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Abstract. Garver and McConville recently introduced two lattices associated to a tree: the lattice of biclosed

sets and the oriented flip graph. They showed that both of these lattices are congruence-uniform lattices, and thus

both admit a lattice-theoretic shard intersection order. We show that the shard intersection order of the oriented
flip graph is graded and rank-symmetric. We also construct as CU-labeling of the lattice of biclosed sets and use

this to understand the lattice structure of its shard intersection order.

1. Introduction

The study of triangulated surfaces is important to understanding the combinatorics of and representation
theory related to cluster algebras. However, not as much is understood about the connections between polygonal
subdivisions of surfaces (partial triangulations) and similar combinatorial and representation-theoretic objects.
In [3], the authors study this question, and obtain an isomorphism between a lattice of polygonal subdivisions,
which they call an oriented flip graph, and a lattice of torsion pairs. The oriented flip graph is a congruence-
uniform lattice, and thus we can define its lattice-theoretic shard intersection order in the sense of Reading. The
authors in [3] showed that this new poset can be modeled by yet another combinatorial construction on the
partially-triangulated surface. This construction is known as the noncrossing tree partitions, and generalizes
the classical noncrossing set partitions.

This paper focuses on understanding the noncrossing tree partitions, NCPpT q, and the biclosed sets, BicpT q,
from a combinatorial perspective. In particular, we show that NCPpT q is always a graded and rank-symmetric
lattice, and present a method for counting the number of maximal chains in this lattice. Moreover, the oriented
flip graph is best understood through the lens of a different lattice arising from the geometric combinatorics of
this partially-triangulated marked surface, a poset known as the lattice of biclosed sets. In terms of biclosed
sets, we produce an explicit CU-labeling and then investigate the structure of the resulting shard intersection
order, with the ultimate aim of proving that this poset is a lattice.

2. Preliminaries

2.1. Lattices. Let L be a finite, graded lattice. For x, y P L, if x ă y and no z P L satisfies x ă z ă y, we write
x Ì y. Let CovpLq :“ tpx, yq P L2 | x Ì yu be the set of covering relations of L. A map λ : CovpLq Ñ Q,
where pQ,ďQq is some poset is called an edge labeling. Given two maximal chains C “ c1 ă ¨ ¨ ¨ ă cn and C 1 “
c11 ă . . . c1n in L, we say C is lexicographically smaller than C 1 if pλpc1, c2q, . . . , λpcn´1, cnqq lexicographically
precedes pλpc11, c

1
2q, . . . , λpc

1
n´1, c

1
nqq.

We call a labeling λ : CovpLq Ñ Q an EL-labeling of L if for every interval rx, ys of L,

(1) there is a unique increasing maximal chain C in rx, ys, and
(2) C is lexicographically smaller than any other maximal chain C 1 in rx, ys.

If L admits an EL-labeling, it is said to be EL-shellable.
We need the concepts of join and meet irreducibility to discuss another important type of labeling. We say

that an element j P L is join irreducible if j ‰ 0̂ and whenever j “ x _ y, either j “ x or j “ y holds.
Meet-irreducible elements are defined dually. We denote the subset of join-irreducible (resp. meet-irreducible)
elements by JIpLq (resp. MIpLq). For j (resp. m) in JIpLq (resp. MIpLq), we let j˚ (resp. m˚) denote the
unique element of L covered by (resp. that covers) j (resp. m). With this in hand, we arrive at the notion of a
CN-labeling, which plays a prominent role in this paper.

Definition 2.1. A labeling λ : CovpLq Ñ Q is a CN-labeling if L and its dual L˚ satisfy the following: For
elements x, y, z P L with pz, xq, pz, yq P CovpLq and maximal chains C1 and C2in rz, x_ys with x P C1 and y P C2,

(CN1) the elements x1 P C1, y
1 P C2 such that px1, x_ yq, py1, x_ yq P CovpLq satisfy

λpx1, x_ yq “ λpz, yq, λpy1, x_ yq “ λpz, xq;

(CN2) if pu, vq P CovpC1q with z ă u, v ă x_ y, then λpz, xq, λpz, yq ăQ λpu, vq;
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(CN3) the labels on CovpC1q are pairwise distinct.

