c

′))c,c′∈C having entry
invO(c, c

′) defined to be the number of subspaces X in O which are inversions for
c, c′ in the sense that c/X = −c′/X. Taking into account the Z2-action eliminates
the need to consider ιO separately:

Proposition 4.1. The two operators νO and ιO are sent to each other by the
generator τ of the Z2-action:

ιO = τ ◦ νO = νO ◦ τ. �

Thus, if we want to consider the eigenvalues and eigenspaces, it is equivalent
to consider either νO or ιO, as long as we also keep track of the Z2-action on the
eigenspaces. In what follows, we prefer to consider the positive semidefinite operator
νO rather than the indefinite operator ιO.

Example 4.2. We return to the setting of Example II.1.3 and Example II.3.2.
For λ = (k, 1n−k) we had seen that Oλ consists of all set partitions of [n] whose
unique non-singleton block is of size k. Thus, X ∈ Oλ is uniquely defined by spec-
ifying a k-subset B of [n]. Let u, v ∈ Sn with corresponding chambers cu and cv.
From Example II.1.3 we know cu/X = cv/X if and only if the linear orders defined
by u and v coincide on B. Since there are

(
n
k

)
choices for k-subsets B we have

invO
(k,1n−k)

(cu, cv) =

(
n

k

)
− noninvO

(k,1n−k)
(cu, cv).

In particular, invO(2,1n−2)
(cu, cv) is the number of inversions of v−1u.

5. Real reflection groups

We review here some standard facts about real, Euclidean finite reflection
groups; a good reference is [38].

Here we will adopt the convention that an (orthogonal) reflection in GL(V ) for
an R-vector space V is an orthogonal involution s whose fixed subspace V s is some
hyperplaneH. Necessarily, such an element s has s2 = IV and acts by multiplication
by −1 on the line H⊥. A (real) reflection group W is a finite subgroup of GL(V )
generated by reflections.
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To any reflection group W there is naturally associated its arrangement of re-
flecting hyperplanes A, consisting of all hyperplanes H arising as V s for reflections s
in W . In this situation it is known that the set of chambers C carries a simply tran-
sitive action of W . Therefore, after making a choice of fundamental/identity/base
chamber c1, one can identify the W -action on ZC with the left-regular W -action on
the group algebra ZW :

(2)
ZW −→ ZC

w �−→ cw := w(c1).

Now assume one is given a W -stable subset O ⊆ L, and define the statistic

noninvO(w) := noninvO(c1, cw)

= noninvO(cw, c1)

= noninvO(w(c1), w(cw−1))

= noninvO(c1, cw−1)

= noninvO(w
−1).

Proposition 5.1. For any W -stable subset O ⊆ L, under the identification 2,
the operator νO acts on ZW as right-multiplication by the element∑

w∈W

noninvO(w) · w.

Proof. Within the group algebra, for any basis element v in W , one has

v ·
(∑

w∈W

noninvO(w) · w
)

=
∑
w∈W

noninvO(w) · vw

=
∑
u∈W

noninvO(v
−1u) · u

=
∑
u∈W

noninvO(cv−1u, c1) · u

=
∑
u∈W

noninvO(cu, cv) · u. �

By abuse of notation, we will also use the notation νO to denote the element∑
w∈W noninvO(w) · w of CW .
When W is a real reflection group, the Z2-action corresponds to the action of

the longest element w0 in W , defined uniquely by the property that

(3) cw0
= −c1,

where cw0
= w0(c1). Note that this forces w0 to always be an involution: w2

0 = 1.

Proposition 5.2. Under the identification 2, the scalar matrix −IV or the
generator τ of the Z2-action on ZC acts on ZW as right-multiplication by w0.

Proof. Applying w on the left of 3 gives

cww0
= ww0(c1) = −w(c1) = −cw

for any w in W . �
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It is known that −IV is an element of a reflection group W acting on V if
and only if W only has even degrees d1, . . . , dn for any system of basic invariants
f1, . . . , fn that generate the W -invariant polynomials C[V ]W = C[f1, . . . , fn]. If
−IV is an element of W , then necessarily −IV = w0.

For the irreducible real reflection groups, one has

• −IV = w0 in types Bn = Cn, in type Dn when n is even, in the dihedral
types I2(m) form even, as well as the exceptional types F4, E7, E8, H3, H4.

• −IV �∈ W in all other cases, that is, in type An−1, in type Dn for n odd,
in dihedral types I2(m) for m odd, and in type E6. Thus, in these cases
there is an extra Z2-action to consider.

Example 5.3. Again we return to Example II.1.3. The longest word w0 ∈ Sn

corresponds to the permutation n n − 1 · · · 2 1. Thus, multiplication by w0 on the
right sends a permutation w(1) · · ·w(n) ∈ Sn to the permutation w(n) · · ·w(1).

Given an intersection subspace X, denote by NW (X) and ZW (X), respectively,
its not-necessarily-pointwise stabilizer subgroup and pointwise stabilizer subgroup
within W :

NW (X) = {w ∈ W : w(X) = X},
ZW (X) = {w ∈ W : w(x) = x for all x ∈ X}.

It is well-known (see for example [1, Lemma 3.75]) that ZW (X) is itself a finite real
reflection group, called the parabolic subgroup associated to X, which one can view
as acting on the quotient space V/X, and having reflection arrangement equal to
the localization A/X. Consequently, the chambers C(A/X) are in natural bijection
with ZW (X). This gives the following interpretation to the map c �−→ c/X that we
have been using.

Proposition 5.4. Let W be a finite real reflection group W , and X an inter-
section subspace in L. Then every w in W factors uniquely as w = z · y where z
lies in ZW (X) and y lies in

XW := {y ∈ W : cy/X = c1/X}.
In particular, the map πX : C → C(A/X) sending c �−→ c/X corresponds under (2)
to the map sending w �−→ z.

Proof. Given w in W , consider the chamber cw/X in the localized arrange-
mentA/X. Since this localized arrangement is the reflection arrangement for ZW (X),
there is a unique element z in ZW (X) for which cz/X = cw/X. In particular, the
element z ∈ ZW (X) acts on the chambers of A and on the chambers of A/X.
Conversely, given a factorization w = zy as asserted, it follows that cz/X = cw/X.
Thus, we are done once we check that y := z−1w lies in XW . But this follows from

cy/X = cz−1w/X

= (z−1cw)/(z
−1X)

= z−1(cw/X)

= z−1(cz/X)

= c1/z
−1X

= c1/X.

�
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In the sequel, for a finite real reflection group W and an intersection subspace
X in L, we denote by XW the set {y ∈ W : cy/X = c1/X}, which by the preceding
proposition is a set of right coset representatives of ZW (X) in W . We write WX =
{w−1 : w ∈ XW} for the corresponding set of left coset representatives. If X
intersects the identity chamber c1 then ZW (X) = WJ = 〈J〉 for some subsets
J ⊆ S. Here WJ is a (standard) parabolic subgroup for the Coxeter system (W,S)
that generates W using the set S of reflections through the walls of c1. In this case
we also write JW for XW and W J for WX respectively. The JW and W J are sets
of minimal length right and left coset representatives for WJ .

Example 5.5. Returning to Example II.1.3 and Example II.3.2, where W =
Sn acts on V = Rn by permuting coordinates and X is the intersection subspace
corresponding to the partition [n] =

⊔
i Bi, the centralizer ZW (X) is the Young

subgroup
∏

i SBi
that permutes each block Bi of coordinates separately. The map

W �−→ ZW (X) that sends w �→ z corresponding to c �−→ c/X remembers only the
ordering of the coordinates within each block Bi.

6. The case where O is a single W -orbit

When W is a real reflection group, and O = XW := {w · X : w ∈ W} is the
W -orbit of some intersection subspace X, there are two extra features that will
help us to analyze the eigenspaces of νO.

6.1. A second square root. First, there is another “square root” for νO
when W is the orbit XW

0 of a single subspace X0. This will connect νO with the
BHR random walks in Chapter IV. Given an intersection subspace X, with the
associated subgroups ZW (X) ⊆ NW (X) we have introduced in Proposition II.5.4
and subsequent definitions the parabolic factorizations and coset representatives

W = ZW (X) · XW

W = WX · ZW (X).

Define
nX := [NW (X) : ZW (X)]

XR :=
∑

u∈XW

u

RX :=
∑

u∈WX

u.

For later use and analogous to our previous convention we write JR and RJ

in case X lies in the boundary of the identity chamber c1 and ZW (X) = WJ is a
(standard) parabolic subgroup.

Proposition 6.1. Let W be a real reflection group and O = XW
0 ⊂ L the

W -orbit of the intersection subspace X0. Then

noninvO(w) =
1

nX0

∣∣∣X0W ∩ X0Ww
∣∣∣

and

νO =
1

nX0

RX0 · X0R.
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Proof. Since O is the W -orbit of X0, and NW (X0) the W -stabilizer of X0, the
elements u·X0 as u runs over coset representatives forW/NW (X0) give eachX in O
exactly once. Therefore, the elements uX0 as u runs over the coset representatives
WX0 of W/ZW (X0) give each X in O exactly nX0

= [NW (X0) : ZW (X0)] times.
Since

noninvO(w) =
∣∣{X ∈ O : w ∈ XW}

∣∣
this implies that

nX0
· noninvO(w) =

∣∣{u ∈ WX0 : w ∈ uX0W}
∣∣ .

We wish to rewrite the set appearing on the right side of this equation. Note that
u lies in WX0 if and only if u−1 lies in X0W if and only if cu−1/X0 = c1/X0.
Similarly, w lies in uX0W if and only if cw/uX0 = c1/uX0 if and only if cu−1w/X0 =
cu−1/X0 = c1/X0 if and only if u−1w lies in X0W . Letting v = u−1w, one concludes
that v lies in both X0W and in X0Ww. Thus, so far we have shown that

nX0
· noninvO(w) =

∣∣∣X0W ∩ X0Ww
∣∣∣ = ∣∣∣ {(u, v) ∈ WX0 × X0W : uv = w

} ∣∣∣.
The first equality proves the first assertion. The second assertion follows from the
equality between the first and third terms in the preceding equation and the fol-
lowing calculation.

RX0 · X0R =

⎛⎝ ∑
u∈WX0

u

⎞⎠⎛⎝ ∑
v∈X0W

v

⎞⎠ =
∑
w∈W

w · nX0
· noninvO(w) �

6.2. Nested kernels. Second, there is an inclusion of kernels ker νO ⊆ ker νO′

whenever O,O′ are W -orbits represented by nested subspaces. To see this, define
in the general setting of hyperplane arrangements a map

πO
O′ :

⊕
X∈O

C(A/X) →
⊕

X′∈O′

C(A/X ′)

as a direct sum of the natural maps

πX
X′ : C(A/X) −→ C(A/X ′)

c/X �−→ c/X ′

indexed by pairs of subspaces (X,X ′) ∈ O×O′ for which X ⊆ X ′. Given X ′ ∈ O′,
define an integer cO,X′ to be the number of X ∈ O for which X ⊆ X ′.

Proposition 6.2. Let A be an arrangement with a group of linear symmetries
W , and let O,O′ be two W -orbits within L represented by two nested subspaces.

Then the integers cO,X′ do not depend upon the choice of X ′ within O′, and
denoting this common integer cO,O′ one has

(4) cO,O′ · πO′ = πO
O′ ◦ πO.

Consequently,

kerπO ⊆ kerπO′

‖ ‖
ker νO ker νO′
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Proof. Because πX′ = πX
X′ ◦ πX , one has generally that

πO
O′ ◦ πO =

∑
X′∈O′

cO,X′ πX′ .

However, whenever O,O′ are W -orbits, if X ′, X ′′ are subspaces in the same W -
orbit O′, say with w ·X ′ = X ′′, then the element w gives a bijection between the
two sets counted by cO,X′ , cO,X′′ . Thus, cO,O′ := cO,X′ satisfies

πO
O′ ◦ πO = cO,O′

∑
X′∈O′

πX′ = cO,O′ · πO′ . �

Example 6.3. We again consider the setting of Example II.1.3, Example II.3.2
and the partitions λ = (k, 1n−k), 1 ≤ k ≤ n. Then for each 1 ≤ k < k′ ≤ n
and each subspace X ∈ O(k,1n−k) there is a subspace X ′ ∈ O(k′,1n−k′ ) for which

X ′ ⊆ X. Thus, Proposition II.6.2 applies, and we will take advantage of the nesting
ker ν(k′,(1n−k′ ) ⊂ ker ν(k,1n−k) in §VI.2.

7. A reduction to isotypic components

The fact that we are considering operators which are right-multiplication on
the group algebra CW by elements of ZW allows us to take advantage of standard
facts from representation theory.

As preparation, let A and B be finite dimensional C-algebras, e a primitive
idempotent of A and f a primitive idempotent of B. Then for any (A–B)-bimodule
C the primitivity of e and f implies

HomA(A e, C f) ∼= eC f ∼= HomB(fB, eC).(5)

Again primitivity implies that dimC HomA(A e, C f) is the multiplicity of the left
simple A-module A e in C f and dimCHomB(fB, eC) is the multiplicity of the right
simple B-module fB in eC. This fact is the core of the proof of the following
proposition.

Proposition 7.1. Let W be a real reflection group and let O ⊆ L be a W -
stable subset. Fix a complex irreducible W -character χ and a representation ρχ :
W → GLC(U

χ) in some complex vectorspace Uχ affording the character χ. Then
the multiplicity of χ in

ker(νO − λICW ) ∩ ker(τ − εICW )(6)

equals the dimension of

ker(ρχ(νO)− λIUχ) ∩ ker(ρχ(w0)− εIUχ).(7)

In particular, if λ is an eigenvalue of νO and ε an eigenvalue of τ , then the
multiplicity of χ in the λ-eigenspace for νO intersected with the ε-eigenspace for τ
is the same as the dimension of the λ-eigenspace for ρχ(νO) intersected with the
ε-eigenspace for ρχ(w0).

Proof. We may assume that λ and ε are eigenvalues of νO and τ respectively,
since otherwise the first part of the claim is trivial.

Let A = CW and B be the subalgebra of A generated by w0 and νO. Since w0

and νO commute and are diagonalizable, B is a commutative semisimple algebra.
Since λ and ε are eigenvalues of νO and w0 respectively, sending νO to λ and w0

to ε defines a 1-dimensional representation of B with character φ. Let eχ (resp.
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eφ) be the primitive idempotent of A (resp. B) corresponding to the irreducible
character χ (resp. φ). In linear algebra terms eφ is the product of the projection to
the ε-eigenspace of w0 and the λ-eigenspace of ν0. Hence CW eφ is the intersection
of the λ-eigenspace of νO and the ε-eigenspace of w0 and thus coincides with (6).
Hence, by definition of eχ, we have that dimC HomA(A eχ, A eφ) is the multiplicity
of χ in (6). By the same arguments one sees that dimC HomB(eφB, eχ A) equals
the dimension of (7). Now (5) with C = CW completes the proof. �

The preceding result can also be obtained in a more explicit but less elegant
way by partially block diagonalizing νO. The latter technique sometimes goes by
the name “Fourier transform”.

We note that as a very special case of this, when χ is a degree one or linear
character of W , one can be much more precise.

Proposition 7.2. For any degree one character χ of W and any W -stable
subset O ⊆ L, multiples of the χ-idempotent

eχ :=
1

|W |
∑
w∈W

χ(w) · w =
1

|W |
∑
w∈W

χ(w−1) · w

in QW are eigenvectors for νO, with integer eigenvalue

λO(χ) :=
∑
w∈W

noninvO(w)χ(w)

=
∑
X∈O

∑
w∈W :

cw/X=c1/X

χ(w).

In particular, the trivial character 1 gives rise to an all positive eigenvector e1 =
1

|W |
∑

w∈W w, having eigenvalue

λO(1) =
∑
i

(
[W : NW (Xi)] · [W : ZW (Xi)]

)
where {Xi} is any set of representatives for the W -orbits within O.

Proof. First note that since a reflection group W is generated by involutions,
any degree one character χ takes values in {±1} and satisfies χ(w−1) = χ(w). Now
check the eigenvalue equation:

|W |eχ · νO =

(∑
u∈W

χ(u) · u
)(∑

v∈W

noninvO(v) · v
)

=
∑
u∈W

∑
v∈W

χ(u) noninvO(v) · uv

=
∑
w∈W

w

(∑
v∈W

χ(wv−1) noninvO(v)

)

=

(∑
w∈W

χ(w)w

)(∑
v∈W

χ(v−1) noninvO(v)

)
= λO(χ) (|W |eχ)
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One can also rewrite

λO(χ) =
∑
w∈W

noninvO(w)χ(w)

=
∑
w∈W

∑
X∈O:

cw/X=c1/X

χ(w)

=
∑
X∈O

∑
w∈W :

cw/X=c1/X

χ(w)

Lastly, when χ = 1 one has

λO(χ) =
∑
X∈O

|{w ∈ W : cw/X = c1/X}|

=
∑
i

∑
X′

i∈W ·Xi

|{w ∈ W : cw/X
′
i = c1/X

′
i}|

=
∑
i

[W : NW (Xi)][W : ZW (Xi)]

where the last equality uses both the fact that |W ·Xi| = [W : NW (Xi)] and that
Proposition II.5.4 tells us that the elements from XW = {w ∈ W : cw/X = c1/X}
form a set of coset representatives for W/ZW (X). �

Example 7.3. We return to the setting of Example II.1.3 with W = Sn acting
on V = Rn, and O = O(k,1n−k). There are two degree one characters of W , namely
the trivial character 1, and the sign character sgn. Since a representative subspace
x1 = x2 = · · · = xk in O has NW (X) = Sk × Sn−k and ZW (X) = Sk, for the
trivial character 1 one finds that

λO(1) = [W : NW (X)][W : ZW (X)] =
n!

k!(n− k)!
· n!
k!

=

(
n

k

)2

(n− k)!.

For the sign character sgn one finds that

λO(sgn) =
∑
X∈O

∑
w∈W :cw/X=c1/X

sgn(w)

=
∑

1≤i1<···<ik≤n

∑
w∈W :

{i1,...,ik} appear
left-to-right in w

sgn(w)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if k = n

1 if k = n− 1 and n is odd,

0 if k = n− 1 and n is even,

0 if 1 ≤ k ≤ n− 2,

for the following reasons.
When k = n this is because there is only one term in the outer sum, and the

inner sum contains only w = 1.
When 1 ≤ k ≤ n−2, picking any pair {i, j} in the complement [n]\{i1, . . . , ik}

gives rise to a sign-reversing involution w ↔ (i, j) · w, which shows that the inner
sum vanishes.
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When k = n − 1, this calculation appears as [76, Proposition 5.3]. Each term
in the outer sum is determined by the index i in the complement [n] \ {i1, . . . , ik},
and each w in the inner sum determined by the position j where i appears in w,
that is, j = w−1(i). Hence the result is

n∑
i=1

n∑
j=1

(−1)i−j =

(
n∑

i=1

(−1)i

)2

which is 1 for n odd and 0 for n even.

8. Perron-Frobenius and primitivity

Since the matrices representing the νO have non-negative entries, and since the
trivial idempotent e1 gives an eigenvector with all positive entries, one might wish
to apply Perron-Frobenius theory (see e.g. [37, Theorem 8.4.4]) to conclude that
the eigenspace spanned by e1 is simple. This is true in the cases of most interest to
us, but we must first deal with a degenerate case that can occur when the reflection
group W does not act irreducibly.

Recall that for any finite reflection group W acting on the real vector space
V , one can always decompose W =

∏t
i=1 W

(i) and find an orthogonal decomposi-

tion V =
⊕t

i=1 V
(i) such that each W (i) acts as a reflection group irreducibly on

V (i). In this situation, one has a disjoint decomposition of the arrangement A of
reflecting hyperplanes of the reflections from W as A =

⊔t
i=1 A(i), where A(i) is

the arrangement of reflecting hyperplanes of the reflections from W (i).

Example 8.1. LetW be of typeA1×A1, that is, the reflection group isomorphic
to Z2×Z2 acting on V = R2 generated by two commuting reflections s1, s2 through
perpendicular hyperplanes H1, H2 (lines, in this case). Thus, W = W (1) × W (2)

where W (i) = {1, si}. Choose O = {H1}. Then one finds that

w noninvO(w)

1 1

s1 0

s2 1

s1s2 = s2s1 = w0 0

so that as an element of ZW , one has νO = 1+s2 whose action on ZW on the right
can be expressed in matrix form with respect to the ordered basis (1, s1, s2, w0) as⎡⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤⎥⎥⎦ .

Even though this matrix is non-negative, it is imprimitive in the sense that no
power of it will have all strictly positive entries. Thus, one cannot apply the simplest
version of the Perron-Frobenius theorem. However, under the identification ZW ∼=
ZW1 ⊗Z ZW2 one has

νO = (1 · 1+ 0 · s1)⊗ (1 · 1+ 1 · s2).
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and correspondingly the above matrix can be rewritten as[
1 0
0 1

]
⊗
[
1 1
1 1

]
.

Note that this second tensor factor is a primitive matrix, to which Perron-Frobenius
does apply.

The following proposition can be proven in a completely straightforward fash-
ion.

Proposition 8.2. Let W be a finite real reflection group and let A denote its
arrangement of reflecting hyperplanes. Let W =

∏t
i=1 W

(i) and A =
⊔t

i=1 A(i) be
the decomposition described above.

Let O ⊆ L be W -stable and suppose there is an 1 ≤ i ≤ t such that

• every X in O is a subspace of X(i) :=
⋂

H∈A(i) H.

Then every X in O can be uniquely written as X = X(i)∩YX for some intersection
YX of hyperplanes from

⊔
j 	=i A(j). Letting W ′ :=

∏
j 	=iWj and identifying ZW ∼=

ZW (i) ⊗ ZW ′, one has

νO = 1ZW (i) ⊗ νO′

where O′ := {YX : X ∈ O}.

Example 8.3. Example II.8.1 illustrates the scenario of Proposition II.8.2 with
V = R2 = V (1) ⊕ V (2) = R1 ⊕ R1. Here i = 1 with X = X(1) = H1 and Y = V (2)

is the second copy of R1 considered as the empty intersection of hyperplanes from
A(2). In the tensor decomposition of νO, the first tensor factor is 1ZW (1) and the
second tensor factor is νO′ .

Let W be a finite real reflection group that decomposes as W =
∏t

i=1 W
(i)

with each W (i) an irreducible reflection group and let A(i) be the arrangement of
reflecting hyperplanes associated with W (i). We say a W -invariant subset O ⊆ L
is irreducible if there is no 1 ≤ i ≤ t such that all X ∈ O satisfy X ⊆

⋂
H∈A(i) H.

As a consequence of the proposition, in analyzing the eigenvalues and eigenspaces
of νO, it suffices to assume that O is irreducible.

Proposition 8.4. Let W be a finite real reflection group and O ⊆ L an ir-
reducible W -invariant subset of L. Then the non-negative |W | × |W | matrix νO
is primitive in the sense that it has some positive power νmO whose entries are all
strictly positive. In particular, the λ(1)-eigenspace is simple, spanned by the trivial
idempotent e1.

Proof. Recall that νO =
∑

w∈W noninvO(w) · w as an element of ZW , and
that it has non-negative coefficients. Consequently, it suffices to show: that the
set of w in W satisfying noninvO(w) > 0 is a generating set for W ; and that
noninvO(1) > 0. The first claim implies that for any position in the matrix there
will be a power νmO for which the entry in this position is positive. The second claim
shows that the positive entries accumulate and therefore all entries will be positive
for a suitable power.

The second claim is obvious since the definition of νO implies νO(1) = |O|. For
the first claim, we will exhibit an explicit generating set for W for which noninvO
is positive.
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As usual we write W =
∏t

i=1 W
(i) as a product of irreducible reflection groups

W (i). Recall [38, §4.3] that for finite real reflection groups W , the set S of reflections
through the hyperplanes which bound the chosen fundamental chamber c1 gives rise
to a Coxeter presentation for W , or a Coxeter system (W,S). Recall also that here

we identify W (i) with its canonical image in W =
∏t

i=1 W
(i) acting on the same

space as W . In this situation, for each i = 1, 2, . . . , t, we can choose the fundamental
chambers for each groupW (i) independently – the fundamental chamber ofW being
their intersection. We denote by (W (i), S(i)) the corresponding Coxeter systems.

By assumption for each 1 ≤ i ≤ t there is a Y (i) ∈ O such that

Y (i) �⊆
⋂

H∈A(i)

H,(8)

where A(i) is the reflection arrangement for W (i). Let Z(i) be the projection of
Y (i) to the intersection lattice of A(i). Using the action of W on O to alter Y (i),
if necessary, we can assume that Z(i) equals the intersection of a subset of walls
of the fundamental chamber for W (i). This subset of walls is indexed by a proper
subset J (i) of S(i) (that this containment is proper follows from (8)).

Because each W (i) acts irreducibly, the Coxeter system (W (i), S(i)) has con-

nected Coxeter diagram, and one can number its nodes s
(i)
1 , s

(i)
2 , . . . , s

(i)

|S(i)| in such

a way that s
(i)
1 is not in J (i), and each initial segment of the nodes induces a

connected subdiagram. We claim that the union of the sets{
s
(i)
1 , s

(i)
1 s

(i)
2 , . . . , s

(i)
1 s

(i)
2 · · · s(i)|S(i)|

}
is a generating set for W , and that noninvO is positive for each of these elements.

The reason these elements generate W is that S(i) = {s(i)1 , s
(i)
2 , . . . , s

(i)

|S(i)|} generates

W (i). We want to show that every w = s
(i)
1 s

(i)
2 · · · s(i)j verifies noninvO(w) > 0. For

that consider the subspace Y (i) of O. We claim that Y (i) forms a noninversion for
w. To see this, by Proposition II.5.4 and subsequent comments one needs to check
that w is one of the minimal length coset representatives for WJ(i)\W (i), that is,
it has no reduced expressions that start with an element of J (i) on the left. But

by our construction of the word w = s
(i)
1 s

(i)
2 · · · s(i)j , and by Tits’ solution to the

word problem for W (see [1, Theorem 2.33]), this would be impossible because no

element of J (i) can be commuted past the s
(i)
1 on the left.

