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Abstract. There are two famous formulae relating the Poincaré series of a

finite/affine Weyl group to the degrees of fundamental invariants for the finite
Weyl group. We review the classical proof due to Solomon of the finite formula

that uses the Coxeter complex, and sketch Steinberg’s analogous proof of the

affine (Bott) formula using the “toroidal” Coxeter complex.

1. Recalling the Poincaré series

Let W be a finite reflection group acting on a n-dimensional real vector space
V . Then W also acts on the polynomial algebra S := Sym(V ∗), and a famous
theorem due to Shephard and Todd and to Chevalley asserts that the invariant
ring SW is a polynomial subalgebra. If one picks a minimal set of homogeneous
algebra generators f1, . . . , fn for SW , that is, SW = R[f1, . . . , fn], then their degrees
d1, . . . , dn are called the fundamental degrees, and the Hilbert series for SW has the
following expression: Hilb(SW , q) =

∏n
i=1

1
1−qdi . The same degrees then enter into

two famous Poincaré series formulae for Coxeter groups.
Let S be any set of simple reflections for W , that is, reflections through walls

of any fixed chamber in the decomposition of V by the reflecting hyperplanes of
reflections in W . Let `(w) denotes the length of w with respect to the generators
S. Then (W,S) becomes a Coxeter system, whose Poincaré series is defined to
be W (q) :=

∑
w∈W q`(w) where `(w) denotes the length of w with respect to the

generators S.

Theorem 1.1. (Chevalley-Solomon) For any finite reflection group,

W (q) =

n∏
i=1

(1 + q + q2 + · · · qdi−1)

=

n∏
i=1

1− qdi
1− q

=
Hilb(S, q)

Hilb(SW , q)
.

When W is a finite Weyl group, that is, W stabilizes a rank n lattice inside
V , there is an associated affine Weyl group W̃ . When W is irreducible, one has a
Coxeter system (W̃ , S̃), where Ŝ = S ∪ {s0} in which s0 is the affine reflection in
V through a hyperplane normal to the highest root for W .
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Theorem 1.2. (Bott) For any irreducible finite Weyl group W , the associated

affine Weyl group W̃ has

W̃ (q) =
1

(1− q)n
n∏
i=1

1− qdi
1− qdi−1

= Hilb(S, q)

n∏
i=1

1− qdi
1− qdi−1

= W (q)

n∏
i=1

1

1− qdi−1

Our goal here is to sketch proofs of Theorems 1.1 and 1.2 that have similar
natures. The proof for Theorem 1.1 is due to Solomon, and appears in many
places, such as Humphreys [4]. The proof given here for Theorem 1.2 is not Bott’s
original one, but rather one that is less well-known, due to Steinberg1. A more
detailed exposition can now be found in the Masters Thesis of Leonid Grau [2].

We also remark at the end on some comparison with other styles of proof.

2. Proofs of Theorems 1.1 and 1.2

Both proofs compare an easy Coxeter group recursion for W (q) with a recursion
derived from the Hopf trace formula applied to the W -action on some nice simplicial
complex. We review some of the relevant notions before embarking on the proofs.

2.1. The descent induction. The discussion in this subsection is essentially the
same as [4, §5.12].

For any Coxeter system (W,S), and any subset J ⊆ S, the parabolic subgroup
WJ generated by J turns out to form a Coxeter system (W,J) in its own right,
with its length function inherited from that of (W,S). One also has the set W J of
minimum length coset representatives for W/WJ , characterized by this property:
x ∈W J if and only if its right descent set

DR(x) := {s ∈ S : `(xs) < `(x)}

lies entirely in S\J . There is a well-known unique factorization result: W = W JWJ ,
and if w = xy with x ∈ W J , y ∈ WJ then their lengths satisfy `(w) = `(x) + `(y).
This shows that W (q) = W J(q)WJ(q) and hence

W J(q) =
∑

w∈W :DR(w)⊆S\J

q`(w) =
W (q)

WJ(q)
.

Inclusion-exclusion then gives the crucial formula

(2.1)
∑
J⊆S

(−1)|J|
W (q)

WJ(q)
=

∑
w∈W :DR(w)=S

q`(w) =

{
q`(w0) if W is finite,

0 if W is infinite.