We say that λ is a CU-labeling if, in addition, it satisfies

(CU1) λpj˚, jq ‰ λpj1˚, j
1q for j, j1 P JIpLq, j ‰ j1, and

(CU2) λpm,m˚q ‰ λpm,m
1
˚q for m,m1 P MIpLq, m ‰ m1.

If L admits a CU-labeling, it is said to be congruence-uniform , see [3].

Given a lattice L with a CU-labeling, one can define a new poset, ΨpLq, called the shard intersection order
of L. Reading introduced this concept in [4].

Definition 2.2. Let L be a congruence-uniform lattice with CU-labeling λ : CovpLq Ñ P . Let x P L and let
y1, . . . yk be the elements of L satisfying pyi, xq P CovpLq. We denote the set tλpyi, xqu by λÓpxq. Define the
shard intersection order of L, denoted ΨpLq, to be the collection of sets of the form

ψpxq :“ tλpw, zq |
k
ľ

i

yi ď w ă z ď x, pw, zq P CovpLqu

partially ordered by inclusion.

2.2. Tree preliminaries. A tree is a finite connected acyclic graph. Any tree may be embedded in a disk D2 in
such a way that a vertex is on the boundary if and only if it is a leaf. We will always assume that any tree comes
equipped with such an embedding. We will refer to non-leaf vertices of a tree as interior vertices, and denote
the set of interior vertices of a tree T by V opT q. We assume that any interior vertex of a tree has degree at least
3. Given trees T, T 1 embedded in D2, we consider T and T 1 to be equivalent if there is an isotopy between the
spaces D2zT and D2zT 1.

Let T be a tree embedded in D2. The embedding of T in D2 determines a collection of 2-dimensional regions
in D2 that we will refer to as faces. A corner of a tree is a pair pv, F q consisting of an interior vertex v and a
2-dimensional face F containing v. The embedding that accompanies T endows each interior vertex with a cyclic
ordering. Given two corners pu, F q, pu,Gq, we say that pu,Gq is immediately clockwise (resp. immediately
counterclockwise) from pu, F q if F XG ‰ H and G is clockwise (resp. counterclockwise) from F according to
the cyclic ordering at u.

An acyclic path supported by a tree T is a sequence pv0, . . . , vtq of vertices of T such that vi and vj are
adjacent if and only if |i ´ j| “ 1. We typically identify acyclic paths with their underlying vertex sets; that is,
we do not distinguish between paths of the form pv0, . . . , vtq and pvt, . . . , v0q.

An arc p “ pv0, . . . , vtq is an acyclic path whose endpoints are leaves and for all i, the edges pvi´1, viq and
pvi, vi`1q are incident to a common face—another way of saying this is that p “turns sharply” at every vertex
it contains. We say p contains a corner pv, F q if v “ vi for for some i “ 0, 1, . . . , t and F is the face that
is incident to both pvi´1, viq and pvi, vi`1q. Since an arc p divides D2 into two components, it determines two
disjoint subsets of the set of faces of T that we will call regions.

A segment is an acyclic path consisting of at least two vertices and with the same incidence condition that is
required of arcs, but whose endpoints are not leaves. Since trees have unique geodesics between any two vertices,
if the endpoints of a segment or arc are v, w, we may denote the path by rv, ws. We say that two segments s and
t are composable if they agree only at one endpoint and their concatenation at this endpoint is also a segment.
We denote their composition by s ˝ t.

2.3. Noncrossing tree partitions. We now introduce a partially ordered set defined on a tree, the noncrossing
tree partitions, which is one of this paper’s central objects of study. For the proof of all the results in this
subsection, see [3].

Given a tree T , a red admissible curve γ : r0, 1s Ñ D2 for a segment s “ rv0, vts is a simple curve where

‚ its endpoints are v0 and vt,
‚ γ may only intersect edges of T of the form pvi´1, viq, where i P rts, and
‚ γ must leave v0 (resp. vt) on the face immediately clockwise from v0 (resp. vt), orienting T from v0 to vt.