The fact that the λ(1)-eigenspace is simple and is spanned by the trivial idem-
potent e1 now follows from the Perron-Frobenius theorem [37, Theorem 8.4.4]. �

For future use (in §III.3), we mention another trivial reduction, similar to
Proposition II.8.2, that can occur when the finite real reflection group W acting on
V does not act irreducibly. Its proof is similarly straightforward.

Proposition 8.5. Let W be a finite real reflection group and W =
∏t

i=1 W
(i)

for irreducible reflection groups W (i). Let A(i) be the arrangements of reflecting
hyperplanes of the reflections from W (i), 1 ≤ i ≤ t. Let O ⊆ L be a W -invariant
subset of L.

Assume that there is an 1 ≤ i ≤ t such that O contains no subspaces X
lying below any hyperplanes from A(i). Then we can consider O as a subset of
the intersection lattice for the arrangement A′ := A \ A(i) of the reflection group
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W ′ :=
∏

j 	=i Wj. We have ZW ∼= ZW (i) ⊗ ZW ′ and

νO = 11ZW (i) ⊗ νO′

where 11ZW (i) is represented by the |W (i)|× |W (i)| matrix having all ones as entries.

Since the eigenvalues and eigenvectors of 11ZW are easy to write down, by
Proposition II.8.5 one is reduced to studying νO′ in this situation.

Example 8.6. Example II.8.1 also illustrates the scenario of Proposition II.8.5
except now i = 2, and one should interpret the first tensor factor as νO′ and the
second tensor factor as 11ZW (2) .
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CHAPTER III

The case where O contains only hyperplanes

1. Review of twisted Gelfand pairs

We review here some of the theory of (twisted) Gelfand pairs; a good introduc-
tion is Stembridge [72].

Definition 1.1. Given a finite group G, a subgroup U , and a linear character
χ : U → C×, say that (G,U, χ) forms a twisted Gelfand pair (or triple) if the induced

representation IndGU χ is a multiplicity-free CG-module.

One can fruitfully rephrase this is in terms of the algebra structure of A := CG
and the χ-idempotent for U

(9) e :=
1

|U |
∑
u∈U

χ(u−1)u.

It is well-known and easy to see that the left-ideal Ae carries a left A-module
structure isomorphic to M = IndGU χ. As with any finite dimensional A-module,
M can be expressed as M =

⊕
i(Si)

⊕mi for distinct simple A-modules Si and
uniquely defined multiplicities mi. One can detect these multiplicities by looking at
the commutant algebra EndAM , which is isomorphic to the direct sum of matrix
algebras ⊕i Matmi×mi

(C). Thus, the commutant algebra is itself a commutative
algebra if and only if each mi = 1, that is, if and only if M is multiplicity-free as
an A-module. Therefore, the condition for (G,U, χ) to be a twisted Gelfand pair is
equivalent to EndAM being commutative.

On the other hand, for any algebra with unit A and idempotent e, taking
M = Ae, the map defined by

EndAM = EndA(Ae) −→ eAe

ϕ �−→ ϕ(e)

is easily seen to be an algebra isomorphism. In the case A = CG and e is the
idempotent in 9, the algebra eAe is sometimes called the (twisted) Hecke algebra.
If one chooses double coset representatives {g1, . . . , gt} for U\G/U , then it is easy
to see that the non-zero elements in the set {egie}i=1,2,...,t form a C-basis for this
Hecke algebra eAe. This leads to the following commonly used trick for verifying
that one has a twisted Gelfand pair.

Proposition 1.2 (Twisted version of “Gelfand’s trick”). Let G be a finite
group, U a subgroup of G and χ : U → C× a linear character with χ(u−1) = χ(u)
for all u in U , that is, χ takes values in {±1}.

If every double coset UgU within G for which ege �= 0 contains an involution,
then (G,U, χ) forms a twisted Gelfand pair.

23
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Proof. As above let e := 1
|U|

∑
u∈U χ(u−1)u. Consider the algebra anti-

automorphism ψ of A = CG that sends g �→ g−1. The assumption that χ(u−1) =
χ(u) implies ψ(e) = e. Thus, for any involution g = g−1 in G, one has that ψ also
fixes the element ege in CG:

ψ(ege) = ψ(e)ψ(g)ψ(e) = eg−1
e = ege.

The assumption that every double coset UgU for which ege �= 0 contains an involu-
tion therefore implies that ψ fixes every element in a spanning set for the subalgebra
eAe within the group algebra A = CG. Since ψ is an anti-automorphism on all of
A, this subalgebra eAe must be commutative: for any x, y in eAe, one has

x · y = ψ(x)ψ(y) = ψ(y · x) = y · x.
Thus, EndA(Ae) = eAe is commutative. Hence Ae is a multiplicity-free left A-
module, i.e. (G,U, χ) is a twisted Gelfand pair. �

2. A new twisted Gelfand pair

Recall the statement of Theorem I.4.2 from the introduction.

Theorem I.4.2. Let W ≤ GL(V ) be any finite irreducible real reflection group
and H any of its reflecting hyperplanes with associated reflection s.

Then the linear character χ of the W -centralizer ZW (s) given by the determi-

nant on V/H or H⊥ has a multiplicity-free induced W -representation IndWZW (s) χ.

In other words, (W,ZW (s), χ) forms a twisted Gelfand pair.

As preparation for proving this, we begin with some well-known general observations
about group actions on cosets, and double cosets. Let Z := ZW (s) and O the orbit
of H under the action of W . Then Z is the stabilizer of the element H in the
transitive action of W on O. In other words, O carries the same W -action as the
coset action of W left-translating W/Z. One then has inverse bijections between
the double cosets Z\W/Z and the W -orbitals, that is the W -orbits of the diagonal
action of W on O ×O:

Z\W/Z −→ W\ (O ×O)
ZwZ �−→ W · (H,w(H))

W\ (O ×O) −→ Z\W/Z
W · (w1(H), w2(H)) �−→ Zw−1

1 w2Z

Proposition 2.1. Let (W,S) be a Coxeter system with W finite, and J ⊂ S
such that the Coxeter graph for (WJ , J) is a connected subgraph of the Coxeter graph
for (W,S). Then for two reflecting hyperplanes H,H ′ whose reflections sH , sH′ lie
in WJ we have: sH , sH′ lie in the same W -orbit if and only they lie in the same
WJ -orbit.

Proof. Since every reflection in WJ is WJ -conjugate to a simple reflection in
J , one may assume without loss of generality that sH , sH′ are simple reflections
lying in the subset J . It is well-known (see e.g. [12, Chapter 1, Exercise 16, p. 23])
that two simple reflections s, s′ in S are W -conjugate if and only if there is a path
in the Coxeter graph for (W,S) having all edges with odd labels. Since W is finite,
the Coxeter graph for (W,S) is a tree. Hence such a path with odd labels exists if
and only if it exists within the Coxeter subgraph for (WJ , J), that is, if and only if
sH , sH′ are WJ -conjugate. �
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Proof of Theorem I.4.2. We will show that the twisted version of Gelfand’s
trick (Proposition III.1.2) applies. Let w ∈ W and H ′ := w(H). Let sH and sH′ be
the reflections corresponding to H and H ′.
Case 1: H,H ′ are orthogonal.

In this case we claim that ewe = 0. To see this, note that in this situation, both
sH , sH′ lie in Z, with

χ(sH) = −1

χ(sH′) = +1.

Thus, factoring the subgroup Z = ZW (s) according to cosets Z/〈sH′〉 and cosets
〈sH〉\Z gives rise to factorizations

e = a(1+ sH′) = (1− sH)b

for some elements a, b in RW . One then calculates

ewe = a(1+ sH′)w(1− sH)b

= a(w − wsH + sH′w − sH′wsH)b

= a · 0 · b
= 0

where the third line uses the following equalities:

w(H) = H ′, implying

wsHw−1 = sH′

wsH = sH′w

w = sH′wsH .

Case 2: H,H ′ are not orthogonal.
A trivial subcase occurs when H = H ′ and then the double coset ZwZ = Z

contains the involution sH . Hence we are done by Proposition III.1.2.
Otherwise, the parabolic subgroup ZW (H ∩H ′) is dihedral, and W -conjugate

to some standard parabolic WJ for some pair J = {s, s′} ⊂ S; without loss of
generality (by conjugation), sH , sH′ lie in WJ . Since H,H ′ are not orthogonal, one
must have s, s′ non-commuting, and hence the Coxeter graph for (WJ , J) is an edge
with label m ≥ 3, forming a connected subgraph of the Coxeter graph of (W,S).
Since H,H ′ were assumed to lie in the same W -orbit, Proposition III.2.1 implies
they lie in the same WJ -orbit. However, when sH , sH′ lie within a dihedral group
WJ , it is easy to check that if w in WJ sends H to H ′, then either w or wsH is a
reflection, and hence an involution, sending H to H ′. Again the assertion follows
from Proposition III.1.2. �

Remark 2.2. The preceding proof is perhaps more subtle than it first appears.
When H and H ′ are orthogonal hyperplanes lying in the same W -orbit, so that
H ′ = w(H) for some w in W , it can happen that H, H ′ do not lie in the same
ZW (H ∩ H ′)-orbit, and that the double coset ZwZ for Z = ZW (sH) contains no
involutions.

As an example, this occurs within the Coxeter system (W,S) of type H3 with
Coxeter generators S = {s1, s2, s3}, satisfying s2i = 1 and (s1s2)

5 = (s1s3)
2 =

(s2s3)
3 = e. The hyperplanes H,H ′ fixed by s1, s3, respectively, are orthogonal.

They lie in the same W -orbit, and in fact w(H) = H ′ for w = s2s1s2s3s1s2.
However, H,H ′ do not lie in the same orbit for the rank 2 parabolic ZW (H ∩H ′) =
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W{s1,s3}, and one finds that the double coset ZwZ for the subgroup Z = ZW (s1) =
〈s1, s3, w0〉 contains elements of orders 3 and 6, but contains no involutions.

3. Two proofs of Theorem I.4.1

We recall the statement of the theorem.

Theorem I.4.1. For any finite real reflection group W , and any W -orbit O of
hyperplanes, the matrix νO has all its eigenvalues within the ring of integers of the
unique minimal splitting field for W . In particular, when W is crystallographic,
these eigenvalues lie in Z.

We will offer two proofs. In both proofs, one first notes that one can immediately
use Proposition II.8.2 to reduce to the case where W acts irreducibly on V . Also
note that if W =

∏t
i=1 W

(i) for irreducible reflection groups W (i) and A(i) the

arrangements consisting of the reflecting hyperplanes of the reflections from W (i),
then a W -orbit O of hyperplanes in A contains only hyperplanes from a single
subarrangement A(i) for some 1 ≤ i ≤ t.

Thus, one can assume W acts irreducibly on V , and both proofs will rely on
Theorem I.4.2.

3.1. First proof of Theorem I.4.1. The first proof is shorter, but makes
forward reference to the equivariant theory of BHR random walks in Chapter IV.
This BHR theory will show that when νO acts on RW , its image subspace U :=
ker(νO)

⊥ affords the W -representation 1W ⊕ IndWZW (s) χ, where χ = det |V/H . This
deduction will be based on Theorem IV.4.2 and Corollary IV.6.1. Note that the
image U can have no multiplicity on the trivial representation 1W , since the ambient
space RW contains only one copy of 1W . Hence Theorem I.4.2 tell us that the νO-
stable subspace U is multiplicity-free as a W -representation. Since U = ker(νO)

⊥

is a Q-subspace (as νO has Z entries) an application of Proposition I.3.1 finishes
the proof.

3.2. Second proof of Theorem I.4.1. This proof, although longer, does
not rely on results to be proven later, and also introduces an important idea, useful
both in understanding the eigenspaces of νO, and with potential applications to the
analysis of linear ordering polytopes (see §III.5). We start by developing this idea
here.

For the moment, return to the situation where A is a central arrangement
of hyperplanes in V = Rd having some finite subgroup W of GL(V ) acting as
symmetries, with chambers C, intersection lattice L, and O any W -stable subset of
L. Recall that νO = πT

O ◦ πO where

πO : ZC −→
⊕
X∈O

ZC(A/X)

c �−→ (c/X)X∈O

Note that πO is W -equivariant for the obvious W -actions on the source and targets.
It is also equivariant for the commuting Z2-action that sends c �→ −c in the source,
and sends c/X �→ −c/X in the target.
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This gives us the freedom to consider instead of νO = πT
O ◦πO, the eigenvectors

and eigenvalues of the closely related map

μO = πO ◦ πT
O :

⊕
H∈O

ZC(A/H) −→
⊕
H∈O

ZC(A/H)

having matrix entries given by

(μO)c1/X1,c2/X2
=
∣∣∣{c ∈ C : c/X1 = c1/X1 and c/X2 = c2/X2

}∣∣∣.
Proposition 3.1. For each non-zero eigenvalue λ in R, the maps πO and πT

O
give W × Z2-equivariant isomorphisms between the λ-eigenspaces of νO and μO.

Proof. This is a general linear algebra fact. Assume A : U → U ′ and B : U ′ →
U are K-linear maps of finite-dimensional K-vector spaces U and U ′ such that all
eigenvalues of AB and BA lie in K. We claim that for each potential non-zero
eigenvalue λ in K, the maps A and B give isomorphisms between the generalized
λ-eigenspaces defined to be the subsets of U and U ′ on which λ−BA and λ−AB
act nilpotently. To see that A,B map between these generalized eigenspaces, note
that given a vector v in V with (λIU −BA)Nv = 0, the fact that

(λIU ′ −AB)A = A(λIU −BA)

implies
(λIU ′ −AB)NAv = A(λIU −BA)Nv = 0.

To see that A,B are injective, note that if Av = 0 then (λ−BA)v = λv and hence

0 = (λIU −BA)Nv = λNv

would imply that v = 0. Since the generalized eigenspaces for non-zero eigenvalues
plus the kernel sum up to U , resp. U ′, it follows from dimension considerations that
the maps A and B are indeed isomorphisms between the generalized eigenspaces
corresponding to non-zero eigenvalues.

When applying this with A = πO and B = πT
O and K = R, self-adjointness

implies not only that all the eigenvalues λ all lie in R, but also semisimplicity, so
that generalized λ-eigenspaces are just λ-eigenspaces. �

Now we specialize to the situation where A is the reflection arrangement for a
finite real reflection group W , and the W -stable subset O contains only hyperplanes
H (but we do not assume yet that O is a single W -orbit).

In this case, each of the localized subarrangements A/H has only one hyper-
plane H, and only two chambers/half-spaces in C(A/H), which one can identify
with the two unit normals ±α (or roots) to the hyperplane H. Letting ΦO denote
the union of all such pairs of roots ±α normal to the hyperplanes H in O, one
can identify

⊕
H∈O ZC(A/H) with ZΦO , having a basis element eα for each α in the

orbit of roots ΦO. Let Φ+ ⊆ ΦO be the set of α ∈ Φ for which c1 and α lie on the
same side of the hyperplane Hα orthogonal to α. The elements of Φ+ are called the
positive roots inside Φ. Clearly, Φ+ depends on the choice of c1. Using this notation

and under the above identification, the map ZW
πO→ ZΦO has

(πO)w,eα
=

{
1 if w−1(α) ∈ Φ+

0 otherwise.

To see this note that by definition (πO)w,eα = 1 if and only if cw/Hα = c1/Hα

and α ∈ Φ+ or cw/Hα �= c1/Hα and α �∈ Φ+. Since in the first case we have
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w−1(α) ∈ Φ+ if and only if α ∈ Φ+ and in the second case w−1(α) ∈ Φ+ if and
only if α �∈ Φ+ the claim about (πO)w,eα follows.

Hence, πO sends a basis element w in ZW to the sum of basis elements eα for

which w−1(α) is an element of the positive roots Φ+. Therefore, the map ZΦO μO−→
ZΦO has entry

(10) (μO)eα,eβ = #{w ∈ W : w−1(α), w−1(β) both lie in Φ+} = |W | · ∠{α, β}
2π

where ∠{α, β} is the angular measure in radians of the sector which is the inter-
section of the half-spaces H+

α ∩ H+
β . For the second equality in (10) we use the

fact that the elements of the set on the left hand side are the minimal length coset
representatives of the group generated by the reflections along Hα and Hβ . These
reflections generate a dihedral group of order 2π

∠{α,β} . Now the equality follows from

Lagrange’s theorem.
Note that the Z2-action now sends eα to e−α. We use this Z2-action to decom-

pose

RΦO = RΦO,+ ⊕ RΦO,−

in which
RΦO,+ has R-basis {f+

α := eα + e−α}α∈ΦO∩Φ+
,

RΦO,− has R-basis {f−
α := eα − e−α}α∈ΦO∩Φ+

.

For the formulation of the following proposition, recall λO(χ) defined in
Proposition II.7.2.

Proposition 3.2. Acting on RΦO,+, the map μO has a one-dimensional eigen-
space with eigenvalue λO(1W ) carrying the trivial W -representation 1W , and whose
orthogonal complement within RΦO,+ lies in the kernel.

If O decomposes into W -orbits as O =
⊔t

i=1 Oi in which Oi is the orbit
of a hyperplane Hi having associated reflection si, then RΦO,− carries the W -
representation

⊕t
i=1Ind

W
ZW (si)χi, where χi is the one-dimensional character det V/Hi

.

Proof. Using the fact that for any w in W , exactly one out of w−1(α) and
w−1(−α) will be a positive root, one checks using 10 that

μO(f
+
β ) =

|W |
2

·
∑

α∈ΦO∩Φ+

f+
α

for any β in ΦO ∩ Φ+. This implies that μO acts on RΦO,+ as an operator of rank
one, whose only non-zero eigenspace is the line spanned by

∑
ΦO∩Φ+

f+
α , affording

the trivial W -representation 1W , and with eigenvalue λO(1W ) = |W |
2 |O|. Because

μO is self-adjoint, the subspace of RΦO,+ perpendicular to this eigenspace will be
preserved, and must lie entirely in the kernel.

Next we turn to the assertion about theW -representation carried by RΦO,−. Let
Hi be the representative of the W -orbit Oi, si the reflection along Hi and αi ∈ Φ+

the positive root corresponding to Hi. The subgroup ZW (si) is the stabilizer of
the real line spanned by f−

αi
. Hence all z ∈ ZW (si) have f−

αi
as an eigenvector

for eigenvalue ±1. The eigenvalue for z is +1 if α is stabilized by z and −1 if α
is sent to −α. In either case the eigenvalue coincides with det V/Hi

(z). Thus, the

character of ZW (si) on the line spanned by f−
αi

is given by det V/Hi
. Since ZW (si)

is the stabilizer of that line it follows that IndWZW (si)
det V/Hi

is a character whose
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degree equals the cardinality of the space spanned by the orbit of f−
α under the

action of W . By a simple calculation one then checks that IndWZW (si) det V/Hi
and

the character on the latter space coincide. Summing up over the W -orbits then
yields the asserted formula. �

Second proof of Theorem I.4.1. AssumingO is a transitiveW -orbit of some
hyperplane H with associated reflection s, Proposition III.3.2 says that the R-
subspace U := RΦO,−, which is a rational subspace in the sense that RΦO,− =
R ⊗Q QΦO,−, affords the W -representation IndWZW (s) χ. Then Theorem I.4.2 and
Proposition I.3.1 imply that the operator μO has all eigenvalues on U lying within
the algebraic integers of any splitting field for W . Its remaining eigenvalues on

the complementary subspace RΦO,+ are either zero or λO(1W ) = |W |
2 |O| by

Proposition III.3.2. Now an application of Proposition III.3.1 completes the proof.
�

Remark 3.3. After posting this work on the arXiv, the authors discovered that,
independently, P. Renteln [52, §4] recently studied the spectrum of the operator
νO for a real finite reflection group W , taking O to be the set of all reflecting
hyperplanes for W . Note that irreducible finite reflection groups can have at most
two W -orbits of hyperplanes, and whenever W has only one orbit of hyperplanes
(that is, outside of types Bn(= Cn), F4 and the dihedral types I2(m) with m even),
Renteln’s object of study is the same as our operator νO.

In particular, he also uses the technique from our second proof of Theorem I.4.1,
introducing the maps πO and μO in his context. We will point out in Remark III.4.5
and Remark III.4.8 below the places where we borrow from and/or extend his work.

4. The eigenvalues and eigenspace representations

We return again to the situation where O is a single W -orbit of hyperplanes.
Having proven Theorem I.4.1 on the integrality of eigenvalues of νO or μO, one
can still ask for the eigenvalues of μO and the W -irreducible decomposition of its
eigenspaces. It turns out that one can be surprisingly explicit here.

Note that Proposition III.3.2 reduces this to the analysis of μO acting on
U := RΦO,−, which affords the W -representation IndWZ χ, where Z = ZW (s) for
a reflection s whose hyperplane H represents the orbit O, and χ : Z → {±1} is the
character of Z acting on the line H⊥. We analyze this representation more fully.

We know the W -irreducible decomposition of IndWZ χ is multiplicity-free from
Theorem I.4.2. Recall this is controlled by the double cosets ZwZ, orW -orbitalsW ·
(H,H ′) in O×O, giving rise to non-zero elements ewe in the twisted Hecke algebra
eRW e (see §III.1). We next explain how dihedral angles between hyperplanes play
a crucial role here.

Definition 4.1. Given two hyperplanes H,H ′ within V , define their dihedral
angle ∠{H,H ′} to be the unique angle in the interval [0, π

2 ] separating them.

Proposition 4.2. Let W be a finite real reflection group, and H,H ′,H ′′ hyper-
planes in the same W -orbit O, but with neither H ′ nor H ′′ orthogonal to H. Then
(H,H ′), (H,H ′′) lie in the same W -orbital on O × O if and only if ∠{H,H ′} =
∠{H,H ′′}.
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Proof. The forward implication is clear. For the reverse, assume ∠{H,H ′} =
∠{H,H ′′}, and consider three cases based on the codimension of X := H∩H ′∩H ′′.
Case 1: X has codimension 1.

This case is trivial, since then H = H ′ = H ′′.
Case 2: X has codimension 2.

This case is also straightforward. One checks inside the dihedral reflection sub-
group ZW (X) containing sH , sH′ , sH′′ that whenever ∠{H,H ′} = ∠{H,H ′′}, either
one is in the trivial case H ′ = H ′′, or else sH sends (H,H ′) to (H,H ′′).
Case 3: X has codimension 3. Then by conjugation, one may assume that the
rank 3 reflection subgroup ZW (X) containing sH , sH′ , sH′′ is a standard parabolic
subgroup WJ for some triple J = {s1, s2, s3} ⊂ S among the Coxeter generators
S of W . In fact, (WJ , J) must be a connected subgraph of the Coxeter graph
of (W,S), else WJ contains no three reflections sH , sH′ , sH′′ with H ∩ H ′ ∩ H ′′

of codimension 3 having ∠{H,H ′} = ∠{H,H ′′} �= π
2 . Thus, Proposition III.2.1

implies that H,H ′, H ′′ lie in the same ZW (X)-orbit, since they lie in the same W -
orbit. Finiteness of W further forces ZW (X) to be one of the rank three irreducible
types A3(∼= D3) or B3(∼= C3) or H3. Now it is not hard to check by brute force in
any of these three types that a triple H,H ′, H ′′ in the same ZW (X)-orbit having
∠{H,H ′} = ∠{H,H ′′} �= π

2 will have (H,H ′) and (H,H ′′) in the same ZW (X)-
orbital. This then implies that (H,H ′) and (H,H ′′) lie in the same W -orbital. �

The following example shows that the non-orthogonality assumption in
Proposition III.4.2 is perhaps more subtle than it first appears. Indeed, if ∠{H,H ′}=
∠{H,H ′′} = π

2 , it is possible that (H,H ′), (H,H ′′) lie in differentW -orbits ofO×O.

Example 4.3. Let W be of type Dn for n ≥ 4, and

H = {x1 = x2}
H ′ = {x1 = −x2}
H ′′ = {x3 = x4}.

Then it is easily checked that (H,H ′), (H,H ′′) lie in different W -orbits of O ×O.
The problem here is that X = H ∩ H ′ ∩ H ′′ has ZW (X) of the reducible type
A1 × A1 ×A1, so that Proposition III.2.1 does not apply.

Proposition III.4.2 has very strong consequences in the crystallographic case,
that is, where W is a finite Weyl group. For this we distinguish two cases for a
given reflecting hyperplane H for a finite reflection group W and its W -orbit O:

(π3 ) There is a hyperplane H ′ ∈ O for which for which ∠{H,H ′} = π
3 .

( �π3 ) There is no hyperplane H ′ ∈ O for which for which ∠{H,H ′} = π
3 .

Note that ( �π3 ) occurs only in the situation when W is of type Bn(∼= Cn), and
the reflection sH along H is the special “non-simply-laced” node, corresponding to
a sign change in a coordinate of V = Rn.

Corollary 4.4. Let W be a finite irreducible Weyl group acting on V ∼= Rn

in its reflection representation, O the W -orbit of a reflecting hyperplane H with
reflection s, and Z = ZW (s). Let χ : Z → {±1} be the character of Z on H⊥.

Then:

(i) In situation (π3 ) we have

IndWZ χ = V ⊕ V ′
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for a unique W -irreducible V ′ of dimension |O| − n.
(ii) In situation ( �π3 ) we have

IndWZ χ = V.

Moreover, in (i), one can realize the W -irreducible V ′ as the subspace of RΦO,−

that is R-linearly spanned by the vectors

ψα,β,γ := eα + eβ + eγ − (e−α + e−β + e−γ)

as {α, β, γ} run through all triples of roots in the W -orbit O having α+ β + γ = 0
and having normal hyperplanes Hα, Hβ, Hγ with pairwise dihedral angles of π

3 .