Here w0 denotes the unique element of maximum length when W is finite, which is
also the unique element having DR(w0) = S. We will later need the fact that its
length `(w0) is the number of reflections in W .

1Thanks to John Stembridge for telling me of the existence of this gorgeous proof, and sug-
gesting that I buy the The Collected Papers of Robert Steinberg, the best 37 AMS points I ever

spent.
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One can recast this as a recursion, dividing through by W (q), and bringing the
J = S term in the sum to the right side:

(2.2)
∑
J(S

(−1)|J|
1

WJ(q)
= f(q)

1

W (q)
,

where

f(q) =

{
q`(w0) − (−1)|S| if W is finite,

−(−1)|S| if W is infinite.

Note this recursion shows, by induction on n = |S|, that W (q) is a rational function
in q.

2.2. The Hopf trace formula. When ∆ is a simplicial complex carrying the
action of a group W by simplicial automorphisms, one has the following equality
of virtual characters of W -representations over C:

(2.3)
∑
i

(−1)iCi(∆) =
∑
i

(−1)iHi(∆).

Here the Ci are the simplicial chain groups for ∆, and Hi the simplicial homology
groups for ∆, both taken with coefficients in C. The summation indices in both
sums should run

• over i ≥ 0 when using ordinary (nonreduced) simplicial homology, which
will be relevant for the affine case,
• over i ≥ −1 when using reduced homology, which will be relevant for the

finite case.

2.3. Proof of Theorem 1.1 via induction. Given our finite reflection group W
and its Coxeter system (W,S), consider the Coxeter complex ∆ := ∆(W,S), which
has two alternate descriptions.

On one hand, ∆ is the simplicial decomposition of the unit (n− 1)-sphere in V
cut out by the reflecting hyperplanes for W .

On the other hand, ∆ is the abstract simplicial complex whose faces are indexed
by cosets wWJ of parabolic subgroups, with the inclusion order on faces given by
reverse inclusion of cosets. A typical face in ∆, say the one indexed by the coset
wWJ , will have W -stabilizer wWJw

−1, and the stabilizer will fix the face pointwise.
The first description tells us that ∆ has reduced homology concentrated in di-

mension n−1, withHn−1(∆) ∼= C, carrying theW -action by the sign or determinant
character det : W → C×.

The second description tells us that Ci(∆) is a direct sum of coset representations
1 ↑WWJ

for parabolic subgroups WJ in which |J | = n− 1− i.
Consequently the Hopf trace formula (2.3) applied to the reduced homology of

∆ yields this equality of virtual characters:

(2.4)
∑
J⊆S

(−1)|J| 1 ↑WWJ
∼= det .

Now consider the polynomial algebra S = Sym(V ∗) with its W -action as a graded
W -representation. We wish to apply to both sides of (2.4) the map that sends a
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virtual W -character χ to the generating function for its intertwining numbers with
the graded components Sd of S, that is,

χ 7→
∑
d≥0

〈χ, Sd〉 qd.

Note that for any W -representation M , there is an isomorphism of intertwining
spaces HomC[W ](1 ↑WWJ

,M) ∼= MWJ , where MWJ are the WJ -invariants in M , e.g.
by Frobenius reciprocity. One similarly has an isomorphism of intertwining spaces
HomC[W ](det,M) ∼= MW,det where

MW,det := {m ∈M : w(m) = det(w)m for all w ∈W}
are the det-relative invariants of M . Consequently, one obtains

(2.5)
∑
J⊆S

(−1)|J|Hilb(SWJ , q) = Hilb(SW,det, q) = q`(w0)Hilb(SW ).

Here it is important to note that we are considering all subgroups WJ as acting by
restriction from W on the same space V , and hence on S = Sym(V ∗). The last
equality in (2.5) follows from the structure of SW,det: it is a free SW -submodule
inside S of rank one, consisting of all polynomials in S divisible by the Jacobian∏
H `H . This Jacobian is the product of all of the linear forms `H in S that define

reflecting hyperplanes for W , and has degree `(w0).
Dividing (2.5) by Hilb(S, q) and bringing the J = S term in the sum to the right

side, one obtains a recursion:∑
J(S

(−1)|J|
Hilb(SWJ , q)

Hilb(S, q)
= (q`(w0) − (−1)|S|)

Hilb(SW , q)

Hilb(S, q)
.