Two segments are noncrossing if they admit red admissible curves that do not intersect. A green admissible
curve is the same as a red admissible curve, replacing the word “clockwise” with “counterclockwise.”

Given a collection of vertices B Ď V opT q, we say that B is segment-connected if for v, w P B there exists a
sequence of segments s1 “ rv1 “ v, v2s, s2 “ rv2, v3s, . . . , sn´1 “ rvn´1, vn “ ws such that s1 ˝ ¨ ¨ ¨ ˝ sn´1 “ rv, ws,
with vi P B, and rvi, vi`1s X pBztvi, vi´1uq “ H.

It was shown in [3] that given two such vertices u and v in a segmented-connected set B Ď V opT q, the
sequence of segments described in the above definition is unique. The union of all segments appearing in the
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type of sequence described in the above definition is denoted by SegrpBq. We are now ready to state the main
definition of this section.

Definition 2.3. A noncrossing tree partition B “ tB1, . . . , Bku is a set partition of V opT q such that each
Bi is segment-connected and any segments s1 P SegrpBiq and s2 P SegrpBjq are noncrossing. For a noncrossing
tree partition B, we call each Bi a block of B.

The following is a major result from [3] concerning the structure of the collection of noncrossing tree partitions
of a given tree T that motivates much of the investigation of this paper.

Theorem 2.4. The set NCPpT q :“ tnoncrossing partitions of T u partially ordered by refinement is a lattice.

2.4. Oriented flip graphs. We now discuss another lattice, the oriented flip graph, whose structure is closely
related to the noncrossing tree partition lattice. All of the following results are proved in [3]. We have already
defined what it means for two segments to cross; there is a similar notion for arcs.

We say that two arcs p “ pv0, . . . , vtq, q “ pw0, . . . , wsq are crossing along a segment s “ pu0, . . . , urq if
iq each vertex of s appears in both p and q and
iiq if Rp and Rq are regions defined by p and q, respectively, then Rp Ć Rq and Rq Ć Rp.

We say they are noncrossing otherwise. The noncrossing complex ∆NCpT q is defined to be the abstract
simplicial complex whose simplices are pairwise noncrossing collections of arcs supported by a tree T .

If p is an arc whose vertices all lie on a common face, then p is non-crossing with every arc supported by T .

We call such an arc a boundary arc. The reduced noncrossing complex r∆NCpT q is the abstract simplicial
complex whose faces are the faces of ∆NCpT q that contain no boundary arcs.

We now introduce a partial ordering on arcs that contain a particular corner of T . Let F be a face of ∆NCpT q
and let pv, F q be a corner that is contained in at least one arc of F . The arcs of F that contain pv, F q are partially
ordered in the following way: p ďpv,F q q if and only if the region defined by p containing F is contained in that
of q.

If F is a face of ∆NCpT q and pv, F q is a corner contained in at least one arc of F , then the partially ordered
set ptp P F : p contains pv, F qu,ďpv,F qq is a linearly ordered set. In particular, it has a unique maximal element,
which we will denote by ppv, F q. We say that an arc p of F is marked at pv, F q if p “ ppv, F q. The following
theorem discussing marked corners is crucial to defining the oriented flip graph.

Theorem 2.5. Let F be a face of ∆NCpT q, let p P F , and let Reg1,Reg2 denote the regions defined by p.

(1) The arc p is marked at a corner of T .
(2) If p is not a boundary arc, then p is marked at a corner in Reg1 and at a corner in Reg2.
(3) Assume that p is marked at two distinct corners pv, F q, pw,Gq P CorpT q and that F and G belong to the

same region defined by p. Then there exists an arc p1 R F that contains pv, F q and pw,G1q where G1 ‰ G
and where F Y tp1u P ∆NCpT q.

(4) If F is a facet and p P F is not a boundary arc, then there exists a unique arc q R F such that pFztpuqYtqu
is a facet. Moreover, if p is marked at two distinct corners pv, F q, pu,Gq P CorpT q, then rv, us is the unique
longest segment along which p and q cross.

A corollary of this result is that the simplicial complex r∆NCpT q is pure (i.e. every facet has the same
cardinality).