Proof. By Proposition III.4.2 and Case 1 of the proof of Theorem I.4.2, the
number of W -irreducible constituents in IndWZ χ is the number of dihedral angles
∠{H,H ′} other than π

2 which occur among pairs {H,H ′} in the W -orbit O. By
conjugation, one may assume ZW (H ∩ H ′) is a standard parabolic subgroup WJ ,
of some dihedral type I2(m) with m ≥ 3. Since W is a Weyl group, this limits m to
be 3, 4, 6, and then one can check that {H,H ′} lying in the same W -orbit O forces

either H = H ′ or ∠{H,H ′} = π
3 . It follows that Ind

W
Z χ has exactly two irreducible

constituents in situations (π3 ), and exactly one irreducible constituent in situation
( �π3 ).

To prove the remaining assertions, let Y ⊂ RΦO,− ⊂ RΦO be the subspace

spanned by the vectors ψα,β,γ described above. Consider the R-linear map RΦO g−→
V that sends eα �−→ α. It is easy to see that g is W -equivariant, and also Z2-
equivariant for the Z2-action on RΦO that swaps eα ↔ e−α and the Z2-action on
V by the scalar −1. The calculations

eα − e−α
g�−→ α− (−α) = 2α

eα + e−α
g�−→ α+ (−α) = 0

ψα,β,γ
g�−→ 2(α+ β + γ) = 0

then show that

• the kernel ker(g) contains RΦO,+, and hence g induces a map RΦO,− ḡ→ V ,
• the map g, and hence also ḡ, surjects onto V , since V is irreducible, and

• the subspace Y lies in the kernel of g, so also Y ⊂ ker

(
RΦO,− ḡ

� V

)
.

The surjection ḡ shows that IndWZ χ always contains V as one of its constituents.
Hence, there are no other constituents in situation ( �π3 ). However, in situation (π3 ),
the subspace Y is nonzero, and hence must form the other irreducible constituent
of IndWZ χ. �

Remark 4.5. Here we have borrowed from Renteln’s paper [52, §4.8.1] the
explicit realization of V ′ by the vectors ψα,β,γ , and its proof via the map g, although
we substitute our argument via irreducibility for his dimension-counting argument.

Example 4.6. In type An−1, when W = Sn and O is the unique W -orbit of
hyperplanes, one can check that

IndWZ χ = IndSn

S2×Sn−2
sgn⊗1

= χ(n−1,1) + χ(n−2,1,1)

= V ⊕ ∧2V
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using standard calculations with the Sn-irreducible characters χλ indexed by inte-
ger partitions λ of n. Thus, the irreducible V ′ ∼= ∧2V ∼= χ(n−2,1,1) in this case.

Based on the W -irreducible description for RΦO,− ∼= IndWZ χ given in Corollary
III.4.4, one can now be more precise about the eigenspaces of νO or μO.

Theorem 4.7. Let W be a finite irreducible Weyl group acting on V ∼= Rn

in its reflection representation, O the W -orbit of a reflecting hyperplane H with
reflection s, and Z = ZW (s). Let χ : Z → {±1} be the character of Z on H⊥.

Then either of νO or μO have non-zero eigenvalues and accompanying W -
irreducible eigenspaces described as follows:

(i) There is a 1-dimensional eigenspace carrying the trivial W -representation

with eigenvalue λO = |O||W |
2 .

(ii) In the case of situation (π3 ) there is an (|O| − n)-dimensional eigenspace

carrying the W -representation V ′ with eigenvalue |W |
6 .

(iii) In either situation (π3 ) and ( �π3 ), there is an n-dimensional eigenspace
carrying the W -representation V with eigenvalue{

(2|O|+n)|W |
6n in situation (π3 ),

2n−1n! in situation ( �π3 ).

Furthermore, in the subcase of situation (π3 ) where W is simply-laced (type

An, Dn, or E6, E7, E8), one can rewrite this eigenvalue as (h+1)|W |
6 , where

h is the Coxeter number.

Proof. Proposition III.3.2 already shows assertion (i), and the fact that RΦO,−

gives the remaining non-kernel eigenspaces of μO. Calculating traces, one sees from

10 that the diagonal entry (μO)α,α = |W |
2 for each root α in ΦO, so that μO has trace

|W ||ΦO |
2 = |W ||O| when acting on RΦO . Since the eigenvalues of μO on RΦO,+ are

all zero except for the eigenvalue λO = |W ||O|
2 with multiplicity one, one concludes

that μO has trace |W ||O| − |W ||O|
2 = |W ||O|

2 when restricted to RΦO,−.

Thus, in situation ( �π3 ), where RΦO,− ∼= V ∼= Rn, it acts with eigenvalue |W ||O|
2n =

2n−1n!.
In situation (π3 ), Schur’s Lemma implies that the W -irreducible constituent V ′

of RΦO,− will lie in a single eigenspace for μO. Since this copy of V ′ is realized as
the span of the elements {ψα,β,γ}, one can, for example, determine this eigenvalue
by using 10 to compute that the coefficient of eα in μO(ψα,β,γ) is

|W |
2π

(
π +

π

3
+

π

3
− 0− 2π

3
− 2π

3

)
=

|W |
6

.

Thus, V ′ is an eigenspace for μO with eigenvalue |W |
6 , having dimension |O| − n.

Since the only other constituent V of RΦO,− has dimension n, it must lie in a single

eigenspace, whose eigenvalue λ satisfies λ ·n = |W ||O|
2 − |W |

6 (|O| − n) = (2|O|+n)|W |
6 ,

and hence λ = (2|O|+n)|W |
6n .

For the last assertion, in the simply-laced case, one has that O is the set of all
hyperplanes, whose cardinality is well-known [38, §3.18] to be nh

2 . The formula for
the eigenvalue follows. �
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type factored characteristic polynomial

An−1 = Sn

(
x− (n+1)!

6

)n−1 (
x− n!

6

)(n−1
2 )

Bn, s = sign change (x− 2n−1n!)n

Bn, s = transposition
(
x− 2n−1·n!·(2n−1)

3

)n (
x− 2n−1n!

3

)n(n−2)

Dn

(
x− 2n−2·n!·(2n−1)

3

)n (
x− 2n−2n!

3

)n(n−2)

E6 (x− 112320)6 (x− 8640)30

E7 (x− 9192960)7 (x− 483840)56

E8 (x− 3599769600)8 (x− 116121600)112

F4 (x− 1344)4 (x− 192)8

H3
(x2 − 248x+ 3856)3 (x− 24)4 · (x− 12)5

= (x− 124± 48
√
5)3 (x− 24)4 · (x− 12)5

H4
(x2 − 79680x+ 94233600)4 (x− 3840)16 · (x− 1440)5

= (x− 39840± 17280
√
5)4 (x− 3840)16 · (x− 1440)5

Figure 1. Factored characteristic polynomials for νO or μO on their
eigenspaces affording IndW

ZW (s) χ, where χ = det |V/H if s =
sH .

Remark 4.8. The above assertion about the structure of the eigenspaces of
μO in the simply-laced subcase of situation (π3 ) was a conjecture in the previous
version of our paper, and turned out to be Renteln’s [52, Theorem 39]. We have
adapted his method of proof to give the more general statement above.

We have implemented in Mathematica [79] the calculation of this matrix for μO
acting on RΦO,−, and produced the characteristic polynomials shown in Figure 1.
Theorem III.4.7 predicts the answers for all rows of the figure corresponding to Weyl
groups, but makes no prediction for the non-crystallographic groups H3, H4. Note
that we have omitted any data on the dihedral types I2(m), as here the matrices
for μO are easily-analyzed circulant matrices, discussed thoroughly in [52, §4.1 and
§4.6].

Remark 4.9. Theorem I.4.1 can fail without the hypothesis that O is a single
W -orbit of hyperplanes. For example, when W = B2 = I2(4) and O is the set of all
four hyperplanes, one finds that

det(tIR8 − νO) = t3(t− 16)(t2 − 8t+ 8)2,

which contains quadratic factors irreducible over Q, the unique minimal splitting
field of W in characteristic 0. The issue here is that O contains two different W -
orbits of hyperplanes, so that Theorem I.4.2 does not apply. It turns out that the
irreducible quadratic factors (t2 − 8t+ 8)2 are the characteristic polynomial for νO
acting on two eigenspaces that both afford the reflection representation V for W .
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5. Relation to linear ordering polytopes

We pause here to discuss a topic from discrete geometry and polytopes that
motivated some of these explorations. We refer to Ziegler’s book [80] for basic facts
and unexplained terminology from polytope theory.

Given the hyperplane arrangement A, with some possible subset of linear sym-
metries W , and (W -stable) subset O of L, note that the map from Definition II.2.1

πO : ZC −→ ⊕X∈OZC(A/X)
c �−→

⊕
X∈O c/X

is W -equivariant for the natural W -permutation actions in the source and target.
Clearly, πO extends to a mapping from RC to ⊕X∈ORC(A/X), which allows a
definition of a new class of polytopes. Recall for the definition that the image of a
convex polytope under a linear map is again a convex polytope.

Definition 5.1. Let A be an arrangement of hyperplanes and C its set of
chambers. Denote by Δ|C|−1 the standard (|C|−1)-dimensional simplex Δ|C|−1 which
is the convex hull of the standard basis vectors within RC. The convex polytope
LinO is defined to be

LinO = πO(Δ|C|−1),

the image of the polytope Δ|C|−1 under the linear map πO.

Since the map πO has all entries in {0, 1} when expressed with respect to the
standard basis, LinO is a 0/1-polytope, and its vertex set will simply be the distinct
images (after eliminating duplicates) πO(c) of the chambers c in C. Letting A(O)
denote the subset of hyperplanes H in A that contain at least one subspace X in
O, it is easy to see that two chambers in C have distinct images under πO if and
only if they do not lie in the same chamber of the arrangement A(O). Thus, LinO
has vertex set in bijection with the chambers C(A(O)).

Proposition 5.2. The polytope LinO has dimension r − 1 where

r := rank πO = rank νO = rankμO.

In particular, when A is a reflection arrangement and O is a W -stable subset
of hyperplanes H, the dimension of LinO is the cardinality |O|.

Proof. Consider the vector v1 :=
∑

c∈C c inside RC that has all coordinates
equal to 1, and note that its image πO(v1) within ⊕X∈ORC(A/X) is non-zero. On
the other hand, the perpendicular space v⊥1 , which is spanned by the elements c−c′

for c, c′ ∈ C, is sent by πO into the codimension one subspace of ⊕X∈ORC(A/X)
where the sum of the coordinates is zero. This is easily checked on the above span-
ning set for v⊥1 .

This shows that πO restricts to a linear map out of v⊥1 that has rank r − 1,
where r is the rank of πO. Since the simplex Δ|C|−1 contains an open neighborhood

within the affine translate of v⊥1 where the sum of coordinates is 1, the image of
the simplex under πO will also have dimension r − 1.

When A is a reflection arrangement and O is a W -stable subset of hyper-
planes H, either the BHR theory (see Corollary IV.6.1 and Example IV.6.2) or
Proposition III.3.2 shows that the space perpendicular to the kernel of πO carries
the W -representation

1W ⊕
(

t⊕
i=1

IndWZW (si) χi

)
.
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Since the dimension of the representation IndWZW (si) χi is [W : ZW (si)] = |Oi|, this
shows that the rank of πO is 1 +

∑t
i=1 |Oi| = 1 + |O|. �

Example 5.3. Let W = Sn and A its reflection arrangement. Consider the

123 ↔ (1, 1, 1, 0, 0, 0)

132 ↔ (1, 1, 0, 0, 0, 1)

(0, 1, 1, 1, 0, 0) ↔ 213

231 ↔ (1, 0, 0, 0, 1, 1)

(0, 0, 1, 1, 1, 0) ↔ 312

(0, 0, 0, 1, 1, 1) ↔ 321

Figure 2. Linear ordering polytope for S3

case when O is the set of all hyperplanes A. The polytope LinO lives in a space
isomorphic to Rn(n−1) whose coordinates are indexed by ordered pairs (i, j) with
1 ≤ i �= j ≤ n. The vertices of LinO are labelled by the n! elements of Sn or,
equivalently, the different linear orders � on [n]. If we consider the vertex labelled
by w ∈ Sn, then its coordinate indexed by (i, j) is 1 if w(i) < w(j) and 0 otherwise.
If we choose the labeling by linear orders, then the vertex labelled by � has a 1 in
coordinate (i, j) whenever i � j, and 0 otherwise. Figure 2 shows the linear ordering
polytope for S3 with coordinates indexed by (1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2).

Note that LinO lies in an affine subspace where the sum of the (i, j) and (j, i)
coordinates is 1. Therefore, LinO is affinely isomorphic to its projection onto the

space R(
n
2) via the map p preserving the coordinates (i, j) with i < j, and forgetting

the rest of the coordinates.
This projection of LinO onto R(

n
2) is called the linear ordering polytope, and

has a rich history, having appeared in several guises (see [27]), with great impor-
tance in combinatorial optimization; see e.g. [33], [26]. Its possible first appearance
was in mathematical psychology, where the question—phrased in our terms—was
the following. Consider Δn!−1 as the set of all probability distributions on Sn or
equivalently on the set of linear orders on [n].

Question 5.4. Describe the set of vectors (uij)1≤i<j≤n in R(
n
2) for which

uij =
∑

π∈Sn
π(i)<π(j)

P(π)

as P ranges over all probability distributions P ∈ Δn!−1.
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Note that in the terminology used above the set described in Question III.5.4
is given as p ◦ πO(Δn!−1) and hence is the linear ordering polytope. The descrip-
tion asked for in mathematical psychology is the same crucial question asked in
optimization: find a list of facet inequalities. Since it is known (see [33]) that op-
timization of a general linear cost function over the linear ordering polytope is
NP-hard, providing a polynomial size description of its facets would prove P=NP.
However, this suggests the following problem.

Problem 5.5. Let W = Sn and O = A the set of all reflecting hyperplanes so
that ΦO = Φ is the set of all roots. Can one make use of the explicit RW -module
orthogonal decomposition of RΦ = V ⊕∧2V , coming from Corollary III.4.4 worked
out in this special case in Example III.4.6, as a good coordinate system in which
to study the polytope LinO, which is isomorphic to the linear ordering polytope?1

Example 5.6. Let W be the hyperoctahedral group of all signed permutations,
that is, the Weyl group of type Bn, and let O be the set of all reflecting hyperplanes.
Then O is a union of two W -orbits, namely the coordinate hyperplanes xi = 0, and
the hyperplanes of the form xi±xj = 0 for 1 ≤ i < j ≤ n. Then the polytope LinO
is affinely isomorphic to one considered by Fiorini and Fishburn [25], having the
linear ordering polytope as one of its faces.

1A partial answer to this problem was given in [40]. It is shown that this coordinate system
gives rise to two mutually orthogonal Sn × Z2-equivariant projections of LinO into the nth per-
mutahedron and the (n− 1)st linear ordering polytope. The paper also lists other guises in which
the same coordinate system has arisen.
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CHAPTER IV

Equivariant theory of BHR random walks

It will turn out to be useful to exploit a relation between the operators νO which
we have been considering and certain operators studied by Bidigare, Hanlon and
Rockmore [11]. We begin by defining these operators, and then exhibit the special
case which is relevant for us when considering νO for a reflection arrangement A
and O a single W -orbit.

After this we review the (non-equivariant) aspects of the theory, followed by
the equivariant versions that we will need, which are in some cases stronger than
what we find in the literature, that is, [11,15,16,55]. However, we generally borrow
some of the proofs from the literature directly, or in other cases, simply beef-up the
techniques. One new feature here is the consideration of the extra Z2-action that
comes from the antipodal action on chambers and faces of a central arrangement.

1. The face semigroup

Given a real, central arrangement of hyperplanes A in a d-dimensional real
vector space V , we have already discussed the dissection of the complement V \⋃

H∈A H into the chambers C. More generally, A dissects V into relatively open
polyhedral cones which we will call the faces F , that are the equivalence classes for
the relation ≡ having v ≡ v′ whenever v and v′ lie within exactly the same subset
of the closed half-spaces defined by all the hyperplanes H in A.

There is a natural semigroup structure on F defined as follows. Given two faces
x, y, define a new face x◦y (x pulled by y) to be the unique face that one enters first
(possibly x itself) when following a straight line from a point in the relative interior
of the cone x toward a point in the relative interior of the cone y. More formally,
the face x ◦ y is uniquely defined by the properties that for each hyperplane H of
A the points of x ◦ y lie

• on the same side of H as x if x �⊂ H,
• on the same side of H as y if x ⊂ H, but y �⊆ H, and
• inside H if x, y ⊂ H.

It is not hard to see that if c is a chamber then x ◦ c is always a chamber, and
hence KC becomes a left-ideal within the semigroup algebra KF of the semigroup
F with coefficients in K.

For our subsequent considerations we need the following simple lemma which
connects the multiplication in KF with the operators νO.

Lemma 1.1. Let A be central arrangement of hyperplanes in Rd. Let F ∈ F and
X be the linear subspace spanned by F . Then for C,C ′ ∈ C the we have F ◦C = F ◦C ′

if and only if C/X = C ′/X.

Proof. Since C,C ′ ∈ C there are no hyperplanes from A containing C or C ′.
Therefore, F ◦C = F ◦C ′ if and only if for all hyperplanes H containing F we have

37



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

38 IV. EQUIVARIANT THEORY OF BHR RANDOM WALKS

that C and C ′ lie on the same side of H. The hyperplanes containing F are exactly
the hyperplanes containing X. Therefore, their images H/X are the hyperplanes of
the arrangement A/X. But then the assertion follows, since C/X = C ′/X if and
only if C/X and C ′/X lie on the same side of the hyperplanes from A/X. �

Definition 1.2. We will define a BHR random walk or BHR operator to be
any of the family of K-linear operators on the left-ideal KC within KF that comes
from multiplication on the left by an element

(11)
∑
x∈F

pxx

for some px in K.

Note that we are not assuming that the px are real, nor even non-negative, nor
that they sum to 1 as in the case of a probability distribution on the faces F ; for
the moment, they lie in an arbitrary field K.

2. The case relevant for νO

When W is a finite subgroup of GL(V ) acting as symmetries of A, it permutes
the faces in F , and it is easily seen that the W -action respects the semigroup
structure, that is, w(x) ◦ w(y) = w(x ◦ y). Thus, W acts as a group of algebra
automorphisms on KF . Let (KF)W be the algebra of W -invariants of this action.
Then for w ∈ W , x ∈ KF and y ∈ (KF)W we have that w(x) ◦ y = w(x ◦ y). Thus,
KF becomes a (W–(KF)W ) bimodule, as does the left-ideal KC within KF .

For the remainder of this subsection, assume that A is the reflection arrange-
ment for a finite real reflection group W acting on V . As discussed in §II.5, hav-
ing picked a fundamental base chamber c1, the simply transitive W -action on
the chambers C leads to a W -equivariant identification KW → KC that sends
w �→ cw := w(c1).

Let S denote the set of Coxeter generators for W that come from the reflections
through the walls of c1. It is well-known that every face x in F lies in the W -orbit
of a unique subface x(J) of c1, stabilized by the parabolic subgroup WJ := 〈J〉 for
some unique subset J ⊆ S.

Consequently, the W -invariant subalgebra (KF)W of KF will have K-basis
given by the 2|S| elements ⎧⎨⎩ ∑

y∈x(J)W

y

⎫⎬⎭
J⊆S

where as usual x(J)W denotes the W -orbit of the face x(J).
The following observation, due originally to Bidigare [10, §3.8.3] (see also [15,

Theorem 8]), is crucial. For the formulation, we use the notation JW , W J and JR,
RJ from Proposition II.5.4, subsequent comments and §II.6.1.

Proposition 2.1. Under the W -equivariant isomorphism KW → KC, multi-
plication on the right of KW by the element RJ :=

∑
u∈WJ u of KW corresponds to

the action on KC coming from multiplication on the left by the element
∑

y∈x(J)W y

of (KF)W .
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Proof. We wish to show that for each w in W ,⎛⎝ ∑
y∈x(J)W

y

⎞⎠ ◦ cw =
∑

u∈WJ

cwu.

Acting by w−1 on the left, and using the W -equivariance, this is equivalent to
showing

w−1

⎛⎝ ∑
y∈x(J)W

y

⎞⎠ ◦ c1 =
∑

u∈WJ

cu.

Since
∑

y∈x(J)W y lies in KFW , this means showing∑
y∈x(J)W

y ◦ c1 =
∑

u∈WJ

cu.

On the other hand, as WJ is the W -stabilizer subgroup for the face x(J), and W J

are coset representatives for W/WJ , one has x(J)W = {u · x(J) : u ∈ W J}. Thus,
it suffices to show that for u ∈ W J one has u · x(J) ◦ c1 = cu. This follows because

u ∈ W J ⇔ u−1 ∈ JW

⇔ cu−1/X = c1/X

⇔ x(J) ◦ cu−1 = c1

⇔ u · x(J) ◦ c1 = cu

where X is the subspace fixed pointwise by WJ , that is the linear subspace spanned
by x(J). Here the third equivalence follows from Lemma IV.1.1 and the last equiv-
alence comes from applying the left-action of u. �

This has the following consequence. Denote by bJ the linear operator on KC
given by multiplication on the left by

∑
y∈x(J)W y. Let bTJ denote its adjoint operator

with respect to the standard inner product on KC in which the elements of C form
an orthonormal basis.

Corollary 2.2. Let W be a finite real reflection group and O ⊆ L a single W -
orbit of intersection subspaces. Choose a representative subspace X0 for the W -orbit
O that contains a face x(J) of the fundamental chamber c1, for some J ⊆ S.

Then the action of νO multiplying KW on the right corresponds under the W -
equivariant isomorphism KW → KC to the operator 1

nX0
bTJ bJ . In particular, νO

and bJ share the same kernel.

Proof. Proposition II.6.1 asserts that as an element of KW one has νO =
1

nX0
RX0 ·X0R. Here we choose minimal length coset representatives WX0 and X0W

in the definition of RX0 (see §II.6.1). Note that multiplication on the right by RX0

and X0R are adjoint with respect to the standard inner product on KW (since
multiplying on the right by w and by w−1 are adjoint). Thus, one must show that
multiplication on the right by RX0 = RJ in kW corresponds to multiplication on
the left by bJ . This is exactly Proposition IV.2.1. �
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3. Some non-equivariant BHR theory

It is an interesting and non-trivial fact that, when working over K = R and
assuming that the coefficients px are non-negative, the BHR operators as in 11
act semisimply. We recapitulate in this section a beautiful argument for this due
to Brown [15]. We remark that there are now simpler proofs of this result in the
literature. The simplest proof can be found in [71]. Other simple proofs begin with
a construction of the eigenvectors for the BHR operators [21,57].

Brown begins with an interesting way to capture the minimal polynomial of an
element a in a finite-dimensional K-algebra A, via generating functions. Recall that
this minimal polynomial is the unique monic polynomial ma(T ) in the univariate
polynomial ring K[T ] that generates the principal ideal which is the kernel of the
map defined by

K[T ] −→ A

T �−→ a.

For the sake of factoring ma(T ), extend coefficients to the algebraic closure K of
K, that is, replace K with K, and replace A with K ⊗K A. Then one can uniquely
express

ma(T ) =
∏
i

(T − λi)
mi

for some distinct λi in K and positive integers mi.
It turns out that the roots λi and multiplicities mi can be read off from a

certain generating function

fa(z) :=
∑
�≥0

a�z� =
1

1− a · z .

We claim that fa(z) makes sense an element of A⊗K K�z�: if we choose for A some

K-basis {aj}j=1,2,...,t, then expressing each power a� uniquely as a� =
∑t

j=1 c�,jaj
one has

fa(z) =

t∑
j=1

aj ⊗ fa,j(z)

where fa,j(z) =
∑

� c�,jz
� lies in K�z�.

Proposition 3.1. In the above setting, each coefficient fa,i(z) in K�z� is a
rational function in z, that is, it lies in K(z). Furthermore, one can recover the
roots λi and multiplicities mi in the minimal polynomial of a from the location and
orders of poles in the partial fraction expansion of the related function

ga(z) :=
1

z
fa

(
1

z

)
=

1

z − a

=
∑
i

(
b0i

z − λi
+

b1i
(z − λi)2

+ · · ·+ bmi−1
i

(z − λi)mi

)
where the bi are some elements of A satisfying bmi

i = 0 but bmi−1
i �= 0.

Proof. The Chinese Remainder Theorem says that the subalgebra R of A
generated by a is isomorphic as an algebra to the product

∏
i K[T ]/(T − λi)

mi .
From this one can immediately reduce to the case where the minimal polynomial
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has only a single factor (T − λ)m. Then one can express a = λ + b where bm = 0
but bm−1 �= 0, and compute directly that

ga(z) =
1

z − a
=

1

(z − λ)− b
=

1

(z − λ)
· 1

1− b
z−λ

=
1

(z − λ)

∑
�≥0

b�

(z − λ)�

=
b0

z − λ
+

b1

(z − λ)2
+ · · ·+ bm−1

(z − λ)m
. �

Brown then applies this criterion to elements a of the face semigroup algebra
A = RF , and more generally for semigroup algebras KF of semigroups F that
satisfy the left-regular band axioms:

x2 = x and xyx = xy.

He shows that for any left-regular band F , one recovers a semilattice1 L, playing
the role of the intersection lattice for the arrangement when F is the face semi-
group, in the following fashion. Consider the quasiorder (reflexive, transitive, but
not antisymmetric) on F defined by x � y if xy = x, and then let L be the associ-
ated poset structure on the equivalence classes. One obtains in this way a (meet)
semilattice L, endowed naturally with a surjection of posets supp : F � L, sending
F ∈ F to the subspace spanned by F . This surjection fulfills the following:

supp(xy) = supp(x) ∧ supp(y),

xy = x if supp(y) ⊇ supp(x).

If the semigroup F has an identity element 1, which we assume from now on, then
supp(1) = 0̂ is a minimum element of L.

This leads to the following considerations for factorizations of elements of F ,
which will help expand the generating function fa(z).