Comparing this with (2.2), one sees that 1
W (q) and Hilb(SW ,q)

Hilb(S,q) satisfy the same

recursion on |S|. Since both are 1 when |S| = 0, they also satisfy the same initial
condition, and hence are equal, proving Theorem 1.1.

2.4. Steinberg’s proof of Bott’s formula. Steinberg’s proof of Theorem 1.2 is
modelled on the proof of Theorem 1.1 just given2, and also uses this theorem as a
lemma.

One replaces the spherical Coxeter complex associated to the finite Coxeter sys-
tem (W,S) with the toroidal quotient space ∆ := ∆(W̃ , S̃)/L of the affine Coxeter

complex ∆(W̃ , S̃) by the coroot lattice L. Here we are thinking of L as the trans-

lation subgroup inside the affine Weyl group W̃ = W n L. It is again true that ∆
has two descriptions, which one compares in order to apply the Hopf trace formula.

On one hand, since ∆(W̃ , S̃) triangulates V ∼= Rn, the complex ∆ triangulates
the n-torus V/L ∼= Rn/L. Since the finite Weyl group W stabilizes the lattice L,
it acts on the quotient ∆. The cohomology of the torus ∆ can be identified via
deRham theory with the exterior algebra ∧(V ∗) on the differential forms {dxi}ni=1,
and consequently, the W -action on the cohomology is the same as that on ∧(V ∗).

On the other hand, as an abstract simplicial complex, ∆(W̃ , S̃) again has faces

indexed by cosets wW̃J of parabolic subgroups, with the inclusion order on faces

2Steinberg actually had bigger fish to fry, using this method to prove an amazing “twisted”

version of Theorem 1.2. The twisting involves any linear automorphism σ of V that permutes the
set of affine simple reflections S̃ when acting on them by conjugation. However, we found this σ

slightly distracting in following the proof, and have omitted it in our discussion.
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given by reverse inclusion of cosets. The face indexed by wW̃J has dimension n−|J |.
Faces of the quotient ∆ are indexed by double cosets LwW̃J . To understand the
action of the finite Weyl group W on these faces in the quotient ∆, first note that
each proper parabolic subgroup W̃J is finite, and is the W̃ -stabilizer of some face
in the fundamental alcove. It turns out that when one applies to W̃J the quotient
map W̃ = W n L�W which mods out by L, the image Wπ

J := π(W̃J) within the
finite Weyl group W has three crucial properties, explained carefully by L. Grau in
[2, Chap. 5]:

(a) When the finite Weyl group W acts on the torus

∆ = ∆(W̃ , S̃)/L =
⊔
J(S

L\W̃/W̃J ,

for each J ( S, the W -action on faces represented by double cosets of the
form {LwW̃J}w∈W̃ is isomorphic to the W -action on cosets W/Wπ

J .

(b) This image Wπ
J is a reflection subgroup3 of the finite Weyl group W .

(c) There exists a translation in V which will conjugate this image subgroup

Wπ
J ⊂W ⊂ W̃ to the parabolic subgroup W̃J ⊂ W̃ .

Consequently, via (a) and the Hopf trace formula (2.3) applied to the (nonre-
duced) homology of ∆, one obtains this equality of virtual W -characters:

(2.6)
∑
J(S̃

(−1)|J| 1 ↑WWπ
J

∼= (−1)n
n∑
i=0

(−1)i ∧i (V )

As before, one considers the polynomial algebra S = Sym(V ∗) with its W -action
as a graded W -representation, and applies to both sides of (2.6) the map that sends
a virtual W -character χ to the generating function for its intertwining numbers with
the graded components Sd of S. This gives

(2.7)

∑
J(S̃

(−1)|J|Hilb(SW
π
J , q) = (−1)n

n∑
i=0

(−1)i
∑
d≥0

〈Sd,∧i(V )〉qd

= (−1)n
n∑
i=0

(−1)iHilb(S ⊗ ∧i(V ∗))W , q).

One then uses a theorem of Solomon [5] that describes the invariant subalgebra
(S ⊗ ∧(V ∗))W : it is a free SG-module with SG-basis given by the differentials
{dfi}i=1,...,n. This shows that

n∑
i=0

Hilb
(
(S ⊗ ∧i(V ∗)

)W
, q)ui =

n∏
i=1

1 + uqdi−1

1− qdi
.