We refer to the operation F ÞÝÑ pFztpuqYtqu sending facet F of r∆NCpT q to a new facet of r∆NCpT q as a flip
of F at p, and denote it by µp. We define the flip graph of T , denoted FGpT q, to be the graph whose vertices

are facets of r∆NCpT q and such that two vertices are connected by an edge if and only if the corresponding facets
can be obtained from each other by a single flip.

Given a facet F and an arc p P F marked at pu, F q and pv,Gq, we call p red (resp. green) if F and G are
the immediately clockwise (resp. counterclockwise) faces of their corresponding vertices, orienting from u to v; it
is shown in [3] that for a facet F , every arc in F is either green or red.

Definition 2.6. Let F1,F2 P FGpT q and assume that F1 and F2 are connected by an edge in FGpT q. Let
F2 “ µpF1 and let q denote the unique arc produced by flipping p in F1. If p “ ppu, F q “ ppv,Gq and
q “ ppu, F 1q “ ppv,G1q, we orient the edge connecting F1 and F2 so that F1 ÝÑ F2 if and only if the corner
pu, F 1q (resp. pv,G1q) is immediately clockwise from the corner pu, F q (resp. pv,Gq) about vertex u (resp. v). We

refer to the resulting directed graph as the oriented flip graph of T and denote it by
ÝÝÑ
FGpT q.

The following result concerns the structure of
ÝÝÑ
FGpT q, and allows to define the shard intersection of

ÝÝÑ
FGpT q.
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Theorem 2.7. The poset
ÝÝÑ
FGpT q is a congruence-uniform lattice.

With this in hand, we can consider Ψp
ÝÝÑ
FGpT qq, and this is where one witnesses the connection between NCPpT q

and
ÝÝÑ
FGpT q.

Theorem 2.8. The poset Ψp
ÝÝÑ
FGpT qq is a lattice, and NCPpT q – Ψp

ÝÝÑ
FGpT qq.

There exists a bijection ρ :
ÝÝÑ
FGpT q Ñ NCPpT q given as follows. For a facet F P ÝÝÑFGpT q, each red arc in F defines

a segment whose endpoints are the arc’s two marked corners. Let S denote this set of segments. Recall that for a
segment-connected block in NCPpT q, there exists a unique set of segments realizing this segment-connectedeness.
The authors showed in [3] that S defines an element of NCPpT q in this manner, and that ρ is in fact a bijection.

Accordingly, the isomorphism ϕ from NCPpT q to Ψp
ÝÝÑ
FGpT qq is given by mapping B P NCPpT q under ρ´1 and

then letting ϕpBq “ ψpρ´1pBqq.

2.5. Biclosed collections of segments. All of the results in this subsection are proved in [3]. Let SegpT q be
the set of segments supported by a tree T . For X Ď SegpT q, we say X is closed if for segments s, t P SegpT q, if
s, t P X and s ˝ t P SegpT q then s ˝ t P X. If X is any subset of SegpT q, its closure X is the smallest closed set
containing X. Say X is biclosed if X and SegpT qzX are both closed. We let BicpT q denote the poset of biclosed
subsets of SegpT q, ordered by inclusion.

Theorem 2.9. The poset BicpT q is a lattice.

We now discuss an important injective map φ from
ÝÝÑ
FGpT q to BicpT q that will be used later in the report.

For an arc p “ pv0, . . . , vlq oriented from v0 to vl, let Cp be the set of segments pvi, . . . , vjq, 0 ă i ă j ă l such
that

‚ p turns right at vi, and
‚ p turns left at vj .

Given F P ÝÝÑFGpT q, we define φpFq to be
Ť

pPF Cp.

Theorem 2.10. The map φ :
ÝÝÑ
FGpT q Ñ BicpT q is an injective lattice map.

Corollary 2.11. The lattice
ÝÝÑ
FGpT q is isomorphic to its image under φ, and is thus a sublattice of BicpT q.

3. Lattice properties of NCPpT q.

Throughout this section, we will let T denote a tree as defined in the previous section. It is known that
NCPpT q is a lattice; in this section we will prove several results about the structure of NCPpT q, as well as state
future directions for exploration. We begin with results that discuss ways to decompose NCPpT q for a general tree.