Definition 3.2. Given a word x := (x1, . . . , x�) in F�, let �(x) := � denote its
length, and let

∏
x := x1 · · ·x� denote its product as an element of the semigroup

F . Define for i = 1, 2, . . . , � the elements Xi(x) := supp(x1x2 · · ·xi) in L, with
convention X0(x) = 0̂, so that

0̂ = X0(x) ≤ X1(x) ≤ · · · ≤ X�(x)

is a multichain in the semilattice L. Say that x is reduced if this multichain is
actually a chain, that is, the {Xi(x)}�i=0 are distinct.

Given the word x, uniquely define a reduced subword x̃ of x by repeatedly
removing any letter xi for which supp(xi) ≤ supp(x1x2 · · ·xi−1). Note that

∏
x̃ =∏

x in F .

From this we can now calculate the generating function fa(z) that determines
the minimal polynomial of any element a =

∑
x∈F pxx in the semigroup algebra

KF . Having fixed a, define

λX :=
∑
x∈F :

supp(x)⊆X

px

1Brown orders the semilattice L using the opposite order that we have chosen here. Explicitly,
he orders intersection subspaces of a hyperplane arrangement by inclusion rather than reverse-
inclusion.
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for X in L, and define px := px1
· · · px�

for words x = (x1, . . . , x�).

Proposition 3.3. Given a left-regular band F with identity, and a =
∑

x∈F pxx
in KF , as above, one has the rational expansion

(12) ga(z) =
∑

reduced words y

(∏
y
)
· py

(z − λX0(y))(z − λX1(y)) · · · (z − λX�(y)(y))
.

Proof.

fa(z) =
∑
�≥0

a�z� =
∑

words x

z�(x)
(∏

x
)
px

=
∑

reduced words y

∑
words x:
x̃=y

z�(x)
(∏

x
)
px

For a given reduced word y = (y1, . . . ,y�), the set of all words x having x̃ = y
is obtained by inserting between yi and yi+1 an arbitrary collection of elements of
F having support contained in Xi(y); this means elements of support 0̂ = X0(y)
can be inserted before y1, and elements of support X�(y) after y�. From this one
concludes that

fa(z) =
∑

reduced words y

(∏
y
)
py

1

1− z · λX0(y)

1

1− z · λX1(y)
· · · 1

1− z · λX�(y)(y)

=
∑

reduced words y

(∏
y
)
· py

(1− z · λX0(y))(1− z · λX1(y)) · · · (1− z · λX�(y)(y))
.

The formula claimed for ga(z) :=
1
z f
(
1
z

)
then follows. �

Corollary 3.4. Assume a =
∑

x∈F pxx lies in RF for a left-regular band F ,
and that the px are non-negative. Then the minimal polynomial of a has only simple
roots, contained in the set {λX}X∈L.

In particular, a generates a semisimple subalgebra of A, and a acts semisim-
ply on any finite-dimensional A-module U , with eigenvalue support contained in
{λX}X∈L.

Proof. Under the above hypotheses, the only terms in the sum (12) for ga(z)
that contribute with py �= 0 will be indexed by reduced words y = (y1, . . . , y�) for
which

λX0(y) < λX1(y) < · · · < λX�(y)

since yi is an element of Xi(y) \ Xi−1(y) with pyi
> 0 for each i = 1, 2, . . . , �(y).

Hence the corresponding product term in the summation

1

(z − λX0(y))(z − λX1(y)) · · · (z − λX�(y)(y))

for gz(z) has only simple poles at each of these λXi(y). Thus, ga(z) itself has
only simple poles, all of which are contained in the set {λX}X∈L. Now apply
Proposition IV.3.1 to conclude the asserted form for the minimal polynomial of
a. The remaining assertions are immediate from this. �
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4. Equivariant structure of eigenspaces

We now return to the setting of a central, essential hyperplane arrangement A
in V = Rd, having F as its face semigroup (with identity, since A is central). Recall
that the BHR operator may be thought of as the action by left multiplication of an
element a =

∑
x∈F pxx inside RF on the left-ideal RC spanned R-linearly by the

chambers of A.
Bidigare, Hanlon, and Rockmore computed the eigenvalue multiplicities. In

their re-proof of this result, Brown and Diaconis [16] introduced an important exact
sequence2 of KF-modules, allowing them to compute the eigenvalue multiplicities
for any BHR operator inductively, using the recurrence for the Möbius function of
the intersection lattice L.

In this section, we will recall their exact sequence, and then use it in the equi-
variant setting, whereW is some finite subgroup of GL(V ) ∼= GLn(R) that preserves
the arrangement A, to identify the RW -module structure on the BHR-eigenspaces.

To this end, recall that in §II.1 we defined for each subspace X in L the localized
arrangement

A/X := {H/X : H ∈ A, H ⊃ X}
inside the quotient space V/X, having intersection lattice L(A/X) ∼= [V,X]L. Ac-
companying this is the restriction arrangement of hyperplanes

A|X := {H ∩X : H ∈ A, H �⊃ X}

inside the subspace X, having intersection lattice L(A|X) ∼= [X, {0}]L. We will use
CX to denote the subset of faces in F that represent chambers of A|X .

The exact sequence used by Brown and Diaconis then takes the form

(13) 0 −→ KFd
∂d−→ · · · −→ KFi

∂i−→ · · · −→ KF1
∂1−→ KF0

∂0−→ K −→ 0

in which Fi is the set of faces x in F for which supp(x) has codimension i. Thus,

KFi =
⊕
X∈L:

dimV/X=i

KCX

so, for example, KF0 = KC and KF1 =
⊕

H∈A KCH . The boundary map ∂0 sends
each chamber c of A to the same element 1 in K. The boundary map ∂i for i ≥ 1
sends a face x to the sum ∑

y

[x : y]y

where y ranges over all faces containing x as a codimension one subface, and where
[x : y] are certain incidence coefficients taking values ±1 defined in the following
way. First choose an arbitrary orientation on each subspace X in L, and then
decree [x : y] to be the sign with respect to the orientation in supp(y) of any basis
for y that is obtained by appending to a positively oriented basis for supp(x) any
vector that points from x into y. Exactness of (13) follows because it is essentially
the complex of cellular chains for the regular CW-decomposition into faces of the
zonotope having A as its normal fan.

2Later observed in [56] to be a projective resolution of K as a KF-module.
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Each KCX carries the structure of a (left-)KF-module by deforming the product
in KF as follows: for x ∈ F and y ∈ CX , set

x ♦ y :=

{
xy, if x ⊆ X (so that xy ∈ CX),

0, otherwise.

One can check that this makes the exact sequence (13) a complex of (left-)KF-
modules. Consequently for any choice of a =

∑
x∈F pxx in KF , it becomes an exact

sequence of K[T ]-modules by letting T act as the element a.
An important feature to note about this structure is that for each subspace X

in L having dimV/X = i, the subspace KCX inside KFi is again a KF-module
and K[T ]-module of the same type as KC. Combined with the semisimplicity of the
K[T ]-structure when K = R and px ≥ 0, this will allow for arguments about the
T -eigenspaces by induction on dimV . For example, Brown and Diaconis use such
an argument, along with the defining recurrence for the Möbius function of L, to
show in this setting that the BHR eigenvalue λX occurrs in KC with multiplicity
|μ(V,X)|, where μ denotes the Möbius function of L.

There are two preliminary observations we need before proving the W -equivar-
iant version of this assertion. First, note that in order to place the desired KW -
module structure on KC, and to have (13) be a complex of KW -modules, each
summand KCX inside the term KFi with i = dimR(V/X) has to be twisted by
det V/X . This means that, as a KW -module, KFi has the following description:

KFi =
⊕

XW∈L/W :
dimR(V/X)=i

IndWWX

(
RCX ⊗ det V/X

)
.(14)

Note that the sign twist det V/X arises from the fact that for the definition of
(13) one has to orient the subspaces in L. Indeed, it is a simple calculation to show
that the twist det V/X makes the differentials from (13) equivariant.

Secondly, we will need a W -equivariant version of the Möbius function recur-
rence. It can be deduced from [73, Lemma 1.1] and [74, Proposition 2.2]. However,
since the proof of Proposition 2.2 in [74] only invites the reader to verify that the
non-equivariant proof generalizes, we give an explicit proof here for completeness.
The proof proceeds via the equivariant generalization of a standard sign-reversing-
involution proof for P. Hall’s Möbius function formula.

As preliminary notation, when a group W acts on a set M , let M/W denote
the set of W -orbits, with the W -orbit containing some element m of M denoted
by mW . Let StabW (m) := {w ∈ W : w(m) = m} denote the W -stabilizer of
m, so that one can identify the permutation W -action on mW with the action
of W on the left cosets W/ StabW (m) by left multiplication. Note that if A is an
arrangement that is invariant under the action of some linear group W , then W acts
as a group of permutations on L and for any X ∈ L we have StabW (X) = NW (X).
Let Γ(KW ) denote the Grothendieck group of virtual KW -modules (see [7, §5.1]).
Finally, for a poset P and X ≤ Y in P we denote by (X,Y ) the open interval

{Z ∈ P : X < Z < Y }. By H̃

i
(P ;K), respectively H̃

i
((X,Y );K), we denote the

ith reduced cohomology group of the order complex of P , respectively (X,Y ). Recall
that the order complex of a poset is the simplicial complex of all chains in the poset.

If P has a unique smallest element then we call this element the bottom of P
and we denote it by 0̂. Analogously, if P has a unique largest element then we
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call this element the top of P and we denote it by 1̂. Also recall that a poset P
with bottom and top element is called Cohen-Macaulay over K if it is ranked and

H̃

i
((X,Y );K) = 0 for all i �= rank(Y ) − rank(X) − 2 and all 0̂ ≤ X < Y ≤ 1̂.

For more details on homological and geometric aspects of posets and their order
complexes we refer the reader to the survey article by Wachs [77].

Proposition 4.1. Let P be a finite poset with bottom and top elements 0̂ and
1̂, respectively, and W a finite group acting as a group of poset automorphisms on
P . Then in Γ(KW ) one has∑

XW∈P/W
i≥−1

(−1)i IndWStabW (X) H̃
i
((X, 1̂);K) = 0.

and ∑
XW∈P/W

i≥−1

(−1)i IndWStabW (X) H̃
i
((0̂, X);K) = 0.

In particular, if P is a poset which is Cohen-Macaulay over K, with rank function
rankP (−), then one has∑

XW∈P/W

(−1)t(X) IndWStabW (X) H̃
t(X)

((X, 1̂);K) = 0.

and ∑
XW∈P/W

(−1)b(X) IndWStabW (X) H̃
b(X)

((0̂, X);K) = 0.

where t(X) := rankP (1̂)− rankP (X)− 2 and b(X) := rankP (X)− rankP (0̂)− 2.

Proof. Since the assertions about the cohomology groups of intervals (0̂, X)

follow from the ones about intervals (X, 1̂) by considering the poset with the oppo-

site order relation, it suffices to verify the assertions about intervals (X, 1̂) to the
top. By the Hopf trace formula (see [77, Theorem 2.3.9]), it is equivalent to show
that ∑

XW∈P/W
i≥−1

(−1)i IndWStabW (X) C̃
i
((X, 1̂);K) = 0,

where C̃
i
((X, 1̂);K) is the ith reduced cochain group of the order complex of (X, 1̂)

with coefficients in K. Because W acts by poset automorphisms on P , the stabi-
lizer StabW (X) acts as a group of poset automorphisms on (X, 1̂) and therefore

StabW (X) acts on the cochain group C̃

i
((X, 1̂);K) as a permutation representa-

tion: the usual K-bases dual to oriented simplicial chains [X1, . . . , Xi+1], listed in
their P -order X1 < · · · < Xi+1, will be permuted without any ± sign.

Consequently, if we let M be the set of all pairs (X,c) where X is an element

of P and c = {X1, . . . , Xi+1} satisfies X < X1 < . . . < Xi+1 < 1̂ in P , then it is
enough to show ∑

(X,c)W∈M/W

(−1)|c| IndWStabW (X,c) 1 = 0.

To show this, note that every X �= 0̂ in P has StabW (X,c) = StabW (0̂, {X} ∪ c).

Hence the two terms IndW
StabW (X,c) 1 and IndWStabW (0̂,{X}∪c) 1 cancel in the sum. �
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We can now state and prove our W -equvariant description of the BHR eigen-
spaces when K = R and the coefficients px in a =

∑
x∈F pxx are chosen not only

non-negative, but also W -invariant:

pgx = px for all g ∈ W,x ∈ F .

Of course, whenW is the trivial group, one recovers the usual theory. Our statement

will involve H̃

∗
((V,X);R). As usual H̃

∗
((V,X);R) denotes ⊕iH̃

i
((V,X);R). But

since L is a geometric lattice any interval (V,X) will have its cohomology trivial
except for the top dimension rank(X)−2 (see [77, Section 3.2.2]). Thus, one can also

see H̃

∗
((V,X);R) as a short notation for H̃

rank(X)−2
((V,X);R). Since StabW (X)

acts on the order complex of (V,X) it then follows that H̃
∗
((V,X);R) is indeed a

StabW (X)-module.
One further bit of notation: for an R[T ]-module U , and an eigenvalue λ, let Uλ

denote the λ-eigenspace of T on U , that is, Uλ := ker(T − λIU ).

Theorem 4.2. For any choice of coefficients {px}x∈F which are non-negative
and W -invariant, the R[T ][W ]-module structure on RC is semisimple. The T -eigen-
values are contained in the set {λX}X∈L, and the λ-eigenspace has the following
description as an element of the Grothendieck group Γ(RW ):

(RC)λ =
∑

XW∈L/W :
λX=λ

IndWStabW (X)

(
H̃

∗
((V,X);R)⊗ det V/X

)
.

Proof. Corollary IV.3.4 tells us that RC is a semisimple R[T ][W ]-module and
that its T -eigenvalues are contained in the set {λX}X∈L. We claim that it suffices to
show the assertion of the theorem only for those choices of px which make λV > λX

for X � V . First we explain why this is a valid reduction. Note that such choices
of px form a dense subset of all the relevant choices of px in the theorem. Also
note that the theorem can be viewed as asserting for each W -irreducible χ, that
the operator Tχ(px) acting on the χ-isotypic component RCχ of RC has a certain
factorization for its characteristic polynomial

det(tIRCχ − Tχ(px)) =
∏
X∈L

(t− λX(px))
mX

with mX independent of {px}, but with the operators Tχ(px) and the eigenvalues
λX(px) depending polynomially on the {px}. If this identity holds on a dense set of
{px}, it holds for all of them.

So assume λV > λX for X � V , and we will prove the assertion of the theorem
by induction on d := dimR(V ). The base case d = 0 is easily verified.

For the inductive step, we first consider the exact sequence of RW -modules
obtained by restricting the terms Fi in (13) to their eigenspaces

(Fi)λ =
⊕
X∈L:

dimV/X=i

(RCX)λ.

Thus, in the Grothendieck group Γ(RW ) we obtain:

(RC)λ = −
∑
i≥1

(−1)i(RFi)λ.
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By induction, and because λV > λX for X � V , only the last two terms RF0 = RC
and R have a non-zero λV -eigenspace. Hence the two λV -eigenspaces are isomorphic,
which proves the assertion for λ = λV . For λ < λV we refine (14) to an eigenspace
decomposition.

(RFi)λ =
∑

Y W∈L/W :
dimR(V/Y )=i

IndWStabW (Y )

(
RCY ⊗ det V/Y

)
λ

=
∑

Y W∈L/W :
dimR(V/Y )=i

IndWStabW (Y )

(
(RCY )λ ⊗ det V/Y

)
.

By assumption on λ, we can apply the induction hypothesis to each (CY )λ, thus
obtaining the following decomposition of (RFi)λ.

−
∑

Y W∈L/W :
dimR(V/Y )=i

(−1)iIndW
StabW (Y )

⎛
⎜⎜⎜⎜⎜⎝

∑
XStabW (Y )∈

(L/Y )/ StabW (Y ):
λX=λ

Ind
StabW (Y )

StabStabW (Y )(X)

(
˜H
∗
((Y,X);R)

⊗
det Y/X

)
⊗det V/Y

⎞
⎟⎟⎟⎟⎟⎠

We can simplify the two sums to a single sum over pairs (Y W , XStabW (Y )) in which
Y W is a W -orbit in L not equal to {V }, and XStabW (Y ) is a StabW (Y )-orbit on the
set {X ∈ L : X ⊆ Y, λX = λ}. Note that a set of representatives (Y,X) for such
pairs is the same as for the pairs (XW , Y StabW (X)) in which XW is a W -orbit not
equal to {V } on the set {X ∈ L : λX = λ} and Y StabW (X) is a StabW (X)-orbit
not equal to {V } on the set {Y ∈ L : X ⊆ Y }. Consequently, using the fact that
det Y/X det V/X = det V/Y and transitivity of induction, one obtains

(RC)λ = −
∑

(XW ,Y StabW (X))

(−1)dimR V/Y Ind
StabW (X)

StabStabW (X)(Y ) H̃
∗
((Y,X);R)⊗ det V/X .(15)

The lattice L is a geometric lattice and therefore the full lattice and all its inter-
vals are Cohen-Macaulay [77, Lecture 4]. Its rank function is given by rank(X) =
dimV/X . Therefore, by Proposition IV.4.1 we have that in the Grothendieck group

(−1)dimV/X−2
H̃

∗
((V,X);R) equals

−
∑

Y StabW (X)∈L/ StabW (X)

(−1)dimY/X−2 IndWStabW (X) H̃
dimY/X−2

((Y,X);R).(16)

We multiply (16) with (−1)−dimY/X+2 and use dimV/X − dimY/X = dimV/Y
to obtain

H̃

∗
((V,X);R) = −

∑
Y StabW (X)∈L/ StabW (X)

(−1)dimV/Y IndW
StabW (X) H̃

dimY/X−2
((Y,X);R).

Observe that the right hand side of this equation contains exactly the terms from
the righthand side of (15) for which (X,Y ) is in the appropriate range. Thus,
combining the two equations shows

(RC)λ =
∑

XW∈L/W :
λX=λ

IndWStabW (X)

(
H̃

∗
((V,X);R)⊗ det V/X

)
. �

Note for future use the following consequence of Theorem IV.4.2 which simply
ignores the R[T ]-structure.
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Corollary 4.3. For any finite subgroup W ⊂ GL(V ) that preserves A, one
has in the Grothendieck group Γ(RW )

RC =
∑

XW∈L/W

IndWStabW (X)

(
H̃

∗
((V,X);R)⊗ det V/X

)
.

Corollary IV.4.3 can also be seen as a special case of the equivariant version
[74, Theorem 2.5 (ii)] of the Goresky-MacPherson formula for the cohomology of the
complement of a subspace arrangement. For a hyperplane arrangement A invariant
under W , the complement is the union of the (open) chambers in C. Its non-reduced
cohomology with coefficients in R is R|C| carrying the representation induced by
the action of W on C. This reduces [74, Theorem 2.5 (ii)] to Corollary IV.4.3
once one observes that the representation of non-reduced cohomology differs from
reduced cohomology by a copy of the trivial representation and the fact that the
representation of W on the unique non-vanishing homology of X⊥ intersected with
a W -invariant sphere is det V/X .

5. (W × Z2)-equivariant eigenvalue filtration

Because we have been working with a central hyperplane arrangement A, the
map on the set F of faces that sends x �→ −x gives a Z2-action on F , on KF , and
on the complex (13). Furthermore, it commutes with the action of any group of
symmetries W ⊂ GL(V ) of A.

If we only assume that pgx = px for g ∈ W and x ∈ X, but make no assumption
that p−x = px, then in general this Z2-action does not commute with the T -action
coming from the element a =

∑
x∈F pxx. However, the Z2-action will preserve a

certain natural filtration that comes from the T -eigenspaces, as we now show. Given
a semisimple K[T ]-module U having only real T -eigenvalues, and a real number λ,
let

U≤λ :=
⊕
μ≤λ

Uμ.

Note that since there are only finitely many different eigenvalues μ, these subspaces
U≤λ as λ increases through all real numbers form a finite filtration of U . For the
formulation of the following result we denote by χ+ := 1Z2

the trivial character of
Z2 and by χ− the unique non-trivial character of Z2.

Theorem 5.1. Let {px}x∈F be real numbers such that pwx = px for all w ∈ W
and x ∈ F . Then the Z2-action on RC preserves the filtration of RC by {(RC)≤λ}.
Furthermore, in the Grothendieck group Γ(R[W × Z2]), one has

(RC)≤λ =
∑

XW∈L/X:
λX≤λ

(
IndWStabW (X) H̃

∗
((V,X);R)⊗ det V/X

)
⊗
(
χ−)⊗ dimR V/X

.

Proof. We first show (RC)≤λ is Z2-stable. Since all eigenvalues of T on RC
lie in {λX}X∈L by Corollary IV.3.4, when λ ≥ λV one has (RC)≤λ = RC and the
stability is trivial. When λ < λV , one can induct on the dimension d of the ambient
space (with the base case d = 0 trivial as before) using the exact sequence (13)
restricted to the spaces (RFi)≤λ. From this restricted exact sequence one concludes
that

(RC)≤λ = (im ∂1)≤λ = ∂1

(⊕
H∈A

(RCH)≤λ

)
.
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Since (RCH)≤λ is Z2-stable by induction, and since the Z2-action does commute
with the ∂i, this shows that (RC)≤λ is Z2-stable.

Regarding the description of the R[W × Z2]-module structure of (RC)≤λ, one
also checks this in two cases. When λ ≥ λV so that (RC)≤λ = RC, it follows by
applying Theorem IV.4.2 to the finite subgroup

Ŵ := W × Z2 = W × 〈−IV 〉 ⊂ GL(V )

and noting that

• Z2 acts trivially on the lattice L,
• so in particular, W and Ŵ have the same orbits on L, and
• the Z2-characters (χ

−)
⊗ dimR V/X

and detV/X are the same when the gen-
erator of Z2 acts by −IV on V .

When λ < λV , one proceeds by induction on d using the exact sequence (13)
restricted to the (RFi)≤λ, proceeding exactly as in the proof of Theorem IV.4.2. �

Example 5.2. It is worth examining the d = 1 case of the preceding results
in detail. Here the central arrangement A inside the real line V = R1 has two
chambers c, c′, separated by the unique hyperplane H = {0}. So the face semigroup
F is {H, c, c′}, and H is the identity element of F . The sequence (13) is

0 → RF1
∂1→ RF0

∂0→ R → 0
‖ ‖ ‖

R{H} R{c, c′} R{∅}
with ∂1(H) = c− c′ and ∂0(c) = ∂0(c

′) = ∅. Let T act by the element

a = p0H + pc+ p′c′

in RF . Then the R[T ]-module structure on RF1 has T scaling H by p0, and on
RF−1 has T scaling ∅ by p0 + p + p′, while on RF0, the element T acts in the
ordered basis (c, c′) by [

p0 + p p
p′ p0 + p′.

]
Changing to an ordered basis of T -eigenvectors (c− c′, pc+ p′c′), will diagonalize
the action of T on RC: [

p0 0
0 p0 + p+ p′

]
.

Note that

(RC)λV
= (RC)p0+p+p′ = R{pc+ p′c′}

is not Z2-stable unless p = p′. However

(RC)λ{0} = (RC)p0
= R{c− c′}

is always Z2-stable.

Remark 5.3. Theorem IV.5.1 suggests a conjectural stronger statement in the
case of a reflection arrangement A corresponding to reflection group W , tying in
with the work of Hanlon and Hersh [35] in type A. We discuss this briefly here.

For a reflection arrangement, one can identify the W × Z2-action on KC dis-
cussed above with the W × Z2-action on KW where W acts via left-translation
and the generator of Z2 acts via right-translation by w0. Note that here the face
semigroup KF also acts on the left on the ideal KC inside KF .
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Since w0 is the unique element ofW having descent set all of S, it not only lies in
the group algebra KW , but also inside the descent algebra, which is spanned by the
sums over w in W having a fixed descent set. Furthermore in type An−1, it lies in a
subalgebra called the Eulerian subalgebra, spanned by the sums over w inW having3

a fixed number of descents. There is a complete system of orthogonal idempotents for

this Eulerian subalgebra known as the Eulerian idempotents {e(j)n }j=1,2,...,n defined
by the generating function

n∑
j=1

e(j)n tj =
1

n!

∑
σ∈Sn

(t− des(σ))↑nσ,(17)

where des(σ) is the number of descents of the permutation σ ∈ Sn and t↑n denotes
the increasing factorial t↑n = t(t+1)(t+2) · · · (t+n−1). These idempotents decom-
pose spaces U on which the Eulerian subalgebra acts into their Hodge decomposition

U = ⊕jUe
(j)
n , and have the property that

1 =

n∑
j=1

e
(j)
n ,

(−1)nw0 =
n∑

j=1

(−1)je(j)n .

(These identifies can be proved by taking t = 1 and t = −1, respectively, in 17.)
Consequently, the two projectors onto the χ+ and χ−-isotypic components for the
group Z2 = {1, w0} can be expressed as

1

2
(1 + (−1)nw0) =

∑
j even

e(j)n

1

2
(1− (−1)nw0) =

∑
j odd

e
(j)
n .

In light of this, the following result generalizes Theorem IV.4.2 as well as the results
of [35, Section 2].

Theorem 5.4 (Saliola). Let A be a hyperplane arrangement, L its intersection
lattice (ordered by reverse-inclusion, as usual), and F its semigroup of faces.

(i) There is a natural filtration of KC by KF-modules indexed by the order
ideals of L. Explicitly, there is an inclusion-reversing map I �→ UI where
I is any order ideal of L and

UI := {a ∈ KC : xa = 0 for every x ∈ F with supp(x) ∈ I}.

(ii) For any choice of a ∈ RF giving a R[T ]-module structure on RC, this
poset-filtration refines the T -eigenvalue filtration (RC)≤λ in the following
fashion: one has (RC)≤λ = UI for the order ideal I = {X ∈ L : λX ≤ λ}.