Hence plugging in u = −1 allows us to rewrite the last equation in (2.7) as

(2.8)
∑
J(S̃

(−1)|J|Hilb(SW
π
J , q) = (−1)n

n∏
i=1

1− qdi−1

1− qdi
.

3Wπ
J may not be a standard parabolic subgroup of WK , nor a conjugate wWKw

−1, contrary

to an incorrect assertion in a previous version of these notes; thanks to L. Grau for the correction.
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Dividing by Hilb(S, q), one obtains∑
J(S̃

(−1)|J|
Hilb(SW

π
J , q)

Hilb(S, q)
=

(−1)n

Hilb(S, q)

n∏
i=1

1− qdi−1

1− qdi
.

By property (b) above for Wπ
J , one can apply Theorem 1.1 to each summand on the

left. However, one must first choose generating reflections that give a Coxeter pre-
sentation for Wπ

J , and property (c) above tells us that it affords such a presentation

isomorphic to that of the Coxeter system (W̃J , J). Hence one has∑
J(S̃

(−1)|J|
1

W̃J(q)
=

(−1)n

Hilb(S, q)

n∏
i=1

1− qdi−1

1− qdi
.

By (2.2) applied to (W̃ , S̃), the left side here is (−1)n/W̃ (q), giving Theorem 1.2.

3. Remarks on the Schubert basis proofs

Both Theorems 1.1 and 1.2 have proofs, discussed in Hiller’s book [3] that use
something like a Schubert basis in various forms. We briefly mention these here.

For Theorem 1.1, a little commutative algebra allows one to interpret the right

side Hilb(S,q)
Hilb(SW ,q)

as the Hilbert series for the coinvariant algebra S/(SW+ ). Here (SW+ )

denotes the ideal within S generated by the elements SW+ having positive degree

inside SW . One must then explain why, for a finite reflection group W , one has

(3.1) W (q) = Hilb(S/(SW+ ), q).

There are two related approaches to this. The (historically) first works when W
is a Weyl group. If G is its associated complex reductive algebraic group, with
a choice of Borel subgroup B, the Bruhat decomposition G = qw∈WBwB gives
rise to a decomposition of the generalized flag manifold G/B = qw∈WBwB/B
into the (relatively open) Schubert cells Xo

w := BwB/B. This Xo
w is isomorphic

to a real 2`(w)-dimensional cell, and together these Schubert cells give a CW -
decomposition for G/B, whose cellular boundary maps are all zero. Hence the
ordinary homology/cohomology of G/B have no torsion, and have Z-bases indexed
by W , with Poincaré series given by W (q2). On the other hand, Borel showed that
there is a (degree-doubling) isomorphism between the coinvariant algebra and the
cohomology of G/B:

AW ∼= H∗(G/B,Z).

This then implies the desired equality (3.1). Kostant argued analogously, substi-
tuting Lie algebra homology and harmonic representatives; see [3, §5.2].

Hiller’s book, in Chapter 6, discusses in detail the Demazure/Bernstein-Gelfand-
Gelfand approach, which applies even when W is a non-crystallographic finite reflec-
tion group, in spite of the lack of a flag manifold G/B. One exhibits a Schubert-like
basis for the coinvariant algebra AW , dual to the collection of divided difference
operators {∂w}w∈W acting on S. In the case where W is crystallographic, one can
identify these divided difference operators with the homology classes dual to the
Schubert basis in the cohomology of G/B.

In a similar vein (see [3, Chap. 5 §6]), Bott’s original proof of his Theorem 1.2
uses a Schubert cell decomposition, this time for the loop group ΩG. The Schubert
cells in this case are indexed by the elements of the lattice L(= W̃/W ), so that the
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cohomology H∗(ΩG) has Poincaré series L(q2) =
∑
w∈L q

2`(w). On the other hand,
Theorem 1.2 is equivalent to the assertion that

(3.2) L(q)

(
=
W̃ (q)

W (q)

)
=

1∏n
i=1 1− qdi−1

.

Hence Bott only needed to show that cohomology H∗(ΩG) has Poincaré series equal
to the right side of (3.2). He achieves this using the Leray-Serre spectral sequence
applied to the path-fibration ΩG → PG → G, in which the path space PG is
contractible and the group G has known cohomology, involving the degrees di.
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