3.1. Decomposing NCPpTq.

Definition 3.1. Assume that T has an interior vertex w that is incident to at least two leaf vertices—we call
such a vertex a wall vertex. Observe that there is a unique acyclic path of T connecting the leaves in these
edges, and that this path divides T into two regions, R1 and R2. Given a wall vertex w, we can define two new
trees, T1 and T2, where Ti is given by removing all vertices in Rj pj ‰ iq and all edges between these vertices,
except for all vertices in Rj incident to w, which become boundary vertices of Ti (keeping also the edges that
realize this incidence). It is clear from the definition that Ti is a tree with all interior vertices of degree at least
three.

Lemma 3.2. Let w be a wall vertex of T . Then NCPpT q – NCPpT1q ˆNCPpT2q.

Proof. We first define a bijection ϕ from NCPpT q to NCPpT1q ˆ NCPpT2q. Let B P NCPpT q. Note that if
u1 P R1ztwu and u2 P R2ztwu are in the same block B of B, then B contains w. We define ϕ as follows: for any
block B P B that does not contain w, we let it be a block of Bi P NCPpTiq, where B is contained in Ri. For the
block B1 of B that contains w, we create two new blocks, B1 and B2, where Bi :“ B1zpB1 X pRiztwuqq, and then
let Bi be a block of Bi. The pair pB1,B2q is in NCPpT1q ˆNCPpT2q, and ϕ is a bijection.

To see that ϕ is order-preserving, suppose that B ď B1 in NCPpT q. Thus, every block of B is contained in a
block of B1. Let pB1, B2q be a pair of blocks in ϕpBq. If w P Bi, then there exists B1 P B1 such that w P B1 and
Bi Ď B1, where Bi is seen as a collection of vertices in Ri Ď V opT q. It follows that Bi Ď B1i. A similar argument
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holds when w R Bi. Hence, if ϕpB1q “ pB11,B
1
2q, then there exist B11 P B11, B12 P B12 such that B1 Ď B11 and

B2 Ď B12, so ϕpBq ď ϕpB1q. The proof that ϕ´1 is order-preserving is similar.
�

Next, we discuss a result concerning decomposing lower intervals of NCPpT q into the direct product of non-
crossing tree partitions of smaller trees. As will be seen later in the report, such a decomposition has many
consequences and applications.

Definition 3.3. The following construction is from [3]. Let B be a segmented-connected subset of V opT q, and
let S “ SegrpBq. We define the contracted tree TB such that

‚ B is the set of interior vertices of TB ,
‚ S is the set of interior edges of TB , and
‚ for edges e with one endpoint u in B and the other endpoint not between two vertices of B, there is an

edge from u to the boundary in the direction of e.

It is clear that TB defines a tree with every interior vertex of degree at least three.

If B P NCPpT q and B is one of its blocks, then we can further partition B into sub-blocks, tB11, . . . , B
1
mu. If

each sub-block of such a partition of B is segmented-connected and for any segments s P SegrpB
1
iq, t P SegrpB

1
jq,

s and t have non-crossing admissible curves, we say this partition is an element of the set that we call NCPpBq,
and define a partial-ordering on NCPpBq by refinement. It is clear that NCPpBq is isomorphic to NCPpTBq, since
removing vertices in V opT qzB does not affect the crossing of admissible curves between elements of B.

Theorem 3.4. For B “ tB1, . . . , Bmu P NCPpT q, r0̂,Bs –
śm
i“1 NCPpTBiq.

Proof. In view of the above discussion, it suffices to show that r0̂,Bs –
śm
i“1 NCPpBiq. For any B1 “ tB11, . . . , B

1
nu P

r0̂,Bs, it is clear that B1 defines a collection of elements in NCPpBiq, where for some Bi P B, we let Bi “ tB
1
j |

B1j Ď Biu. This map defines an order-preserving injection from r0̂,Bs to
śm
i“1 NCPpBiq. It remains to show that

it is surjective. To do this, we will define an injection from
śm
i“1 NCPpBiq to r0̂,Bs.