3Note that Hanlon and Hersh [35] and other authors put a coefficient of det(w) in front of
each w in the sum. Thus, for our purposes we need to twist by the automorphism w �→ det(w) ·w
in order to compare our BHR operators with the signed random-to-top shuffle operator they are
using.
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(iii) Now assume A is the type An−1 reflection arrangement and the px are
chosen W -invariant, so that the W -invariant subalgebra of RF acts on
RC ∼= RW , and can be identified with the descent algebra acting on the
right within RW . Then for any W -stable order ideal I of L, the jth Hodge

decomposition component UIe
(j)
n of the poset-filtration space UI carries

RW -module structure isomorphic to

UI e
(j)
n

∼=
∑

IndWStabW (X)

(
H̃

∗
((V,X);R)⊗ det V/X

)
,

where the sum ranges over all W -orbits XW in L/W with X ∈ I and
dimR(X) = j.

A proof of this theorem would lead us too far afield; it will be published sepa-
rately [58].

6. Consequences for the kernels

For A a real hyperplane arrangement andW a finite group of linear symmetries,
introduce a notation for the following RW -modules that recur in the W -equivariant
BHR theory:

(18) WHOX
= IndWNW (X)

(
H̃

∗
((V,X);R)⊗ det V/X

)
where OX := XW is the W -orbit on L represented by some subspace X. The mod-
ule WHOX

is almost a submodule of the Whitney cohomology WH
∗(P ;R) with

real coefficients of a poset P with unique minimal element 0̂. The latter was intro-
duced by Baclawski [3] by truncating the usual differential of the simplicial cochain

complex. It follows that WH
∗(P ;R) :=

⊕
p∈P H̃

∗
((0̂, p);R). From the definition

it is obvious that if a finite group W acts as a group of poset automorphisms on

P then WH
∗(P ;R) becomes a W -module with submodule

⊕
p∈O H̃

∗
((0̂, p);R) ∼=

IndWStabW (q) H̃
∗
((0̂, q);R) for any W orbit O of P and q ∈ O. Clearly, if W is a

finite subgroup of GL(V ) acting on A then W acts on L and except for the twist
with det V/X our module WHOX

coincides with a submodule of the Whitney co-
homology of L. We have chosen this twist since if facilitates the formulation of our
applications of Whitney cohomology.

Also, define a partial order on the W -orbits O in L/W by setting O ≤ O′ if
there exist representatives X,X ′ in O,O′ with X ≤ X ′ in L, that is X ′ ⊆ X.

Corollary 6.1. For O ⊆ L a single W -orbit, one has

ker(νO) ∼=
⊕

O′∈L/W :
O′ 	≤O

WHO′ ⊗ (χ−)⊗ dimR(V/X)

im(νO) ∼=
⊕

O′∈L/W :
O′≤O

WHO′ ⊗ (χ−)⊗ dimR(V/X)

as R[W × Z2]-modules.

Proof. By the semisimplicity of the self-adjoint operator νO acting on RC,
together with Corollary IV.4.3, it suffices to prove the assertion about ker(νO).

Corollary IV.2.2 tells us that ker(νO) = ker(bJ) where bJ is a BHR-operator
that has px > 0 if and only if x is in the W -orbit of some particular face x(J)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

52 IV. EQUIVARIANT THEORY OF BHR RANDOM WALKS

whose support subspace X0 lies in the W -orbit O. Since ker(bJ) = (KC)≤0 for
this BHR-operator bJ , one deduces from Theorem IV.5.1 that its kernel carries the
R[W×Z2]-module structure which is the sum of WHO′⊗(χ−)⊗ dimR(V/X) over those
W -orbits O′ for which each representative subspace X has λX =

∑
x⊂X px = 0.

This occurs if and only if each subspace X in O′ contains no face in the W -orbit of
x(J), which occurs if and only if X contains no subspace in the W -orbit O of X0,
which occurs if and only if O′ �≤ O. �

Example 6.2. When A is the reflection arrangement for a finite real reflection
group W , and O is the W -orbit of an intersection subspace having low codimension,
Corollary IV.6.1 says that ker νO will be large, and im νO small.

In particular, if O is the W -orbit of some hyperplane H corresponding to a
reflection s, then im νO is the following sum over two W -orbits: O itself and the
singleton orbit {V }.

im νO ∼=
(
IndWZW (s) det V/H ⊗ χ−

)
⊕
(
1W ⊗ χ+

)
.

Example 6.3. For future use in Chapter V and Chapter VI, we wish to discuss
two further examples in which A is the reflection arrangement of type An−1 with
W = Sn. Recall from Example II.1.3 that an intersection subspace X here corre-
sponds to the set partition [n] =

⊔
i Bi whose blocks Bi tell us which coordinates xj

are equal on the subspace X. The W -orbit OX is then determined by the number
partition λ of n whose parts λi are the weakly decreasing reorderings of the block
sizes |Bi|. Let Xλ be any representative of this W -orbit indexed by λ. Note that
dimR(V/Xλ) = n− �(λ) where �(λ) is the number of parts of λ.

If O,O′ are the orbits of Xλ, Xμ, one finds that O ≤ O′ if and only μ refines
λ, that is, if one can combine some of the parts of μ to obtain λ.

Therefore, Corollary IV.6.1 implies that if O is the orbit of Xλ then ker νO and
im νO, respectively, are the sums of WHOμ

⊗ (χ−)⊗n−�(μ) over all μ which do or
do not, respectively, refine λ.

An interesting instance is when λ = (n− k, 1k), and the set of μ which do not
refine λ are those μ that have at most k− 1 parts of size 1. When k = 1, this is the
set of all μ having no parts of size 1.

Another interesting instance is when λ = (2k, 1n−2k), and the set of μ which
do refine λ are those of the form μ = (2j , 1n−2j) for j ≤ k.

7. Reformulation of WHOX

When A is the reflection arrangement for a finite real reflection group W , the
representation WHOX

in (18) has some well-known extra features and reformula-
tions, which we discuss below. When W = Sn, there are even more reformulations,
also discussed below, some of which will be used in Chapter V and Chapter VI.

7.1. Reformulations for any reflection group. Our first reformulation
originates in topology. Let A be an arrangement of (real) hyperplanes in V = Rd.
The chambers C of A are the connected components of the complement. Since
each of them is easily seen to be contractible the complement is not an interesting
topological space. One gains interesting topology when one extends scalars to C

and considers the arrangement A ⊗ C of complex hyperplanes H ⊗ C, H ∈ A, in
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Cd defined by the same linear forms as H. We call A⊗C the complexification of A
in VC = Cd. The complexified complement

MA := Cd \
⋃

H∈A
H ⊗ C

is a rich and complicated mathematical object (see for example [48]). It has coho-
mology algebra OS(A) := H

∗(MA;R) described by the Orlik-Solomon presentation
[46, Theorem 5.2], which we now recall.

Choose for each hyperplane H ∈ A a linear form �H : Cd → C with kernel
H ⊗C. Then there is an R-algebra surjection from the exterior algebra

∧
A over R

on generators {eH}H∈A onto the cohomology algebra H
∗(MA;R)∧

(A) −→ H
∗(MA;R)

eH �−→ d�H
�H

whose kernel is generated by the elements

t∑
s=0

(−1)seH1
∧ · · · ∧ êHs

∧ · · · ∧ eHt

as {H1, . . . , Ht} runs through all (minimal) subsets of hyperplanes in A that are

dependent (in the sense that
⋂t

i=1 Hi has codimension strictly less than t). The
algebra OS(A) is called the Orlik-Solomon algebra of A. Note that the result by
Orlik and Solomon holds even for integer coefficients. We use coefficients in the real
numbers since we will consider the Orlik-Solomon algebra as a module.

The above presentation of the Orlik-Solomon algebra leads to a direct sum
decomposition of OS(A) that comes from the subspaces OS(A)X which are the

images of the decomposable wedges eH1
∧ · · · ∧ eHt

having
⋂t

i=1 Hi = X for some
fixed X in L:

OS(A) =
⊕
X∈L

OS(A)X .

Proposition 7.1 (Theorem 5.2 [46] and Lemma 2.5 [43]). For any arrange-
ment A in V ∼= Rd and subspace X in L, there is a natural isomorphism

H̃

∗
((V,X);R) ∼= OS(A)X .

Consequently, when a finite subgroup W of GL(V ) acts on A, one has

IndWNW (X) H̃
∗
((V,X);R) ∼= IndWNW (X)OS(A)X .

In particular,

WHOX
∼= IndWNW (X)OS(A)X ⊗ det V/X .

In the case of reflection arrangements, the dimension of WHOX
has a well-

known reformulation.

Proposition 7.2 (Lemma 4.7 [47]). For a finite real reflection group W acting
on the arrangement L in V = Rd, and for any intersection subspace X in L, one
has

μ(V,X) = (−1)dimV/X
∣∣∣{w ∈ W : Fixw(V ) = X

}∣∣∣,
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where Fixw(V ) is the set of elements in V fixed by the action of w. Consequently,

dimWHOX
=
∣∣∣{w ∈ W : Fixw(V ) ∈ OX

}∣∣∣.
This reformulation suggested an interesting conjecture of Lehrer and Solomon,

which they verified in [43] for W = Sn of type An−1 (see also Proposition IV.7.4)
and also for dihedral groups W = I2(m). Note that the subset {w ∈ W : Fixw(V ) ∈
OX} of W is stable under conjugation, and hence a union of W -conjugacy classes.

Conjecture 7.3 (Conjecture 1.6 [43]). There is an isomorphism of W -modules

WHOX
∼=
⊕
v

IndWZW (v) ξv

where v runs over a system of representatives of the W -conjugacy classes which
comprise {w ∈ W : Fixw(V ) ∈ OX}, and ξv : ZW (v) → C× is a degree one
character of ZW (v).

7.2. Reformulations in type A. When W = Sn, one can both

• be much more explicit in the Lehrer-Solomon reformulation, and
• tie this in with other interesting reformulations, involving Lyndon words,
free Lie algebras, etc.

As explained in Example II.1.3, an intersection subspace X for W = Sn will
correspond to a set partition [n] =

⊔
iBi of [n], and its W -orbit OX is determined

by the number partition λ of n whose parts give the block sizes |Bi|. Let Xλ be any
representative of this W -orbit indexed by λ, and say that λ contains the part of
size j with multiplicity mj for each j. A typical element vλ ∈ W having V vλ = Xλ

will be a product of disjoint cycles of sizes λi supported on the blocks Bi. One then
has that

NW (Xλ) ∼=
∏
i

Smi
[Si]

ZW (vλ) ∼=
∏
i

Smi
[Zi].

where Sm[G] denotes the wreath product of G with the symmetric group Sm, and
Zi denotes the cyclic group of order i.

In [43] Lehrer and Solomon describe a degree one character ξλ of ZW (vλ) that
sends each of the disjoint cycles of size j in vλ to the same primitive jth root of
unity. This character fits the motivating type A case of their Conjecture IV.7.3
which they prove in their paper.

Proposition 7.4 (Theorem 4.5 [43]). Let W = Sn and λ a partition of n.
For an element vλ ∈ W such that V vλ = Xλ we have

WHOXλ

∼= IndWZW (vλ)
ξλ.

One has a reformulation of the previous proposition in the language of sym-
metric functions; see [44] and [64, Chapter 7 (see in particular Exercise 7.89)] for
the basic facts used here.

Recall Frobenius’s characteristic map ch giving an isomorphism between virtual
Sn-characters and symmetric functions of degree n. Under this isomorphism, one
has

ch
(
Ind

Sn1+n2

Sn1
×Sn2

χ1 ⊗ χ2

)
= ch(χ1) · ch(χ2)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

IV.7. REFORMULATION OF WHOX
55

where the product on the right is in the ring of symmetric functions. Also, given
representations U, V of Sm,Sn, one can construct a representation U [V ] of Sm[Sn]
on V ⊗m⊗U by having (Sn)

m act on V ⊗m in the usual way, while Sm permutes the
tensor factors of V ⊗m and simultaneously acts on U ; this construction is well-known
(see for example [44, I.8 Remark 2, p. 136]) to have

chU [V ] = chU [chV ]

where f [g] denotes the plethysm operation on symmetric functions f, g. We denote
by hm := ch(1Sm

) the mth homogeneous symmetric function.
For W = Sn, let ωn denote the W -representation WHOX(n)

, corresponding

to the subspace X(n) which is the intersection of all the hyperplanes. Thus, by
definition of WHOX

the representation ωn is the Sn-representation on the top
homology of the order complex of the proper part of the lattice of all set partitions
of n, twisted by the character detV = sgn. Based on work of Hanlon [34] it was

shown by Stanley [63, Theorem 7.3] that ωn = IndSn

Zn
exp( 2πin ) is induced from a

degree one character of the cyclic group Zn generated in Sn by a fixed n-cycle
with character value exp( 2πin ). From this the case W = Sn and OX = OX(n)

of

Proposition IV.7.4 follows. This fact implies that Proposition 4.4 (iii) from [43]
proved along the way to Proposition IV.7.4 actually can be stated as follows.

Proposition 7.5. For W = Sn and λ any partition of n,

WHOXλ

∼= IndSn

Sm1
[S1]×Sm2

[S2]×···
(
1Sm1

[ω1]⊗ 1Sm2
[ω2]⊗ · · ·

)
,

or in other words,

(19) chWHOXλ
=
∏
i

hmi
[ch(ωi)].

A proof of this result based solely on the description of WHOXλ
in terms of

simplicial homology was first presented by Sundaram [73, Theorem 1.7]. Note that
the result by Sundaram is stated for WHOXλ

tensored with the sign representation.
Tensoring once more by the sign and some standard transformations of plethysms
show the equivalence of her formula with the above formula.

Proposition IV.7.5 can be further reformulated in terms of the combinatorics
of Lyndon words and quasisymmetric functions. Let A = {a1 < a2 < a3 < · · · }
be a linearly ordered alphabet. Recall that a word x = x1 · · ·xn with letters xi ∈
A, 1 ≤ i ≤ n, is called a Lyndon word if it is lexicographically strictly smaller
than any of its cyclic rearrangements (see [53, §5] for more details). It is also well
known [53, Theorem 5.1] that every word x has a unique Lyndon factorization
x = x(1)x(2) · · ·x(g), meaning that the x(i), 1 ≤ i ≤ g, are Lyndon words satisfying

x(1) ≥lex x(2) ≥lex · · · ≥lex x(g).

The Lyndon type of x is the weakly decreasing rearrangement of the lengths of
the x(i). We use this to define a power series in the ring of formal power series
C�ta | a ∈ A� by

Lλ(t) :=
∑

words x
of Lyndon type λ

tx

where tx := tx1
tx2

· · · txn
for x = x1 · · ·xn. In [31, Theorem 3.6] it is stated that

Lλ(t) coincides with the symmetric function on the right hand side of (19) from
Proposition IV.7.5. This then yields the following description of chWHOXλ

.
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Proposition 7.6. For W = Sn and λ any partition of n,

chWHOXλ
= Lλ(t).

This reformulation is proved by Gessel and Reutenauer in [31] in parallel with
a reformulation in terms of quasisymmetric functions. It is derived from a bijection
attributed to Gessel (see e.g. [53, p. 175], [23], [76]) and described in [31]. The
bijection allows one to expand Lλ(t) in terms of the fundamental quasisymmetric
functions associated with subsets D ⊆ [n− 1]:

FD :=
∑

1≤i1≤···≤in:
ij<ij+1 if j∈D

ti1 · · · tin .

Given a permutation w = (w1, . . . , wn) in Sn, define its descent set by

Des(w) := {j ∈ [n− 1] : wj > wj+1}.
Theorem 3.6 in [31] states that

∑
w of cycle type λ FDes(w) equals Lλ. Thus, we arrive

at the desired reformulation.

Proposition 7.7. For W = Sn and λ any partition λ of n,

chWHOXλ
=

∑
w of cycle type λ

FDes(w).

In parallel to the study of WHOXλ
motivated by the action of the symmetric

group on the Orlik-Solomon algebra, the module WHOXλ
appeared in a different

guise already in the 1940’s, in the context of the free Lie algebra (see [75], [14]).
Before we can explain this connection we introduce the free Lie algebra and related
notation (see [53] for more background information). The tensor algebra

T (V ) :=
⊕
d≥0

V ⊗d

is an associative algebra, and hence also a Lie algebra for the usual bracket operation
[x, y] = xy − yx. The Lie subalgebra Lie(V ) of T (V ) generated by its degree one
part T 1(V ) = V is called the free Lie algebra. It inherits a grading

Lie(V ) = ⊕d≥0Lie(v)d

where Lie(v)d = Lie(V )∩ V ⊗d. Because (see [53, Theorem 0.5]) T (V ) turns out to
be the universal enveloping algebra for Lie(V ), the Poincaré-Birkhoff-Witt theorem
(see [53, Theorem 0.2]) gives a Sn-equivariant vector space isomorphism

Tn(V ) = V ⊗n ∼=
∑
λ�n

Lieλ(V )

where for a partition λ = (1m1 , 2m2 , . . .) one defines

Lieλ(V ) := Symm1(Lie(V )1)⊗ Symm2(Lie(V )2)⊗ · · · .
Here Symm(U) denotes the mth graded component of the symmetric algebra over a
vector space U . For a partition λ of n each Lieλ(V ) is itself an Sn-module. Assume
dimV = n, fix a basis of T 1(V ) = V and denote by En the space spanned in
Tn(V ) = V ⊗n by the tensors of the n! permutations of the basis elements. For λ
a partition of n the multilinear part of Lieλ(V ) is its intersection with En. Since
both En and Lieλ(V ) are Sn-modules it follows that the multilinear part is also
an Sn-module. For λ = (n) it was shown by Klyachko [41] that Lie(n)(V ) ∩ En is
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isomorphic as an Sn-module to IndSn

Zn
exp( 2πin ) and hence by the above mentioned

result of Stanley [63, Theorem 7.3], it is isomorphic to WHO(n)
. More generally

a result by F. Bergeron, N. Bergeron and A. Garsia [8] (see also [53, Theorem
8.23]) shows that the characteristic of the Sn-representation on the multilinear
part of Lieλ(V ) is the symmetric function on the right hand side of (19) from
Proposition IV.7.5.

Proposition 7.8. Let V ∼= Rn and λ any partition of n. Then there is an
isomorphism of Sn-modules

WHOXλ

∼= En ∩ Lieλ(V ).

Indeed, using this reformulation, Theorem 8.24 of [53], which was first proved
in [8], gives an alternative proof of Proposition IV.7.4.

The action of the group GL(V ) on T 1(V ) induces a diagonal action of GL(V ) on
each T d(V ). By standard facts about the representation theory of GL(V ) and from
Proposition IV.7.8 and Proposition IV.7.6, the character of Lieλ(V ) as a GL(V )-
module (that is, the trace of a diagonal element of GL(V ) having eigenvalues
x1, . . . , xn) is Lλ(x). In other words, one has the following.

Proposition 7.9. For W = Sn and λ any partition of n, the symmetric
function chWHOXλ

is the GL(V )-character of Lieλ(V ).

Thus, the following problems are equivalent, and attributed by Schocker [59]
to Thrall [75].

Problem 7.10. Find any of

• the Sn-irreducible decomposition of chWHOXλ
,

• the GL(V )-irreducible decomposition of Lieλ(V ), or
• the Schur function expansion of Lλ(x).

Only partial results are known in this regard. For example for λ = (n) it was
shown by Kraskiewićz and Weyman in a preprint from 1987, published as [42], that

L(n)(x) =
∑

T in SY Tn:
maj(T )≡1 mod n

sλ(T ).

This result can also be seen as a reformulation of a result by Springer from [61].
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CHAPTER V

The family ν(2k,1n−2k)

Our goal here is to prove Theorem I.4.3, whose statement we recall.

Theorem I.4.3. The operators from the family {ν(2k,1n−2k)}k=1,2...,�n
2 � pairwise

commute, and have only integer eigenvalues.

Recall that here one is considering the reflection arrangement for the reflection
group W = Sn, and the W -orbit on L, denoted here O(2k,1n−2k), consisting of all
intersection subspaces of the form

{xi1 = xi2} ∩ {xi3 = xi4} ∩ · · · ∩ {xi2k−1
= xi2k}.

Then ν(2k,1n−2k) = νO
(2k,1n−2k)

. Define also π(2k,1n−2k) = πO
(2k,1n−2k)

.

1. A Gelfand model for Sn

Theorem I.4.3 will follow from applying our eigenvalue integrality principle
Proposition I.3.1 to the following representation-theoretic fact, which will identify
the non-zero eigenspaces of the operators {ν(2k,1n−2k)} with a certain Gelfand model
for W = Sn, whose construction is related to the construction of the Gelfand model
of Sn in [2]. Recall that a Gelfand model for W = Sn is an Sn-module that carries
exactly one copy of each Sn-irreducible χλ; see [2] for further references. Given a
number partition λ, let oddcols(λ) denote the number of columns of odd length in
the Ferrers diagram for λ, or the number of parts of odd length in the conjugate
partition λ′.

Proposition 1.1. For W = Sn and non-negative integers a, b with 2a+ b = n
one has

WHO
(2a,1b)

=
⊕
λ:

oddcols(λ)=b

χλ.

Consequently, we obtain a Gelfand model for Sn by combining the modules:

�n
2 �⊕

a=0

WHO(2a,1n−2a)
=
⊕
λ�n

χλ.

59
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Proof. By Proposition IV.7.5, one has∑
a,b≥0

ch
(
WHO

(2a,1b)

)
tb =

∑
a,b≥0

ha[chω2] hb[chω1] t
b

=
∑
a,b≥0

ha[e2(x)] hb(x) t
b

=
∏
i<j

(1− xixj)
−1
∏
i

(1− txi)
−1

=
∑
λ

toddcols(λ)sλ(x)

where the last equality uses a well-known identity (see [64, Exercise 7.28(b)], [44,
Chap. I, §5, Ex. 7]). �

2. Proof of Theorem I.4.3

We will actually prove following version of Theorem I.4.3, which is more precise
and tells us more about the eigenvalues of the operators ν(2k,1n−2k).

Theorem 2.1. There exists an orthogonal direct sum decomposition of R[Sn×
Z2]-modules

(20) RSn = K ⊕
(⊕

λ�n
Uλ

)
with the following properties.

(i) The subspace K is annihilated by each of the operators

{ν(2k,1n−2k)}k=0,1,2,...,�n
2 �.

(ii) For k = 0, 1, 2, . . . , �n
2 	 the subspace Uλ lies inside the eigenspace for

ν(2k,1n−2k) having eigenvalue

(21) γ(2k,1n−2k),λ =
∑

w∈Sn

noninv(2k,1n−2k)(w) · χλ(w).

(iii) The subspace Uλ affords the irreducible R[Sn × Z2]-module

χλ ⊗
(
χ−)⊗n−oddcols(λ)

2 .

Proof of Theorem V.2.1. We set kmax := �n
2 	, and define

K := kerπ(2kmax ,1n−2kmax ) = ker ν(2kmax ,1n−2kmax ).

Since one can find a nested chain of representative subspaces for the W -orbits
O(2k,1n−2k) as k varies, Proposition II.6.2 implies the following inclusions of kernels:
(22)
K= kerπ(2kmax ,1n−2kmax ) ⊂ · · · ⊂ kerπ(22,1n−4) ⊂ kerπ(21,1n−2) ⊂ kerπ(1n)

‖ ‖ ‖ ‖
ker ν(2kmax ,1n−2kmax ) ker ν(22,1n−4) ker ν(21,1n−2) ker ν(1n)
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In particular, K is annihilated, and hence preserved, by every one of the self-adjoint
operators {ν(2k,1n−2k)}k=0,1,2,...,kmax

.

Hence they also preserve the perpendicular space U := K⊥, a Q-rational sub-
space of RSn. Note that Corollary IV.2.2 implies that the Sn-representation af-
forded by U is the same as that afforded by the non-zero eigenspaces of a certain
BHR operator bJ . Meanwhile, Example IV.6.3 shows that this Sn-representation is

the sum of
⊕kmax

a=0 WHO(2a,1n−2a)
. Note that this sum is isomorphic to the multiplicity-

free Gelfand model described in Proposition V.1.1.
This multiplicity-freeness has two consequences. First, it shows that by combin-

ing the Sn-isotypic decomposition U =
⊕

λ U
λ together with the complementary

space K, one obtains a direct sum decomposition as in (20) that simultaneously
diagonalizes all of the operators {ν(2k,1n−2k)}k=0,1,2,...,kmax

.
Secondly, the eigenvalue integrality principle, Proposition I.3.1, implies that

each operator ν(2k,1n−2k) acts on U with integer eigenvalues. Since ν(2k,1n−2k) also

annihilates the subspace K = U⊥ complementary to U , it has only integer eigen-
values on all of RSn.

However, we know more about the eigenvalue1 γ(2k,1n−2k),λ with which ν(2k,1n−2k)

acts on Uλ. Picking any realizationSn
ρλ→ GLC(V ) of the irreducibleSn-representa-

tion with character χλ, Proposition II.7.1 tells us that ρλ(ν(2k,1n−2k)) has
γ(2k,1n−2k),λ as its only potential non-zero eigenvalue, and hence

γ(2k,1n−2k),λ = Trace ρλ(ν(2k,1n−2k))

= Trace

( ∑
w∈Sn

noninv(2k,1n−2k)(w) · ρλ(w)
)

=
∑

w∈Sn

noninv(2k,1n−2k)(w) · Trace ρλ(w)

=
∑

w∈Sn

noninv(2k,1n−2k)(w) · χλ(w).

Lastly, to see how Z2 acts on Uλ, note that Proposition V.1.1 implies that Uλ

lies in

(23) im(ν(2a,1n−2a)) ∩ im(ν(2a−1,1n−2a+2))
⊥

where a := n−oddcols(λ)
2 . Since ν(2a,1n−2a), π(2a,1n−2a) share the same kernels, one

has an isomorphism of R[Sn × Z2]-modules

im(ν(2a,1n−2a)) ∼= im(π(2a,1n−2a)).

Consequently the space (23) carries R[Sn × Z2]-module structure isomorphic to
that of

im(π(2a,1n−2a))/ im(π(2a−1,1n−2a+2))

which is WHO(2a,1n−2a)
⊗ (χ−)⊗a by Example IV.6.3. Thus, Z2 acts by (χ−)⊗a on

Uλ. �

Remark 2.2. One does not have that the associated BHR-operators bJ pairwise
commute, in contrast with the situation for the original family {ν(k,1n−k)}k=1,2...,n.

1The first author thanks C.E. Csar for discussions leading to this expression for γ(2k,1n−2k),λ.
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Remark 2.3. The formula for the eigenvalue γ(2k,1n−2k),λ given in (21) is some-
what explicit, but still leaves something to be desired. For example, the character
values χλ(w) for w in Sn are integers, but they can be negative. Thus (21) does not
manifestly show the fact that γ(2k,1n−2k),λ is non-negative, nor does it show the fact
that γ(2k,1n−2k),λ vanishes unless oddcols(λ) ≥ n − 2k. This suggests the following
problem.

Problem 2.4. For each partition λ of n, and each k with oddcols(λ) ≥ n− 2k,
find a more explicit formula for the non-zero eigenvalue γ(2k,1n−2k),λ of ν(2k,1n−2k)

acting on its (non-kernel) eigenspace Uλ affording χλ.

We have computed some of these eigenvalues using Sage [68], and we present
this data for 3 ≤ n ≤ 6 in the tables below. The data is presented as follows:

• each row of the table corresponds to the subspace Uλ affording χλ;
• the entry in the column indexed by ν(2k,1n−2k) is the eigenvalue γ(2k,1n−2k),λ;
• the entry in the column indexed by w0 is the eigenvalue for the Z2-action
on Uλ.

To enhance the presentation of the data, every zero eigenvalue has been replaced
by a dot.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

V.2. PROOF OF Theorem I.4.3 63

ν(13) ν(21,11) Z2

χ3 6 9 1
χ21 · 4 −1
χ111 · 1 −1

ν(14) ν(21,12) ν(22) Z2

χ4 24 72 18 1
χ31 · 20 10 −1
χ211 · 4 2 −1
χ22 · · 8 1
χ1111 · · 2 1

ν(15) ν(21,13) ν(22,11) Z2

χ5 120 600 450 1
χ41 · 120 180 −1
χ311 · 20 30 −1
χ32 · · 68 1
χ221 · · 12 1
χ2111 · · 12 1
χ11111 · · 2 1

ν(16) ν(21,14) ν(22,12) ν(23) Z2

χ6 720 5400 8100 1350 1
χ51 · 840 2520 630 −1
χ411 · 120 360 90 −1
χ42 · · 616 308 1
χ321 · · 96 48 1
χ3111 · · 84 42 1
χ222 · · 24 12 1
χ21111 · · 12 6 1
χ33 · · · 204 −1
χ2211 · · · 36 −1
χ111111 · · · 6 −1

Eigenvalues of ν(2k,1n−2k) acting on the non-kernel eigenspace afforded by χλ.
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ν(17) ν(21,15) ν(22,13) ν(23,11) Z2

χ7 5040 52920 132300 66150 1
χ61 · 6720 33600 25200 -1
χ511 · 840 4200 3150 -1
χ52 · · 6048 9072 1
χ421 · · 840 1260 1
χ4111 · · 672 1008 1
χ322 · · 168 252 1
χ31111 · · 84 126 1
χ43 · · · 2976 -1
χ331 · · · 396 -1
χ3211 · · · 396 -1
χ2221 · · · 96 -1
χ22111 · · · 48 -1
χ211111 · · · 48 -1
χ1111111 · · · 6 -1

ν(18) ν(21,16) ν(22,14) ν(23,12) ν(24) Z2

χ8 40320 564480 2116800 2116800 264600 1
χ71 · 60480 453600 680400 113400 -1
χ611 · 6720 50400 75600 12600 -1
χ62 · · 64512 193536 48384 1
χ521 · · 8064 24192 6048 1
χ5111 · · 6048 18144 4536 1
χ422 · · 1344 4032 1008 1
χ41111 · · 672 2016 504 1
χ53 · · · 42240 21120 -1
χ431 · · · 5376 2688 -1
χ4211 · · · 4544 2272 -1
χ332 · · · 960 480 -1
χ3221 · · · 896 448 -1
χ32111 · · · 512 256 -1
χ311111 · · · 432 216 -1
χ22211 · · · 128 64 -1
χ2111111 · · · 48 24 -1
χ44 · · · · 11904 1
χ3311 · · · · 1584 1
χ2222 · · · · 384 1
χ221111 · · · · 192 1
χ11111111 · · · · 24 1

Eigenvalues of ν(2k,1n−2k) acting on the non-kernel eigenspace afforded by χλ.
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The original family ν(k,1n−k)

Let us return to the context of Theorem I.1.1. HereW = Sn and O = O(k,1n−k)

is theW -orbit containing the subspaceX(k,1n−k), so we wish to analyze the elements

νO = ν(k,1n−k) :=
∑
w∈W

noninvk(w) · w

where noninvk(w) is the number of increasing sequences of length k contained in
w.

1. Proof of Theorem I.1.1

Recall the statement of Theorem I.1.1.

Theorem I.1.1. The operators from the family {ν(k,1n−k)}k=1,2,...,n pairwise com-
mute.

Proof. Fix k and �. One has ν(k,1n−k)ν(�,1n−�) =
∑

w∈Sn
dk,�w · w, where

(24) dk,�w =
∑

1≤i1<···<ik≤n
1≤j1<···<j�≤n

∣∣∣∣∣∣
⎧⎨⎩(u, v) ∈ Sn ×Sn :

uv = w,
u(i1) < · · · < u(ik),
v(j1) < · · · < v(j�)

⎫⎬⎭
∣∣∣∣∣∣ .

We want to show that dk,�w = d�,kw for any permutation w in Sn.

Let us reformulate this coefficient dk,�w a bit. First get rid of v using v = u−1w.
Second, if one names the sequences of lengths k and �

K := (u(i1), . . . , u(ik))

L := (j1, . . . , j�)

so w(L) := (w(j1), . . . , w(j�)),

then the condition on u in (24) is that both sequences K and w(L) appear from
left-to-right as subsequences inside (u1, u2, . . . , un). In other words, u lies in the
set L(PK,w(L)) of all linear extensions of the poset PK,w(L) on [n] = {1, 2, . . . , n}
defined as the transitive closure of the order relations

u(i1) < · · · < u(ik)
w(j1) < · · · < w(j�).

Example 1.1. If n = 10, k = 6, � = 4 and

w =

[
1 2 3 4 5 6 7 8 9 10
9 1 7 3 5 2 6 8 10 4

]
K = (1, 3, 5, 6, 8, 10)

w(L) = (7, 3, 2, 8)

65



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

66 VI. THE ORIGINAL FAMILY ν
(k,1n−k)

10

8

6

2 4 9

5

3

1 7

Figure 1. The poset PK,w(L) with K = (1, 3, 5, 6, 8, 10) and w(L) = (7, 3, 2, 8).

then the poset PK,w(L) for this example is shown in Figure 1.

Lastly note that when w is written in two-line notation, K is a k-subsequence
of the top line, while w(L) is an �-subsequence of the bottom line. Thus one has

dk,�w =
∑

such K,L

#L(PK,w(L))

and we wish to show that dk,�w = d�,kw for all permutations w in Sn.

First we fix the intersection and union of the underlying sets of K and w(L)

I := K ∩ w(L)

J := K ∪ w(L)

and define a new coefficient

(25) dk,�(w,I,J) :=
∑
K,L:

K∩w(L)=I
K∪w(L)=J

#L(PK,w(L)).

Thus it suffices to show that for each fixed pair I ⊆ J ⊆ [n], one has dk,�(w,I,J) =

d�,k(w,I,J).

One can reduce to the case where J = K ∪ w(L) = [n] as follows. If m lies in
the complement [n] \ J , then m is incomparable to all other elements in PK∪w(L)

(such as m = 4 or m = 9 in the previous example), and one finds∣∣∣L(PK,w(L))
∣∣∣ = n ·

∣∣∣L(P̂K,w(L))
∣∣∣

where P̂K,w(L) is the poset on [n] \ {m} in which the element m has been removed.
Thus we will assume without loss of generality that J := K ∪ w(L) = [n].

We reformulate further. Think of the fixed elements in I := K ∩ w(L) as a set
of i := |I| vertical dividers that partition the remaining elements [n] \ I in the top
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and bottom of w into i+ 1 divisions:

w =

[
t(1) | t(2) | · · · | t(i+1)

b(1) | b(2) | · · · | b(i+1)

]
Note that the sequences t(j) and b(j) need not have the same length, and any of
them are allowed to be empty sequences.

Example 1.2. If one has k = 7, � = 5,

w =

[
1
9

2
1

3
7

4
3

5
5

6
2

7
6

8
8

9
10

10
6

]
.

and I = {3, 6}, then the divided w looks like

3 6

w =

[
1
9

2
1 7

∣∣∣∣ 4
5

5
2

∣∣∣∣ 7
8

8
10

9
4

10
]
.

(26)

One may as well relabel 26 to look like the following divided permutation w′ of
[n′] := [8] where n′ := n− |I|:

w′ =

[
1
7

2
1 5

∣∣∣∣ 3
4

4
2

∣∣∣∣ 5
6

6
8

7
3

8
]
.

Note that the remaining choice of

K ′ := K \ I
L′ := w(L) \ I

gives a disjoint decomposition [n]\I = K ′
L′. So the number of linear extensions of
PK,w(L) becomes the product, running over each of the i+ 1 divisions (t(j), b(j)) in

w, of the number of shuffles of the two sequences K ′ ∩ t(j) and L′ ∩ b(j). Therefore,

to count the linear extensions that make up dk,�(w,I,J) in 25, it is equivalent to sum

over the decompositions of [n′] := K ′ 
 L′ that have

k′ := |K ′| = k − i

l′ := |L′| = �− i

and for each such decomposition, sum up the product of the number of shuffles of
K ′ ∩ t(j) with L′ ∩ b(j), that is, the product

(27)

i+1∏
j=1

(
|K ′ ∩ t(j)|+ |L′ ∩ b(j)|
|K ′ ∩ t(j)|, |L′ ∩ b(j)|

)
.

Call such a choice of decomposition and the shuffles, a decomposition-shuffle of

the divided permutation w′ of [n′], and call the total number of them dk
′,�′

w′ . Thus

we wish to show that dk
′,�′

w′ = d�
′,k′

w′ for every divided permutation w′ of [n′] and
every pair (k′, �′) with k′ + �′ = n′. This will be done by induction on n′.

First, note that one can reorder the elements in any of the t(j), b(j) arbitrarily;
this does not affect the possible choices of a decomposition [n′] = K ′ 
L′ nor does
it affect the product (27).

So without loss of generality, assume that the numbers appear in integer order
in each t(j) and b(j); in particular, the largest number n′ will appear last within
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both its division on the top of w′ and its division on the bottom. For example, the
divided permutation w′ from 26 would be reordered to

w′ =

[
1
1

2
5 7

∣∣∣∣ 3
2

4
4

∣∣∣∣ 5
3

6
6

7
8

8
]
.

We now count dk
′,�′

w′ by classifying the decompositions-shuffles according to the entry
m (if any) that appears directly after the entry n′, within the shuffle that contains
n′.

Case 1. The decomposition-shuffle has no such value of m, that is, n′ appears last
in the shuffle for its division.

Let w′′ be obtained from w′ by removing n′ from both the top and bottom.

Subcase 1a. The decomposition [n′] := K ′ 
 L′ has n′ in K ′. It is straightforward

to check that these decomposition-shuffles are counted by dk
′−1,�′

w′′ .

Subcase 1b. The decomposition [n′] := K ′ 
L′ has n′ in L′. Similarly, it is straight-

forward to check that these decomposition-shuffles are counted by dk
′,�′−1

w′′ .
Putting together the two subcases, the decomposition/shuffles in this Case 1

are counted by the sum dk
′−1,�′

w′′ + dk
′,�′−1

w′′ .
Note that when considering the corresponding decomposition/shuffles counted

by d�
′,k′

w′ (where the roles of k′, �′ have been reversed, but w′ is the same), those

that fall in this Case 1 will analogously be counted by the sum d�
′−1,k′

w′′ + d�
′,k′−1
w′′ ,

where w′′ is the same permutation derived from w′. By induction,

d�
′−1,k′

w′′ = dk
′,�′−1

w′′

d�
′,k′−1
w′′ = dk

′−1,�′

w′′

and hence these two sums are the same.

Case 2. The decomposition/shuffle has such a value m (i.e. something appearing
directly after n′ within the shuffle that contains n′).

Then n′,m must appear in opposite sets within the decomposition [n′] := K ′ 

L′, due to the fact that n′ appears last in its division.

Subcase 2a. The decomposition puts m ∈ K ′ and n′ ∈ L′.
Since m appears directly after n′ in its shuffle, both m,n′ must appear in the

same division, i.e. m ∈ K ′ ∩ t(j) and n′ ∈ L′ ∩ b(j) for some j.
This time let w′′ be obtained from w′ by removing all occurrences of n′,m

and replacing the division
[
t(j)

b(j)

]
with two divisions separated by a divider labelled

(n′,m), [
t′

b(j)

∣∣∣∣ t′′

−

]
in which t′, t′′ are the elements that appeared before and after m within t(j).

Example 1.3. If n′ = 8 and m = 6 in the above example, with n′ ∈ K and
m ∈ L, one would replace the third division[

t(3)

b(3)

]
=

[
5 6 7 8
3 6 8

]
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obtaining

(8,6)

w′′ =

[
1
1

2
5 7

∣∣∣∣ 3
2

4
4

∣∣∣∣ 5
3

∣∣∣∣ 7
−

]
.

It is not hard to check that the decomposition-shuffles in Subcase 2a are then

counted by dk
′−1,�′−1

w′′ . Note that by induction on n′ one has

dk
′−1,�′−1

w′′ = d�
′−1,k′−1
w′′ .

Hence the decomposition-shuffles in the same Subcase 2a (with the same value of
m) when the roles of k′, �′ are reversed will have the same cardinality.

Subcase 2b. The decomposition puts m ∈ L′ and n′ ∈ K ′.
Same as Subcase 2a, with an analogous construction of w′′ from w′ by intro-

ducing one new divider labelled (n′,m).

Thus in each case, reversing the roles of k′, �′ leads to cases with the same

cardinalities. Hence dk
′,�′

w′ = d�
′,k′

w′ , completing the proof. �

Problem 1.4. Find a more enlightening (non-inductive?) proof of
Theorem I.1.1!

It turns out at that one also has pairwise commutativity for the family of BHR
operators {b(k,1n−k)}k∈[n] (this follows by combining Proposition IV.2.1 and [60,
Main Theorem 2.1]), which are closely related to the operators ν(k,1n−k)

by Corollary IV.2.2. Perhaps this fact can be used as a starting point to prove
Theorem I.1.1?

2. The kernel filtration and block-diagonalization

There is a way to get a good start on simultaneously diagonalizing the com-
muting family {ν(k,1n−k)}, by looking at a filtration that comes from their kernels.

As in the proof of Theorem I.4.3, since one can find a nested chain of represen-
tative subspaces for the W -orbits O(k,1n−k) as k varies, Proposition II.6.2 implies
the following inclusions of kernels:

(28)
0 = kerπ(n) ⊂ kerπ(n−1,1) ⊂ kerπ(n−2,12) ⊂ · · · ⊂ kerπ(2,1n−2) ⊂ kerπ(1n) ⊂ RSn

‖ ‖ ‖ ‖ ‖
ker ν(n) ker ν(n−1,1) ker ν(n−2,12) ker ν(2,1n−2) ker ν(1n)

Since Theorem I.1.1 says that the ν(k,1n−k) pairwise commute, they preserve
each others kernels, and hence (28) gives an R[W × Z2]-module filtration of RSn

which is preserved by each of the ν(k,1n−k). Denote the filtration factors for j =
1, 2, . . . , n by

Fn,j = ker ν(n−j−1,1j+1)/ ker ν(n−j,1j)

= kerπ(n−j−1,1j+1)/ kerπ(n−j,1j)

with the convention that Fn,n = RSn/ kerπ(1n). One knows from the self-adjointness
of each ν(k,1n−k) that there exists an (orthogonal) direct sum decomposition

(29) RSn =
n⊕

j=1

Vn,j
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of R[W × Z2]-modules in which

Vn,j = ker ν(n−j−1,1j+1) ∩ ker ν⊥(n−j,1j)
∼= Fn,j

and hence (29) gives a simultaneous block diagonalization of the operators
{ν(k,1n−k)}k∈[n].

At this point, we can use some of the equivariant BHR theory to analyze the
R[W×Z2]-module structure of each Vn,j or Fn,j : one has ker ν(n−j,1j) = ker b(n−j,1j)

for a certain BHR operator b(n−j,1j), whose kernel was analyzed in Example IV.6.3.
This shows that

(30) Vn,j
∼= Fn,j

∼=
⊕

λ has exactly
j parts of size 1

WHOXλ
⊗ (χ−)⊗n−�(λ).

This shows that the dimension of Vn,j is the number of permutations w in Sn

having j fixed points, in light of Proposition IV.7.2. However it is not very ex-
plicit as decomposition into R[W × Z2]-modules since we do not have solution for
Problem IV.7.10 in general.

It turns outs that with a little work, we can provide a much more explicit
description of Vn,j . The representation theory of W = Sn asserts an RW -module
decomposition into irreducibles

(31) RSn =
⊕
Q

χshape(Q)

where Q runs over all standard Young tableaux of size n, and where shape(Q) is
the partition whose Ferrers diagram gives the shape of Q. Although we will not
need it here, one can also incorporate the Z2-action in (31) and give an explicit
R[W × Z2]-module decomposition

(32) RSn =
⊕
Q

χshape(Q) ⊗ (χ−)⊗maj(Q)

where maj(Q) is the major index statistic on standard Young tableaux; this follows
from Springer’s theory of regular elements [61], the fact that w0 is a regular element
of Sn [49, Lemma 8.4], and the formula for the fake degree polynomials in type
An−1 in terms of major indices [42].

Instead our goal in the next few subsections, culminating in Theorem VI.10.5,
will be to provide a similar decomposition of Vn,j , as a sum of irreducible R[W×Z2]-
modules of the form

(33)
∑
Q

χshape(Q) ⊗ χε(Q)

where Q runs over a certain class of standard Young tableaux that depends on j,
and ε(Q) is a ± sign that depends upon Q. Here is an outline of how this goal is
achieved.

Step 1. Relate the bottom kernel Fn,0 = kerπ(n−1,1) in the filtration to the ho-
mology of the complex of injective words, by showing that π(n−1,1) is a
sign-twisted version of the top boundary map in this complex. This is
achieved in Proposition VI.4.2.

Step 2. Use homological techniques to describe this homology as an R[W × Z2]-
module recursively. This is achieved in 41.
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Step 3. Show that a description of Fn,0 automatically leads to one for Fn,j . This
is achieved in Theorem VI.8.5.

Step 4. Solve this recursion for Fn,0 and Fn,j in the form of (33). This is achieved
in Theorem VI.10.5.

3. The (unsigned) maps on injective words

Definition 3.1. Given a finite alphabet A, and an integer i in the range
0 ≤ i ≤ |A| let A〈i〉 denote the set of injective words of length i with letters taken
from the alphabet A, that is, those words which use each letter at most once.

For a set M let RM denote an R-vector space with basis indexed by M . Given
integers i, j with 0 ≤ i ≤ j ≤ |A|, define a map

πA,j,i : R
A〈j〉 −→ RA〈i〉

that sends an injective word a = (a1, . . . , aj) of length j to the sum
∑

b of its
subwords b = (ak1

, . . . , aki
), 1 ≤ k1 < · · · < ki ≤ j, of length i.

Note that the R-linear maps πA,j,i are actually maps of R[SA × Z2]-modules,

when we consider RA〈i〉
as an R[SA × Z2]-module in the following fashion:

• SA permutes the letters A, and
• the non-identity element of Z2 sends a word a = (a1, a2, . . . , ai) to its
reversed word arev := (ai, . . . , a2, a1).

Our goal in the next few subsections is to begin by understanding the kernel of
the first of the maps πA,j,i, for which we use an abbreviated notation:

πA := πA,|A|,|A|−1.

The kernel of this map will turn out be closely related to the homology of the
complex of injective words on A; see §VI.4.

Remark 3.2. In fact, the maps πA,|A|,i are simply instances of the maps πO
where W = SA and O is the W -orbit of intersection subspaces where i of the
coordinates are set equal.

4. The complex of injective words

Definition 4.1. The complex of injective words on A is the chain complex

(KA, ∂A,·) having ith chain group KA,i := RA〈i+1〉
and whose ith boundary map

∂A,i : KA,i −→ KA,i−1

is a signed version of the map πA,i+1,i:

∂A,i(a0, a1, . . . , ai) :=

i∑
m=0

(−1)m(a0, . . . , âm, . . . , ai).

One can check that the complex (KA, ∂A,·) becomes a complex of R[SA ×Z2]-
modules only after we slightly twist our previously-defined Z2-action: one must
now have the non-identity element of Z2 send an injective word a of length � to

(−1)�
�
2 � · arev.

There is a very simple relation between the maps πA and ∂A,|A|−1, once one
identifies their source and targets with the group algebra RSA appropriately. Define

an R-linear map iA : RA〈|A|−1〉 −→ RSA that sends an injective word u of length
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|A| − 1 that is missing exactly one letter a from A to the permutation of the set
A which starts with the letter a and continues with the word u. The following
proposition is straightforward.

Proposition 4.2. The map iA : RA〈|A|−1〉 −→ RSA is an R-linear isomor-
phism that makes the following diagram commute:

RSA
πA ��

sgn

��

RA〈|A|−1〉 iA �� RSA

sgn

��
RSA

∂A,|A|−1 �� RA〈|A|−1〉 iA �� RSA

where RSn
sgn−→ RSn is the involutive map that scales the basis element correspond-

ing to a permutation w in SA by the sign of w.
In particular, as subspaces of RSA, the kernels of the two maps πA and ∂A,|A|−1

are sent to each other by the map sgn.

5. Pieri formulae for Sn and Sn × Z2

We quickly review here the Pieri rules from the representation theory of Sn and
Sn × Z2 that we will need, and introduce a more compact notation for induction
products of characters.

Recall that for a finite group G, the irreducible complex representations Irr(G)
are determined by their characters χ. Therefore, we will often speak of irreducible
characters when we speak of elements of Irr(G).

The irreducible characters Irr(Sn) are indexed χλ by partitions λ of n, with
χ(n) = 1 and χ(1n) = sgn. Since Z2 is abelian, its irreducible characters are both of
degree 1:

Irr(Z2) = {χ+ = 1, χ−}.
Therefore, the product group Sn × Z2 has irreducible characters

Irr(Sn × Z2) = {χλ,+ := χλ ⊗ χ+, χλ,− := χλ ⊗ χ− : λ a partition of n}.

Given this setup, the following is a corollary to Proposition VI.4.2. Recall that
λT denotes the conjugate partition of λ.

Corollary 5.1. For A = [n], as R[Sn × Z2]-modules, one has

kerπA
∼=
⊕
α

χλα,εα

if and only if

ker ∂A,|A|−1
∼=
⊕
α

χλT
α ,εα .

Proof. The map RSn
sgn−→ RSn has these effects:

• For the RSn-module structure, it tensors with the sgn-character, which
on irreducibles does the following:

χλ �→ sgn⊗χλ = χλT

.
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• For the RZ2-module structure it is equivariant, since the non-identity
element of Z2 acts by w �→ ww0, when we are thinking of RSn as the
domain of πA, but this non-identity element introduces an extra sign in
front when we are thinking of RSn as the domain of ∂A,|A|−1 within the
complex of injective words:

w � iA◦πA ��
�

sgn

��

ww0�

sgn
��

sgn(w) · w � iA◦∂A,|A|−1�� sgn(ww0) · ww0

= (−1)�
n
2 � sgn(w) · ww0

�

The Young subgroup embedding Sn1
× Sn2

↪→ Sn1+n2
leads to the usual

induction product of characters χi in Irr(Sni
), for i = 1, 2, defined by

χ1 ∗ χ2 := Ind
Sn1+n2

Sn1
×Sn2

χ1 ⊗ χ2.

The Pieri formulae give two important special cases of the the irreducible expansion
for the induction product of two Sn-irreducibles:

(34)

χμ ∗ χ(j) =
∑
λ:

λ/μ is a horizontal
strip of size j

χλ

χμ ∗ χ(1j) =
∑
λ:

λ/μ is a vertical
strip of size j

χλ

One can define an induction product of characters χi in Irr(Sni
×Z2) for i = 1, 2

by

χ1 ∗ χ2 := Res
Sn1+n2

×(Z2)
2

Sn1+n2
×Z2

Ind
Sn1+n2

×(Z2)
2

Sn1
×Z2×Sn2

×Z2
(χ1 ⊗ χ2) .

where the restriction map above comes from the diagonal embedding Z2 ↪→ (Z2)
2

that sends x �→ (x, x).