An element of
śm
i“1 NCPpBiq naturally defines a collection of segment-connected blocks of interior vertices,

B1 “ tB11, . . . , B
1
`u. Thus, to complete the proof it suffices to show that any two segments s, t P SegrpB

1
q are

non-crossing. Let s P SegrpB
1
iq and t P SegrpB

1
jq, i ‰ j, where B1i Ď Bk P B, B1j Ď Br P B, k ‰ r; we want to show

that s and t have non-crossing red-admissible curves. Observe that s is a composition of segments in SegrpBkq,
tsiu

ni
i“1, and t is a composition of segments in SegrpBrq, ttju

nj

j“1. Moreover, since B P NCPpT q, given tsiu, there
exists a corresponding sequence of red-admissible curves, and none of these curves cross any of the curves in the
analogous sequence for ttju. Thus, the composition of all the curves associated to tsiu and the composition of
all the curves associated to ttju define two new red admissible curves associated to s and t that do not cross,
completing the proof.

�

This result, and the isomorphism constructed in its proof, implies that we can reduce every interval in NCPpT q
to a product of upper intervals, as the following result shows.

Corollary 3.5. Every interval in NCPpT q is isomorphic to a product of upper intervals of noncrossing tree
partitions.

Proof. Let B “ tB1, . . . , Bnu P NCPpT q and let B1 “ tB11, . . . , B
1
mu P NCPpT q, and B ă B1. From the

above Theorem, we know that r0̂,B1s –
śm
i“1 NCPpTB1iq. Moreover, we know that under this isomorphism,

B corresponds to px1, . . . , xmq, where xi “ tB1
i , . . . B

r
i u is the collection of blocks in B that are contained

in B1i P B1. Moreover, since B1 corresponds to p1̂NCPpTB11
q, . . . , 1̂NCPpTB1m

qq, we can conclude that rB,B1s –
śm
i“1rxi, 1̂NCPpTB1

i
qs. �

We conclude this subsection with a result concerning decomposing upper intervals in certain cases.

Definition 3.6. Let B P NCPpT q, and B P B be a block. If there exist two vertices u, v P B that are connected
by an edge, we call the segment ru, vs a simple segment. Given such a segment s “ ru, vs, we can define a new
tree, called the reduced tree with respect to s, given by identifying u with v, denoted Ts. The element B
maps naturally to an element of NCPpTsq, denoted BTs

.
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Lemma 3.7. Let B P NCPpT q, and B P B be a block that contains a simple segment s. Then rB, 1̂NCPpT qs –

rBTs
, 1̂NCPpTsqs .

Proof. The result follows from the fact that for any B1 P rB, 1̂NCPpT qs, u and v are in the same block. Thus, sending

an element of rB, 1̂NCPpT qs to its natural image in rBTs
, 1̂NCPpTsqs is an order-preserving injection. Moreover, given

an element B˚ P rBTs , 1̂NCPpTsqs, we can define an element B˚T P rB, 1̂NCPpT qs by expanding the vertex at which
u and v are identified according to the way u and v appear in T , and then keeping all blocks the same except
for the block containing u „ v, which we replace with u and v. Such a construction clearly creates a partition
of V opT q into segment-connected blocks. To see that this partition is noncrossing, note first that if neither s nor
t in SegrpB

˚
T q is equal to ru, vs, then we can extend the admissible curves corresponding s and t in SegrpB

˚
q

to noncrossing curves for the images of s and t in T . Now if s “ ru, vs, then in order for t to cross s, we know
that t must pass either pass through v to reach u or vice versa; assume the former, and denote the subsegment
of t approaching u from this direction by rw, vs. If t turns away from u at v, then it does not cross s, so we can
assume it turns toward u at v. Note that in Ts the two sharp turns at u „ v, orienting from w to v, are either
the two sharp turns at v (with the same orientation in T ) if the turn towards u is not one of these turns in T , or
the one sharp turn at v away from u, and the first turn that we encounter by walking from v back to v, starting
along ru, vs. In order for t to cross s, t must not make either of these turns, which is a contradiction, since then
its corresponding segment in Ts does not turn sharply at u „ v.