Proposition 5.2. For any partition μ and signs ε1, ε2 in {+,−}, one has

(35)

χμ,ε1 ∗ χ(j),ε2 =
∑
λ:

λ/μ is a horizontal
strip of size j

χλ,ε1ε2

χμ,ε1 ∗ χ(1j),ε2 =
∑
λ:

λ/μ is a vertical
strip of size j

χλ,ε1ε2

Proof. More generally, for any embedding of finite groups G1×G2 ↪→ G, and
an abelian group A, along with characters χi in Irr(Gi) for i = 1, 2, and characters
ε1, ε2 in Irr(A), we claim

ResG×A2

G×A IndG×A2

G1×A×G2×A (χ1 ⊗ ε1 ⊗ χ2 ⊗ ε2)

=
⊕

χ∈Irr(G)

〈
IndGG1×G2

χ1 ⊗ χ2, χ
〉
G

· χ⊗ ε1ε2.
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This comes, for example, using Frobenius reciprocity to calculate the inner product
with an irreducible χ⊗ ε in Irr(G×A):〈

ResG×A2

G×A IndG×A2

G1×A×G2×A (χ1 ⊗ ε1 ⊗ χ2 ⊗ ε2) , χ⊗ ε
〉
G×A

=
〈

χ1 ⊗ ε1 ⊗ χ2 ⊗ ε2 , ResG×A2

G1×A×G2×A IndG×A2

G×A χ⊗ ε
〉
G1×A×G2×A

=
〈
χ1 ⊗ χ2 , ResGG1×G2

χ
〉
G1×G2

·
〈
ε1 ⊗ ε2 , IndA

2

A ε
〉
A

=
〈
IndGG1×G2

χ1 ⊗ χ2 , χ
〉
G

·
〈
ResA

2

A ε1 ⊗ ε2 , ε
〉
A

=

{〈
IndGG1×G2

χ1 ⊗ χ2 , χ
〉
G

if ε = ε1ε2

0 otherwise.
�

6. Some derangement numerology

The nullity of either map πA or ∂A,|A|−1 turns out to be the number of de-
rangements (that is, permutations with no fixed points) in Sn. We review here
some easy, classical, enumerative results about derangements, along with a few
somewhat more recent results about even and odd derangements, relevant for the
R[Sn ×Z2]-module structures on the kernels; see also Chapman [18], Mantaci and
Rakotandrajao [45], Gordon and McMahon [32, §4].

Definition 6.1. For n ≥ 1, let dn, d
+
n , d

−
n denote, respectively, the total number

of derangements in Sn, the number whose sign is positive, and the number whose
sign is negative. (The table in Figure 2 lists the first few values.)

n dn d+n d−n

0 1 1 0
1 0 0 0
2 1 0 1
3 2 2 0
4 9 3 6
5 44 24 20
6 265 130 135

Figure 2. The first few values of dn, d
+
n and d−n : the total number of

derangements, even derangements and odd derangements in
Sn, respectively.

Proposition 6.2. The numbers dn, d
+
n , d

−
n satisfies the initial conditions

d0 = d+0 = 1, d−0 = 0

d1 = d+1 = d−1 = 0

as well as the following recurrences and identities:

dn =(n− 1)(dn−1 + dn−2) for n ≥ 2;(36a)

d+n =(n− 1)(d−n−1 + d−n−2) for n ≥ 2;(36b)
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d−n =(n− 1)(d+n−1 + d+n−2) for n ≥ 2;(36c)

dn =ndn−1 + (−1)n for n ≥ 1;(36d)

d+n − d−n =(−1)n−1(n− 1) for n ≥ 0;(36e)

dn =

(
n

2

)
2dn−2 + (−1)n(n− 1) for n ≥ 2;(36f)

n! =

n∑
j=0

(
n

j

)
dn−j ,(36g)

as
(
n
j

)
dn−j (resp.

(
n
j

)
d+n−j ,

(
n
j

)
d−n−j) counts the number of per-

mutations (resp. even, odd permutations) having exactly j fixed
points.

Proof. Recurrences 36a, 36b, 36c follow from the fact that given a derange-
ment w in Sn, erasing n from the cycle structure of w results in one of two possi-
bilities.

• A derangement ŵ in Sn−1 having opposite sign to w. From ŵ one can
uniquely recover w by specifying the value w(n) in [n− 1].

• A permutation in Sn−1 with exactly one fixed point. After removing this
fixed point w(n), one obtains a derangement ŵ in Sn−2 having opposite
sign to w. And again, from ŵ one can uniquely recover w by specifying
the value w(n) in [n− 1].

Recurrence 36d follows from 36a by induction on n. The base cases where
n = 0, 1 are easily checked. In the inductive step where n ≥ 2, recurrence 36a
implies

dn − ndn−1 = −(dn−1 − (n− 1)dn−2) = −(−1)n−1

where the second equality uses induction.
Recurrence 36e follows from 36b and 36c by induction on n. The base cases

where n = 0, 1 are easily checked. In the inductive step where n ≥ 2, recurrences
36b and 36c imply

d+n − d−n = (n− 1)
(
(d−n−1 − d−n−2)− (d+n−1 − d+n−2)

)
= (n− 1)

(
(d+n−2 − d−n−2)− (d+n−1 − d−n−1)

)
= (n− 1)

(
(−1)n−3(n− 3)− (−1)n−2(n− 2)

)
= (n− 1)(−1)n−1

where the third equality uses induction.
Recurrence 36f is a rewriting of the first iterate of recurrence 36d:

dn = ndn−1 + (−1)n

= n
(
(n− 1)dn−2 + (−1)n−1

)
+ (−1)n

=

(
n

2

)
· 2dn−2 + (−1)n−1(n− 1)

The assertions in 36g all come from the fact that every permutation w in Sn

having j fixed points gives rise to a derangement ŵ on its set of n − j non-fixed
points; this ŵ has the same sign as w. �
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7. (Sn × Z2)-structure of the first kernel

We begin with a proposition showing that the kernel of the top boundary
map ∂[n],n−1 in the complex of injective words satisfies the representation-theoretic
analogues of the derangement number recurrences in 36d and 36f. For the RSn-
module structure, this was observed in [51, §2]; for the R[Sn×Z2]-module structure
it appears to be new.

Proposition 7.1. Considered as a virtual character of Sn,

(37) ker ∂[n],n−1 = ker ∂[n−1],n−2 ∗χ(1) + (−1)nχ(n).

Considered as a virtual character of Sn × Z2,

(38) ker ∂[n],n−1 = ker ∂[n−2],n−3 ∗
(
χ(2),− + χ(12),+

)
+ (−1)n−1χ(n−1,1),+.

Proof. (cf. Proof of [51, Propositions 2.1, 2.2]) The complex of injective words
(K[n], ∂[n],·) is known to be the augmented cellular chain complex corresponding
to a regular CW -complex of dimension n − 1, homotopy equivalent to a bouquet
of spheres of dimension n − 1; see Farmer [24], Björner and Wachs [13]. Conse-

quently, its homology H̃•(K[n]) is concentrated in dimension n − 1, and coincides
with ker ∂[n],n−1.

On the other hand, the Hopf trace formula (see [77, Theorem 2.3.9]) gives the
following identity of virtual characters for any finite group acting on K[n]:∑

i≥−1

(−1)iH̃i(K[n]) =
∑
i≥−1

(−1)iK[n],i.

From this we conclude that

(39) ker ∂[n],n−1 =
∑
i≥−1

(−1)n−i−1K[n],i.

Using this expression (39), the two recurrences in the proposition will follow after
deriving recurrences for Sn and Sn × Z2-structures on the chain groups K[n],i.

The recurrence as characters of Sn takes the form

K[n],i =

{
χ(n) if i = −1

K[n−1],i−1 ∗ χ(1) if i ≥ 0.

This is because as RSn-modules one has the general description

K[n],i = R[n]〈i+1〉

∼= χ(n−i−1) ∗ χ(1) ∗ · · · ∗ χ(1)︸ ︷︷ ︸
i+1 factors

.

The recurrence as characters of Sn × Z2 takes the form

K[n],i =

⎧⎪⎪⎨⎪⎪⎩
χ(n),+ if i = −1

χ(n−1),+ ∗ χ(1),+ if i = 0

K[n−2],i−2 ∗
(
χ(2),− + χ(12),+

)
if i ≥ 1.

To understand this, note that the Z2-action reversing the positions in injective
words of length i+ 1 decomposes according to the cycle structure of the reversing
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permutation w0 in Si+1. This allows one to describe the chain groups via the
induction product as follows: as R[Sn × Z2]-modules,

K[n],i = R[n]〈i+1〉

∼= χ(n−i−1),+ ∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
RS2 ∗ · · · ∗ RS2︸ ︷︷ ︸

i+1
2 factors

if i is odd,

RS2 ∗ · · · ∗ RS2︸ ︷︷ ︸
i
2 factors

∗RS1 if i is even.

Also note that
RS1

∼= χ(1),+

RS2
∼= χ(2),− + χ(12),+.

It only remains to explain the last term on the right in (38), arising from the
following computation:

(−1)n−1K[n],0 + (−1)nK[n],−1 = (−1)n−1
(
χ(n−1),+ ∗ χ(1),+ − χ(n),+

)
= (−1)n−1χ(n−1,1),+ �

Combining this with Corollary VI.5.1 immediately gives the following version
of the same recurrences, which are again analogues of the derangement recurrences
36d and 36f.

Corollary 7.2. Considered as a virtual character of Sn,

(40) kerπ[n] = kerπ[n−1] ∗ χ(1) + (−1)nχ(1n).

Considered as a virtual character of Sn × Z2,

(41) kerπ[n] = kerπ[n−2] ∗
(
χ(2),+ + χ(12),−

)
+ (−1)n−1χ(2,1n−2),+. �

Corollary 7.3. The kernels of the two maps π[n] and ∂[n],n−1 both have di-
mension dn, the number of derangements in Sn. Furthermore, both have the di-
mension of their Z2-isotypic components equal to d+n , d

−
n , the number of even, odd

derangements in Sn, respectively.

Proof. The first assertion follows upon comparison of the recurrence (37) with
36d.

For the second assertion, note that (38) implies that the dimensions d̂+n , d̂
−
n of

the Z2-isotypic components of the kernel of π[n] satisfy for n ≥ 2 the recurrences

d̂+n =

(
n

2

)
d̂−n−2 +

(
n

2

)
d̂+n−2 + (−1)n−1(n− 1)

d̂−n =

(
n

2

)
d̂+n−2 +

(
n

2

)
d̂−n−2.

Subtracting these gives for n ≥ 2,

d̂+n − d̂−n = (−1)n−1(n− 1) = d+n − d−n

where the last equality is 36e. One can directly verify that this holds also for
n = 0, 1. On the other hand, by the first assertion of the corollary, one has

d̂+n + d̂−n = dn = d+n + d−n

and hence one concludes that d̂εn = dεn for ε = +,−. �
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8. (Sn × Z2)-structure of the kernel filtration

We continue our study of the (Sn × Z2)-structure of the filtration factors Fn,j

in (28). The following proposition is a straightforward special case of 4, and will be
used in the proof of Lemma VI.8.3 and Theorem VI.8.5.

Proposition 8.1. For any finite set A and 0 ≤ i ≤ j ≤ k ≤ |A|, one has

πA,j,i ◦ πA,k,j =

(
k − i

j − i

)
πA,k,i.

We first use this proposition in the proof of a technical lemma.

Definition 8.2. Given a set A, let
(
A
j

)
denote the collection of all j-element

subsets J of A. Given J in
(
A
j

)
, define an R-bilinear concatenation product

RSJ × RSA\J −→ RSA

by sending (u, v) to u • v := (u1, . . . , uj , v1, . . . , vn−j); that is the permutation
sending i to ui if 1 ≤ i ≤ j and i to vi−j if j + 1 ≤ i ≤ n.

Lemma 8.3. For any J in
(
[n]
j

)
,

kerπ[n]\J ⊂ im
(
π[n],n,n−j

)
.

Proof. Let u, v be permutations in SJ ,S[n]\J , respectively. Then their con-
catenation product u • v in RSn has the following image under π[n],n,n−j :

π[n],n,n−j(u • v) =
∑

subwords û,v̂ of u,v:
�(u)+�(v)=n−j

û • v̂

=
∑

subwords û of u

û • π[n],n,n−j−�(û)(v).

Now assume x lies in kerπ[n]\J . Since π[n]\J :=π[n]\J,n−j,n−j−1, Proposition VI.8.1
shows that x also lies in kerπ[n],n,n−j−� for every � ≥ 1. Therefore,

π[n],n,n−j(u • x) =
∑

subwords û of u

û • π[n],n,n−j−�(û)(x) = x

as only the empty subword û = ∅ can contribute in the sum above. Thus x lies in
imπ[n],n,n−j . �

We will also need one simple general linear algebra fact.

Proposition 8.4. Given any linear maps A
f−→ B

g−→ C, the map f induces
an isomorphism

A/ ker(f) ∼= im(f)

which restricts to an isomorphism

ker(g ◦ f)/ ker(f) ∼= f(ker(g ◦ f)) = im(f) ∩ ker(g). �

Theorem 8.5. For each j = 0, 1, . . . , n, the map

π[n],n,n−j : RSn −→ R[n]〈n−j〉
=

⊕
J∈([n]

j )

RS[n]\J
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induces an R[Sn × Z2]-module isomorphism

(42) Fn,j
∼−→

⊕
J∈([n]

j )

ker(π[n]\J) ∼= kerπ[n−j] ∗ χ(j),+.

Proof. Since π[n],n,n−j is a map of R[Sn ×Z2]-modules, one needs only show
it is an R-linear isomorphism. We prove this by a dimension-counting argument,
beginning with a chain of equalities and inequalities justified below:

n!
(1)
=

n∑
j=0

(
n

j

)
dn−j

(2)
=

n∑
j=0

∑
J∈([n]

j )

dimR ker(π[n]\J)

(3)

≤
n∑

j=0

dimR im(π[n],n,n−j) ∩ ker(π[n],n,n−j)

(4)
=

n∑
j=0

dimR ker(π[n],n−j,n−j−1 ◦ π[n],n,n−j)/ ker(π[n],n,n−j)

(5)
=

n∑
j=0

dimR ker(π[n],n,n−j−1)/ ker(π[n],n,n−j)︸ ︷︷ ︸
Fn,j:=

(6)
= n!.

Equality (1) is 36g. Equality (2) comes from Corollary VI.7.3. Inequality (3)
comes from the inclusion

(43)
⊕

J∈(nj)

ker(π[n]\J) ⊆ im(π[n],n,n−j) ∩ ker(π[n],n,n−j)

implied by Lemma VI.8.3. Equality (4) comes from Proposition VI.8.4 applied to
the composition

RSn

f :=π[n],n,n−j−−−−−−−−−→
⊕

J∈([n]
j )

RS[n]\J
g:=π[n],n−j,n−j−1−−−−−−−−−−−−→

⊕
K∈( [n]

j−1)

RS[n]\K .

Equality (5) comes from Proposition VI.8.1. Equality (6) comes from telescoping
the dimensions of the factors Fn,j in the filtration 28 of RSn.

One concludes that the inequality (3) is actually an equality. Hence the set
inclusion 43 must actually be an equality of sets. Since Equality (4) was mediated
by the map f := π[n],n,n−j , the desired conclusion follows. �

Combining Theorem VI.8.5 with Corollary VI.7.3 and 36g immediately implies
the following.

Corollary 8.6. The factor Fn,j in the filtration (28) has dimension equal to
the number

(
n
j

)
dn−j of permutations with exactly j fixed points. Furthermore, its

Z2-isotypic components have dimensions
(
n
j

)
d+n−j ,

(
n
j

)
d−n−j equal to the number of

even, odd permutations with exactly j fixed points.
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9. Desarrangements and the random-to-top eigenvalue of a tableaux

There is a well-known RSn-module decomposition of the group algebra

RSn
∼=
⊕
Q

χshape(Q)

where Q runs over all standard Young tableaux of size n. The next two sections
refine this in two ways. The current section first reviews Désarménien and Wachs
[22] notion of desarrangements, as well as some of the unpublished work [50]. In
particular, it is shown how to assign to each tableau Q an integer eig(Q) such that Q
contributes the Sn-irreducible χshape(Q) to the kernel filtration factor Fn,eig(Q). In
the next section, we refine this further to give the R[Sn ×Z2]-structure, defining a
sign ε(Q) such that Q contributes the Sn×Z2-irreducible χ

shape(Q),ε(Q) to Fn,eig(Q).
We begin by recalling some well-known definitions about ascents/descents in

permutations and tableaux.

Definition 9.1. For a permutation w in Sn, say that i in {1, 2, . . . , n− 1} is
an ascent (resp. descent) of w if w(i) < w(i + 1) (resp. w(i) > w(i + 1)). We will
furthermore decree that n is always an ascent of any w in Sn.

For a standard Young tableau Q of size n, say that i in {1, 2, . . . , n− 1} is an
ascent (resp. descent) of Q if i + 1 appears weakly to the north and east (resp.
south) of i, using English notation for tableaux. Again we decree that n is always
an ascent of Q for any Q of size n.

Let SYTn denote the set of all standard Young tableaux of size n, and say that
such a tableau Q has size(Q) := n.

Recall that the Robinson-Schensted algorithm is a bijection

Sn −→ {(P,Q) ∈ SYT2
n : shape(P ) = shape(Q)}.

This algorithm has many wonderful properties, and relations to Schützenberger’s
jeu-de-taquin. We refer the reader to Sagan’s book [54, Chapter 3] for background
on some of these. For a w ∈ Sn we denote by P (w) and Q(w) the standard
Young tableaux such that under the Robinson-Schensted algorithm we have w �→
(P (w), Q(w)). Among the wonderful properties mentioned above is the fact that
when w �→ (P (w), Q(w)), then w shares the same set of ascents and descents as
Q(w).

Proposition 9.2. For Q in SYTn (resp. w in Sn), there exists a unique value
j lying in {0, 1, 2, . . . , n− 2, n} such that

• 1, 2, . . . , j − 1 are ascents in Q, and
• if Q has at least one descent then the first ascent among j+1, j+2, . . . , n
in Q occurs at a value j + k with k even.

The value of k is unique provided that Q has at least one descent.

We denote these unique values by eig(Q) := j and k(Q) := k; and we set
k(Q) := 0 if Q has no descents.

Proof. We give the proof in the case of tableaux; the case for permutations
is similar, and also follows from the property of the Robinson-Schensted algorithm
mentioned above.

If Q is empty, so that n = 0, then one is forced to take (j, k) = (0, 0).
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If Q is non-empty then it contains a unique maximal subtableaux of the form

1 2 · · · �−1 �

�+1

�+2

...

�+m

for which �+m is an ascent. Here � ≥ 1 and one allows the possibility that m = 0
or that �+m = n, the size of Q. Then one is forced to choose

(j, k) =

{
(�,m) if m is even,

(�− 1,m+ 1) if m is odd.
�

Definition 9.3. Say w is a desarrangement if eig(w) = 0.
Say Q is a desarrangement tableau if eig(Q) = 0.

We will use the notion of jeu-de-taquin slides on skew tableaux; again see [54,
Chapter 3]. Given a standard Young tableau Q, its (Schützenberger) demotion will
be the tableau demote(Q) obtained by replacing the entry 1 in its northwest corner
with a jeu-de-taquin hole, doing jeu-de-taquin to slide the hole out, and subtracting
1 from all of the entries in the resulting tableau.

Proposition 9.4. For 1 ≤ j ≤ n− 1 the map Q �−→ (demotej(Q), shape(Q))
gives a bijection

{Q ∈ SYTn : eig(Q) = j} −→ {(Q̂, μ)}
in which on the right side, Q̂ is a desarrangement tableaux of size n− j, and μ is
a partition of n, such that the skew shape μ/ shape(Q) is a horizontal j-strip.

Proof. We describe the inverse map. Start with (Q̂, μ) and do outward jeu-

de-taquin slides on Q̂ into the cells of μ/ shape(Q), from left-to-right. Then add j
to all of the entries in the result. Properties of jeu-de-taquin [54, Exercise 3.12.6]
imply that the sliding will have created j empty cells in the first row, which one now
fills with the values 1, 2, . . . , j. The resulting tableau Q will have eig(Q) = j. �

The assertion of the next theorem appears for j = 0 in [51, Proposition 2.3],
and for j > 0 in the unpublished work [50].

Theorem 9.5. As RSn-modules, the jth filtration factor Fn,j from (28) has
irreducible decomposition ⊕

Q∈SYTn:eig(Q)=j

χshape(Q).

Proof. Temporarily denote by Un,j the direct sum appearing above. We first
prove it is isomorphic to Fn,j for j = 0, so thatQ runs over desarrangement tableaux
in the direct sum, by checking that Un,0 satisfies recurrence (40); cf. [51, proof of
Proposition 2.3].
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When n is even, we must show that

Un,0 = Un−1,0 ∗ χ(1) + χ(1n).

The usual Pieri formula 34 shows that the term Un−1,0 ∗ χ(1) on the right give
rises to all desarrangement tableau of size n which are obtained by adding one cell
labelled n from a desarrangement tableau of size n − 1. The only desarrangement
tableau of size n it will not produce is the desarrangement tableau

1

2

...

n−1

n

that appears on the left, accounted for by the term χ(1n) on the right.
When n is odd, we must show that

Un,0 + χ(1n) = Un−1,0 ∗ χ(1).

Again the term Un−1,0 ∗ χ(1) on the right give rises to all desarrangement tableaux
of size n which are obtained by adding one cell labelled n from a desarrangement
tableau of size n− 1. Because n is odd, this accounts for all of the terms in Un,0 on
the left. However, it also produces one extra non-desarrangement tableau, namely

1

2

...

n−1

n

accounted for by χ(1n) on the left.
For j ≥ 1, it suffices to check that Un,j satisfies the relation

Un,j = Un−j,0 ∗ χ(n−j)

which one knows is satisfied by Fn,j by forgetting the Z2-action in (42). This follows
from the Pieri formula 34 and Proposition VI.9.4. �

10. Shaving tableaux

The goal here is to define a sign ε(Q) = ±1 so that a standard Young tableau Q
having eig(Q) = j contributes the irreducible R[Sn × Z2]-module χshape(Q),ε(Q) to
the filtration factor Fn,j . The idea is to define the sign first for a very special class
of desarrangement tableaux, which will form the base case when extending the sign
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inductively to all desarrangement tableaux, and finally extend the sign using the
demotion operator to all tableaux.

Definition 10.1 (Shaven desarrangement tableaux). Define the following three
kinds of shaven desarrangement tableaux in Q in SYTn.

(1) When n = 0, define the empty tableau ∅ to be shaven.
(2) When n is even and at least 4, define the following desarrangement tableau

Q
(n)
− to be shaven:

Q
(n)
− :=

1 n−1

2

3

...

n−2

n

(3) When n is odd and at least 3, define the following desarrangement tableau

Q
(n)
+ to be shaven:

Q
(n)
+ :=

1 n

2

3

...

n−2

n−1

Call any other desarrangement tableau not in one of these three special forms

∅, Q
(n)
+ , Q

(n)
− an unshaven desarrangement tableau.

Unshaven desarrangements can be “shaved” down to shaven desarrangements
due to the following proposition.

Proposition 10.2. Any unshaven desarrangement tableau Q has size at least
2, and the tableau Q̂ obtained from Q by removing the largest two entries {n−1, n}
is again a desarrangement tableau.

Proof. An unshaven desarrangement tableau Q in SYTn must be non-empty,
so that n ≥ 1. Since there are no desarrangements of size 1, one must have n ≥ 2.
If the tableau Q̂ obtained by removing its two largest entries {n − 1, n} is not a
desarrangement tableau, then n − 1 must be the first ascent of Q, and be even.
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This forces Q to be the shaven desarrangement tableau Q
(n)
+ for some odd n ≥ 3,

a contradiction. �
Definition 10.3. Define the sign ε(Q) for Q in SYTn inductively as follows.

• In the base case, Q is one of the three kinds of shaven desarrangement
tableaux from Definition VI.10.1, for which we decree

ε(Q) :=

⎧⎪⎨⎪⎩
+1 if Q = ∅

+1 if Q = Q
(n)
+

−1 if Q = Q
(n)
−

• If Q is an unshaven desarrangement tableaux, let Q̂ be the tableau ob-
tained from Q by removing the largest two entries {n − 1, n} (so that

Q̂ is again a desarrangement tableau by Proposition VI.10.2) and define
inductively

ε(Q) :=

{
+ε(Q̂) if {n− 1, n} form an ascent in Q

−ε(Q̂) if {n− 1, n} form a descent in Q

• If Q is not a desarrangement tableaux, so j := eig(Q) > 0, define induc-
tively

ε(Q) := ε(demotej(Q)).

Example 10.4. We compute the sign ε(Q) for this tableau Q in SYT15: One
can check that j := eig(Q) = 3, so Q has the same sign as the desarrangement
tableaux obtained by applying the demotion operator 3 times From this unshaven
desarrangement tableau demotej(Q), one can

first “shave” the descent pair {11, 12},
then the descent pair {9, 10},
then the ascent pair {7, 8},

leaving as a result the shaven desarrangement tableau Since there were two descent
pairs shaved, the original tableau Q has sign

ε(Q) = (−1)2 · ε
(
Q

(6)
−

)
= −1.

Theorem 10.5. As an R[Sn × Z2]-module the jth filtration factor Fn,j from
(28) has irreducible decomposition⊕

Q∈SYTn:
eig(Q)=j

χshape(Q),ε(Q).

Proof. We follow roughly the same plan as in the proof of Theorem VI.9.5.
Temporarily denote by Un,j the direct sum in the theorem. Assume for the moment
that we have shown Fn,0 is isomorphic to Un,0. Then for j > 0, it suffices to check

that Un,j satisfies the relation Un,j = Un−j,0 ∗χ(j) from (42). This follows from the
Z2-Pieri formula (35) and the fact that demotion respects signs.

Thus it only remains to show Un,0
∼= Fn,0 for j = 0. In other words, we wish

to show that the sum of χshape(Q),ε(Q) over all desarrangement tableaux Q satisfies
the recurrence (41).

When n is odd and at least 3, we must show that

Un,0 = Un−2,0 ∗
(
χ(2),+ + χ(12),−

)
+ χ(2,1n−2),+.
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This follows because most of the desarrangements Q in SYTn which appear on the
left are unshaven, with {n−1, n} forming either an ascent or descent. The Z2-Pieri
formula (35) shows that these terms are counted with appropriate sign ε(Q) by a

term of Un−2,0 ∗ χ(2),+ or Un−2,0 ∗ χ(12),− on the right. The only term on the left

which is shaven is Q
(n)
+ , and is accounted for by the extra summand χ(2,1n−2),+ on

the right.
When n is even, we must show that

Un,0 + χ(2,1n−2),+ = Un−2,0 ∗
(
χ(2),+ + χ(12),−

)
This again follows because most of the desarrangements Q in SYTn which appear on
the left are unshaven, with {n− 1, n} forming either an ascent or descent, in which
case the Z2-Pieri formula (35) shows that they are counted with appropriate sign

ε(Q) by a term of Un−2,0 ∗χ(2),+ or Un−2,0 ∗χ(12),− on the right. But there are two

other terms χ(2,1n−2),+ +χ(2,1n−2),− on the right, which will be generated from the
term inside Un−2,0 for the desarrangement tableaux having a single column of length

n−2. Correspondingly on the left, there are two other terms χ(2,1n−2),−+χ(2,1n−2),+,

the first coming from the unique shaven desarrangement of size n, namely Q
(n)
− , and

the second coming from the extra summand on the left. �

11. Fixing a small value of k and letting n grow.

With the help of Sage [68] we computed the decomposition of the Sn-modules
afforded by the eigenspaces of the operators ν(k,1n−k). We present this data in
Figure 4 through Figure 6, as follows:

• to enhance the presentation, every zero has been replaced by a dot;
• each row of the table corresponds to a subspace E in a decomposition of
RSn into Sn-modules,

• the horizontal lines partition the rows into blocks of rows whose corre-
sponding subspaces E contribute to Fn,j for a fixed j, for j = n, . . . , 1
reading from top to bottom,

• the entry in the column indexed by ν(k,1n−k) is the eigenvalue of ν(k,1n−k)

on E;
• the entry in the column indexed by w0 is the eigenvalue for the Z2-action
on E;

• for n ≤ 5, the entry in the column indexed by the Sn-irreducible χλ is
the tableau from Theorem VI.10.5 that contributes χλ to the Sn-module
afforded by E, whereas for n > 5 the corresponding entry is just the
multiplicity of χλ in E.

For n ≤ 5 the quantities eig(Q), ε(Q) and shape(Q) determine the placements of
the tableaux in the tables, with the exception of the two tableaux marked by † in
Figure 5 (they share the same eig- and ε-statistic). For n > 5 there is much more
ambiguity.

We now highlight some patterns that jump out from this data.

For a fixed value of k, as n grows large, most of RSn will be swallowed up in
the 0-eigenspace (kernel) of ν(k,1n−k) according to Example IV.6.3. For example, it
shows that the non-zero eigenspaces im ν(k,1n−k) comprise a representation of the
form ψ ∗ 1n−k for some Sk-representation ψ. Hence the Pieri formula shows that



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

86 VI. THE ORIGINAL FAMILY ν
(k,1n−k)

Sn-module Vn,j Sn-irreducibles χλ eigenvalue of ν(k,1n−k) on χλ

ν(1n) ν(2,1n−2) ν(3,1n−3)

Vn,n χ(n)
(
n
1

)
(n− 1)!

(
n
2

)
(n− 2)!

(
n
3

)
(n− 3)!

Vn,n−2

χ(n−1,1) 0 (n+1)!
3!

(n+1)!
4!

χ(n−2,1,1) 0 n!
3!

(
n
2

) (n−1)!
3!

Vn,n−3

χ(n−1,1) 0 0 (n+2)!
5!

χ(n−2,2) 0 0 (n+1)!
30

χ(n−2,1,1) 0 0 (n+1)!
60

χ(n−3,2,1) 0 0 n!
15

Figure 3. (Conjectural) decomposition of the non-zero eigenspaces of
ν(1n), ν(2,1n−2) and ν(3,1n−3) into irreducible RSn-modules
together with their eigenvalues; c.f. Conjecture VI.11.1.

any irreducible χλ that occurs within it must have n−λ1 ≤ 2k, that is, most of its
cells will live in the first part λ1 when n grows large.

For k=1, 2, 3, one can certainly easily write down exactly whichSn-irreducibles
occur outside the kernel of ν(k,1n−k), segregated by the subspaces Vn,j from 29 in
which they will occur. However, even for k = 2, 3 it is already not immediately
obvious how they will segregate further into simultaneous eigenspaces, nor is it
obvious what will be their corresponding eigenvalues as a function of n. The data
suggests the following conjectural table summarizing the story for k = 1, 2, 3. It is
correct for k = 1, and probably not so hard to prove for k = 2, 3 by brute force (i.e.
write down the eigenvectors explicitly), but we have not tried.

Conjecture 11.1. For ν(1n), ν(2,1n−2) and ν(3,1n−3), all of the non-zero eigen-
spaces can be simultaneously described by subspaces carrying irreducible RSn-modules
described in the second column of Figure 3, and having eigenvalues as shown in the
remaining columns.

The form of the eigenvalues in this last table suggests the following somewhat
vague stability conjecture, in the spirit of the representation stability recently dis-
cussed by Church and Farb [19].

Conjecture 11.2. There exists an infinite sequence of partitions λ1, λ2, . . . and
positive integers j10 , j

2
0 , . . . with the following property. For each positive integer n,

there exist a positive integer τ (n) and subspaces E
(n)
1 , E

(n)
2 , . . .E

(n)
τ(n) ⊆ RSn such

that

• E
(n)
i carries the Sn-irreducible indexed by the partition

λi +
(
n− |λi|, 0, 0, . . . , 0

)
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• E
(n)
i is a simultaneous eigenspace for the operators ν(1n), ν(2,1n−2), . . . ,

ν(n−1,1) with eigenvalue for ν(j,1n−j) described by{
0 if 1 ≤ j < ji0
f(E

(n)
i , j) �= 0 if ji0 ≤ j ≤ n

where f(E
(n)
i , j) are functions for which

f(E
(n)
i , j)

f(E
(n−1)
i , j)

is a rational function of n of total degree 1

•
(⊕τ(n)

i=1 E
(n)
i

)⊥
⊆ RSn lies in the common kernel of ν(1n), ν(2,1n−2), . . . ,

ν(n−1,1).

12. The representation χ(n−1,1)

We next focus on the χ(n−1,1)-isotypic component for the eigenspaces of ν(k,1n−k),
reasoning using our block-diagonalization 29. This allows us to piggyback on com-
putations of Uyemura-Reyes for the case k = n− 1.

Proposition 12.1. For j = 0, 1, 2, . . . , n−2, the χ(n−1,1)-isotypic component of

RSn intersects the summand Vn,j in 29 in a single copy V
(n−1,1)
n,j of the irreducible

χ(n−1,1).

Consequently, each such intersection V
(n−1,1)
n,j for j = 0, 1, 2, . . . , n − 2 lies

within a single eigenspace for any operator ν(k,1n−k), and carries an integer eigen-
value for any of these operators.

Proof. There are exactly n−1 standard Young tableaux Q of shape (n−1, 1),
determined completely by their unique entry m in {2, 3, . . . , n} lying in the second
row of the tableau. One can check that such a Q has j := eig(Q) = m−2, and hence
this accounts for exactly one copy of χ(n−1,1) within Vn,j for each j = 0, 1, 2, . . . , n−
2, proving the first assertion.

For the second assertion, note that this multiplicity-freeness allows one to apply

Proposition I.3.1 to each of the subspaces U = V
(n−1,1)
n,j . �

Uyemura-Reyes provided a complete set of χ(n−1,1)-isotypic eigenspaces for
ν(n−1,1) using evaluations of discrete Chebyshev polynomials, and computed their
eigenvalues for ν(n−1,1) explicitly using the Fourier transform which also yields
an alternative proof of the reduction in §II.7 [76, §5.2.1]. Because these eigenvalues
turned out to all be distinct, this implies that the entire family of operators ν(k,1n−k),

for k = 1, 2, . . . , n− 1, when restricted to the χ(n−1,1)-isotypic component of RSn,
become polynomials in the single operator ν(n−1,1). Hence they all share these same

χ(n−1,1)-isotypic eigenspaces which he constructed.
The following conjecture about their common eigenvalues on these spaces is

consistent with Uyemura-Reyes’s eigenvalue calculation for k = n−1, and with our
data up through n = 9, but we have not tried to prove it.
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ν(12) w0 χ2 χ11

2 1 1 2 ·

· −1 ·
1

2

ν(13) ν(2,1) w0 χ3 χ21 χ111

6 9 1 1 2 3 · ·

· 4 −1 ·
1 2

3
·

· 1 −1 · ·

1

2

3

· · 1 ·
1 3

2
·

ν(14) ν(2,12) ν(3,1) w0 χ4 χ31 χ211 χ22 χ1111

24 72 16 1 1 2 3 4 · · · ·

· 20 10 −1 ·
1 2 3

4
· · ·

· 4 6 −1 · ·
1 2

3

4

· ·

· · 6 1 ·
1 2 4

3
· · ·

· · 4 1 · · ·
1 2

3 4
·

· · 2 1 · ·
1 4

2

3

· ·

· · · 1 · · ·
1 3

2 4

1

2

3

4

· · · −1 ·
1 3 4

2

1 3

2

4

· ·

Figure 4. Sn-module decomposition, for 2 ≤ n ≤ 4, of the eigenspaces
of ν(k,1n−k).
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Conjecture 12.2. The eigenvalues of ν(k,1n−k) on the χ(n−1,1)-isotypic com-
ponent of RSn are

(n− k)!

(
n− r − 1

k − r − 1

)(
n+ r

k + r

)
for r = 1, 2, . . . , n− 1.
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ν(15) ν(2,13) ν(3,12) ν(4,1) w0 χ5 χ41 χ311 χ32 χ2111 χ221 χ11111

120 600 200 25 1 1 2 3 4 5 · · · · · ·

· 120 90 18 −1 ·
1 2 3 4

5
· · · · ·

· 20 40 13 −1 · ·
1 2 3

4

5

· · · ·

· · 42 14 1 ·
1 2 3 5

4
· · · · ·

· · 24 11 1 · · ·
1 2 3

4 5
· · ·

· · 12 9 1 · ·
1 2 5

3

4

· · · ·

· · 8 7 1 · · · · ·
1 2

3 5

4

·

· · · 7 1 · · ·
1 2 4

3 5
· · ·

· · · 6 1 · · · ·

1 2

3

4

5

· ·

· · · 3 1 · · · · ·
1 4

2 5

3

·

· · · 1 1 · · · · · ·

1

2

3

4

5

· · · 8 −1 ·
1 2 4 5

3
· · · · ·

· · · 7 −1 · ·
1 4 5

2

3

†

· · · ·

· · · 5 −1 · · ·
1 2 5

3 4
·

1 2

3 4

5

·

· · · 3 −1 · ·
1 2 4

3

5

†

· · · ·

· · · 2 −1 · · · ·

1 4

2

3

5

· ·

· · · · 1 ·
1 3 4 5

2

1 3 5

2

4

1 3 5

2 4

1 5

2

3

4

1 3

2 5

4

·

· · · · −1 · ·
1 3 4

2

5

1 3 4

2 5

1 3

2

4

5

1 3

2 4

5

·

Figure 5. The S5-module decomposition for the operators ν(k,1n−k).
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APPENDIX A

Sn-module decomposition of ν(k,1n−k)

We include here the Sn-module decomposition of the simultaneous eigenspaces
for the operators ν(1n), ν(2,1n−2), . . . ν(n−1,1) for 6 ≤ n ≤ 8. See §VI.10 for an
explanation of the presentation of this data; and Figure 4 and Figure 5 for the
decomposition for 2 ≤ n ≤ 5.

ν(16) ν(2,14) ν(3,13) ν(4,12) ν(5,1) w0 χ6 χ51 χ411 χ42 χ3111 χ321 χ21111 χ33 χ2211 χ222 χ111111

4320 5400 2400 450 36 1 1 · · · · · · · · · ·
· 840 840 252 28 -1 · 1 · · · · · · · · ·
· 120 300 144 22 -1 · · 1 · · · · · · · ·
· · 336 168 24 1 · 1 · · · · · · · · ·
· · 168 112 20 1 · · · 1 · · · · · · ·
· · 84 84 18 1 · · 1 · · · · · · · ·
· · 48 57 15 1 · · · · · 1 · · · · ·
· · · 56 16 1 · · · 1 · · · · · · ·
· · · 42 14 1 · · · · 1 · · · · · ·
· · · 21 11 1 · · · · · 1 · · · · ·
· · · 12 8 1 · · · · · · · · · 1 ·
· · · 6 8 1 · · · · · · 1 · · · ·
· · · 72 18 -1 · 1 · · · · · · · · ·
· · · 56 16 -1 · · 1 · · · · · · · ·
· · · 40 14 -1 · · · 1 · · · · · · ·
· · · 35 13 -1 · · · · · 1 · · · · ·
· · · 30 12 -1 · · · · · · · 1 · · ·
· · · 24 12 -1 · · 1 · · · · · · · ·
· · · 15 9 -1 · · · · · 1 · · · · ·
· · · 14 10 -1 · · · · 1 · · · · · ·
· · · 10 8 -1 · · · · · · · · 1 · ·
· · · · 10 1 · 1 · · · · · · · · ·
· · · · 9 1 · · 1 1 · · · · · · ·
· · · · 8 1 · · · · 1 1 · · · · ·
· · · · 7 1 · · · · · · · 1 · · ·
· · · · 6 1 · · · 1 · 1 · · 1 · ·
· · · · 5 1 · · · · · · · · · 1 ·
· · · · 4 1 · · 1 · · 1 · · · · ·
· · · · 3 1 · · · · 1 · · · 1 · ·
· · · · 2 1 · · · · · · 1 · · · ·
· · · · 9 -1 · · 1 1 · · · · · · ·
· · · · 8 -1 · · · · 1 1 · · · · ·
· · · · 7 -1 · · · · · · · 1 · · ·
· · · · 6 -1 · · · · · 1 · · 1 · ·
· · · · 5 -1 · · · · · · · · · 1 ·
· · · · 4 -1 · · · · · 1 · · · · ·
· · · · 3 -1 · · · · 1 · · · 1 · ·
· · · · 2 -1 · · · · · · 1 · · · ·
· · · · · 1 · · 1 2 3 3 1 · 1 2 ·
· · · · · -1 · 1 2 1 1 3 1 2 3 · 1

Figure 1. The S6-module decomposition for the operators ν(k,1n−k).
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Algebra
ei unit basis vector indexed by i, page 27
(KF)W algebra of W -invariants of KF , page 38
(G,U, χ) twisted Gelfand pair (or triple), page 23
(W,S) Coxeter system, page 20
C complex numbers, page 3
ZW (w) centralizer of the element w in the group W , page 4
ZW (X) pointwise stabilizer subgroup withinW of the subspaceX, page 12
χ character of a group, page 3
χ+ trivial character of Z2, page 48
χ− non-trivial character of Z2, page 48
χλ irreducible character of the symmetric group corresponding to

the number partition λ, page 32
Fixw(M) set of elements in M fixed by the action of w, page 54
Γ(KW ) Grothendieck group of all virtual KW -modules, page 44
1 identity element of a group, page 4
eχ idempotent for character χ in CW , page 16

IndGH induction of a representation from the subgroup H to the group
G, page 4

Irr(G) irreducible representations ofG over the complex numbers, page 72
KW group algebra of W over K, page 2
K generic field, page 2
λO(χ) eigenvalue Idempotent for character χ in QW , page 16
Lie(V ) free Lie algebra over V , page 56
IV matrix of the identity endomorphism of V , page 10
NW (X) stabilizer subgroup (not necessarily pointwise) within W of the

subspace X, page 12
o ring of integers within a fixed number field K, page 3
Φ root system, page 27
ΦO roots corresponding to hyperplanes in O, page 27
ΦO,± positive/negative roots in ΦO, page 28
Φ± positive/negative roots in root system Φ, page 27
Q rational numbers, page 3
RW group algebra of W over R, page 2
R real numbers, page 2
sgn sign character of symmetric group, page 17
StabW (m) stabilizer of m ∈ M within the group W acting on M , page 44
Symm(U) mth graded component of symmetric algebra over vectorspace

U , page 56
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SB symmetric group of all permutations of the set B, page 13
Sn symmetric group on n n letters, page 1
1 trivial character, page 16
ZW group algebra of W over the integers Z, page 2
M/W set of W -orbits of W acting on M , page 44
mW orbit of the element m ∈ M under the group W acting on M ,

page 44
nX [NW (X) : ZW (X)], page 13
RX

∑
u∈WX u ∈ CW , page 13

T (V ) tensor algebra of V , page 56
Uχ χ-isotypic component of W -module U , page 3
Uλ λ-eigenspace of R[T ]-module U , page 46
W J Minimal length right coset representatives for the parabolic sub-

group WJ , page 13
JW Minimal length right coset representatives for the parabolic sub-

group WJ , page 13
XR

∑
u∈XW u ∈ CW , page 13

XW set of right coset representative for ZW (X) in W , page 13

Combinatorics
(X,Y ) open interval between X and Y in a poset, page 44
[n] =

⊔
i Bi set partition of [n] with blocks Bi, page 8

[n] set {1, . . . , n} of the first n natural numbers, page 8
[X,Y ] closed interval between X and Y in a poset, page 7
Δn n-dimensional standard simplex, page 34
Des(w) descent set of w, page 56
eig(Q) index of filtration component to which Q contributes its irre-

ducible, page 80
Lλ(t) characteristic of L(V )λ, page 55

0̂ Bottom element of a poset, page 44
1̂ Top element of a poset, page 45
invO(c, c

′) number of subspace X in O for which c/X = −c′/X, page 10
ιO matrix in ZC×C whose (c, c′)-entry equals invO(c, c

′), page 10
λ � n number partition λ of n, page 9
λT conjugate partition of number partition λ, page 72
LinO analog of the linear ordering polytope for O ⊆ L, page 34
maj(Q) major index of the standard Young tableau Q, page 70
noninvO(c, c

′) number of X ∈ O for which c/X = c′/X, page 7
noninvO(w) number of subspaces in O for which the chambers indexed by 1

and w lie on the same side, page 4
noninvk(w) k-noninversion number of w, page 1
νO matrix in ZC×C whose (c, c′)-entry equals noninvO(c, c

′), page 7
ν(k,1n−k) matrix of k-noninversion numbers, page 1
Oλ set partitions of type λ, page 10
πO rectangular “square root” of νO, page 9
π(2k,1n−2k) πO

(2k,1n−2k)
, page 59

C̃

i
(•;K) ith reduced cochain group with coefficients in K, page 45

H̃

i
(•;K) ith reduced cohomology group with K coefficients, page 44
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shape(Q) shape of the standard Young tableau Q, page 70
SYTn set of standard Young tableaux of size n, page 80
A〈i〉 set of injective words of length i over A, page 71
arev word a reversed, page 71
FD fundamental quasisymmetric function, page 56
hm mth homogeneous symmetric function, page 55
BHR Bidigare, Hanlon and Rockmore, page 2

Hyperplane Arrangements
A arrangement of hyperplanes, page 4
A/X localized arrangements of all H/X for H ∈ A, page 7
∠{α, β} angular measure in radians of the sector H+

α ∩H+
β , page 28

∠{H,H ′} dihedral angle between H and H ′, page 29
C(A) chambers of the arrangement A of hyperplanes, page 4
�(x) length of x ∈ F�, page 41
F faces of an arrangement A, page 37
0̂ unique minimal element of poset, page 7
1̂ unique maximal element of a poset, page 7
KF left-ideal generated by C within KF , page 37
KF semigroupalgebra of F with coefficients in K, page 37
L(A) intersection lattice of the arrangement A of hyperplanes, page 4
μ(·, ·) Möbius function, page 44
O set of intersection subspaces of an arrangement. Often orbit or

union or orbits under group action., page 4
OX orbit of subspace X ∈ L under group W , page 51
OS(A) Orlik-Solomon of A, page 53
x̃ reduced subword of x, page 41
supp(x) support of x ∈ F , page 41
WH

∗(P ;R) Whitney cohomology of a poset P with real coefficients, page 51

WHOX
IndWNW (X) H̃

∗
((V,X);R)⊗ det V/X , page 51

ZC free Z-module with basis C, page 7
c/X chamber in the localized arrangement A/X corresponding to

the chamber c, page 7
c1 chamber indexed by neutral element 1 of group, page 4
Hα hyperplane orthogonal to the vector α, page 27
H+

α halfspace cut out hyperplane Hα containing α, page 28
r(x) rank function on geometric lattice, page 7
x ◦ y x pulled by y, page 37
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0/1-polytope, 34

k-noninversion number, 1

absolutely irreducible module, 3

algebra

K-, 40

cohomology, 53

commutant, 23

commutative, 23

descent, 50, 51

Eulerian sub-, 50

exterior, 53

free, 56

free Lie, 5

group, 2

Hecke, 23

invariant, 38

Lie, 56

Orlik-Solomon, 53

symmetric, 56

tensor, 56

twisted Hecke, 23

alphabet, 71

angle, 28, 29

dihedral, 29

arrangement

central, 7, 37

complexification, 53

complexified complement, 53

essential, 7

hyperplanes, 4

intersection lattice, 4

localized, 7, 43

reflecting hyperplane, 11

restriction, 43

subspace, 48

ascent

permutation, 80

standard Young tableau, 80

base chamber, 11

BHR operator, 38

bimodule, 15, 38

bottom element, 44

central hyperplane arrangement, 7, 37, 48

chamber, 4, 7

base, 11

fundamental, 11
identity, 4, 11

character, 16

irreducible, 3

Lie, 5

characteristic map, 54

cochain group, 45
Cohen-Macaulay poset, 45

cohomology

algebra, 53

group, 44

Whitney, 51
commutant algebra, 23

commutative algebra, 23

complement of an arrangement, 7

complex of injective words, 6, 70, 71

complexification of an arrangement, 53
complexified complement, 53

conjugate partition, 72

Coxeter

diagram, 20

generators, 38
presentation, 20

system, 20

Coxeter system, 13

decomposition-shuffle, 67

degree of a character, 16
degree of reflection group, 12

derangement, 6, 74

desarrangement, 6, 81

tableau, 81

descent, 50
algebra, 50, 51

number, 50

permutation, 80

set, 50, 56

standard Young tableau, 80

dihedral angle, 29
discrete Chebyshev polynomials, 87

divided permutation, 67
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dividers, 66

eigenspace

generalized, 27

eigenvalue integrality principle, 2

essential hyperplane arrangement, 7

Eulerian

idempotent, 50
subalgebra, 50

exterior algebra, 53

faces of an arrangement, 37

Ferrers diagram, 70

Fourier transform, 16, 87

free Lie algebra, 56

Frobenius

characteristic map, 54

reciprocity, 74

fundamental

chamber, 11
quasisymmetric functions, 56

Gelfand model, 59

generalized eigenspace, 27

geometric lattice, 7, 46

group

algebra, 2

cochain, 45

real reflection, 3

reflection, 3, 10

symmetric, 1
Weyl, 3

Hecke algebra, 23

twisted Hecke, 23

Hodge decomposition, 50

homogeneous symmetric function, 55

Hopf trace formula, 45, 76

hyperplane, 4, 7

reflecting, 4

hyperplane arrangement, 7

central, 48

idempotent

Eulerian, 50

primitive, 15, 16, 18, 19, 23

identity chamber, 4, 11

incidence coefficients, 43

increasing subsequence, 1

induction product, 73

injective word, 71

complex, 71

intersection lattice, 4, 7

intersection subspace, 7
interval

open, 44

invariant

algebra, 38

inversion, 10

involution, 11
irreducible

module, 4
real reflection group, 12, 18

irreducible representation, 31

jeu-de-taquin, 80
slides, 81

lattice
geometric, 7, 46

intersection, 4
set partitions, 55

left-regular band, 41
Lie

algebra, 5
free, 5, 54, 56

character, 5
Lie algebra

free, 56

linear character, 16
linear ordering polytope, 5, 34, 35
localized arrangement, 7, 43
longest element, 11

Lyndon
factorization, 55
type, 55
word, 54, 55

Möbius function, 44
major index, 70
meet semilattice, 41
minimal polynomial, 40

module
absolutely irreducible, 3
irreducible, 4

multilinear part, 56

non-desarrangement standard Young
tableau, 82

noninversion number, 1, 7
number of descents, 50
number partition, 4

open interval, 44
orbital, 24
order complex, 44, 55
Orlik-Solomon

algebra, 53
presentation, 53

parabolic subgroup, 12

partition
conjugate, 72
number, 4
set, 8

permutation

ascent, 80
descent, 80
pattern, 1
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Perron-Frobenius Theorem, 5, 18

Pieri formulae, 73
plethysm, 55

Poincaré-Birkhoff-Witt theorem, 56
polytope

0/1, 34

linear ordering, 5, 34
zonotope, 43

poset
Cohen-Macaulay, 45

positive root, 27
primitive idempotent, 15, 16, 18, 19, 23

pulled face, 37

quasiorder, 41
quasisymmetric function, 55

random
-to-random shuffle, 1

-to-top shuffle, 2
walk, 2, 38

real reflection group, 3, 10
irreducible, 12, 18

reduced word, 41
reflecting

hyperplane, 18–20, 26, 36

arrangement, 11
reflection, 10

group, 3, 10
real, 3

orthogonal, 10
representation

irreducible, 31
restriction arrangement, 43
reversed word, 71

Robinson-Schensted algorithm, 80
root, 27

Schützenberger demotion, 81

semilattice
meet, 41

set partition, 8
shuffle

random-to-random, 1
random-to-top, 2

sign character, 17

simplex
standard, 34

simplicial complex, 44
simply transitive, 11

skew tableau, 81
splitting field, 3
standard simplex, 34

standard Young tableau, 70, 80, 87
ascent, 80

descent, 80
major index, 70

non-desarrangement, 82
shape, 70

skew, 81
subalgebra

Eulerian, 50
subspace arrangement, 48
symmetric algebra, 56
symmetric function, 54

homogeneous, 55

symmetric group, 1

tensor algebra, 56
top element, 45
trivial character, 17
twisted

Gelfand pair, 23
Hecke algebra, 23

type of a partition, 10

wall, 13, 20, 38
Weyl group, 3
Whitney cohomology, 5, 51
word

injective, 71
Lyndon, 54
reduced, 41
reversed, 71

wreath product, 54

Young subgroup, 13

zonotope, 43
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