�

3.2. Results concerning the oriented flip graph. As discussed in the first section, NCPpT q is naturally

isomorphic to the shard intersection order of the lattice called the oriented flip graph,
ÝÝÑ
FGpT q. Thus, in order to

prove results about NCPpT q, it is helpful to investigate properties of
ÝÝÑ
FGpT q. In this subsection, we will prove

several results concerning
ÝÝÑ
FGpT q, and then tie all of these results in with our results from the last subsection

in order to discuss a proof for why NCPpT q is graded. Our first result concerns decomposing certain subsets of
ÝÝÑ
FGpT q.

Definition 3.8. Let p be an arc of T . Let Sp “ tF P ÝÝÑFGpT q | p P Fu, where Sp inherits the partial order defined

on
ÝÝÑ
FGpT q. Let R1 and R2 be the regions defined by p. Let V oppq denote the set of interior vertices contained

in p. Note that for every element in Sp, every corner that p contains in Ri cannot be a marked corner of an arc
in RizV

oppq, since the region containing any face in Ri cut out by p contains any such region cut out by an arc
in RizV

oppq by construction. Note further that for such a corner pv, F q, there is an edge from v to two unique
vertices in Ri, both contained in p, since if this were not the case, p would not contain pv, F q.

For the remainder of this section, we work with a fixed tree T , and a fixed arc p of T .

Similar to our definition of the contracted tree earlier, we can define two new trees, T1 and T2. We define Ti
by the following procedure:

(1) Delete all vertices in Rjzp and edges between these vertices. This gives a new tree, T 1i ; denote the image
of p in T 1i by p1.

(2) Note that if p1 contains a corner pv, F q, then F is either the image of a face in Ri, or is the unique face in
T 1i that is incident only to vertices in p1. If the former, delete v and any edges incident to it. As discussed
in definition 3.8, such a v is incident to two unique vertices in Ri. After deleting v, connect these two
vertices by a new edge. We obtain a new tree.

(3) Repeat the second step with the resulting tree until no corners in the image of Ri remain. The resulting
tree is Ti.

It is clear that Ti is a tree with every interior vertex of degree at least three. We now provide an example of the
construction of T1 and T2.

Example 3.9. Figure 1 shows the above procedure. We start with our tree T on the far left, with arc p outlined
in green. Each new picture represents a step in the procedure, where here i “ 1. Figure 2 shows the result of
applying the procedure to T when i “ 2.
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p

R1R2

p′

paq pbq pcq pdq

Figure 1. The steps outlined in the above procedure.

Figure 2. The tree T2, obtained by following the same procedure but with R2.

The following results show that the poset Sp has a very interesting structure.

Theorem 3.10. Letting Sp be the same poset defined above, Sp –
ÝÝÑ
FGpT1q ˆ

ÝÝÑ
FGpT2q.

Proof. There is a natural bijection ϕ from Sp to
ÝÝÑ
FGpT1q ˆ

ÝÝÑ
FGpT2q. For F 1 P Sp and i P t1, 2u, we can remove

all arcs in F 1 containing any vertices in Rjzp and then remove vertices and contract edges according to the

construction of Ti. We claim that the remaining collection of arcs, F 1i, is in
ÝÝÑ
FGpTiq. To see that F 1i is a facet of

r∆NCpTiq, note that by construction the total rank of T1 and T2 is the rank of T , and since we split any F 1 into
F 11 and F 12 such that the total number of arcs in both of these facets is the number of arcs in F minus one (p
becomes a boundary arc in both facets), we cannot add any noncrossing arc to F 1i. This is because every member

of V opT q has a unique image in exactly one Ti, and so the total number of arcs in any facet of r∆NCpT1q and any

facet of r∆NCpT2q sums to |V opT q| ´ 2 “ |F | ´ 1.

We construct F 1i for i “ 1 and i “ 2, thus producing a pair pF 11,F 12q P
ÝÝÑ
FGpT1q ˆ

ÝÝÑ
FGpT2q, so that ϕ is

well-defined. It is clear that ϕ is injective, and surjectivity follows from the fact that a pair of facets, one in
ÝÝÑ
FGpT1q and the other in

ÝÝÑ
FGpT2q, determine an element of

ÝÝÑ
FGpT q by taking the union of the image in T of each

arc in F i for i “ 1, 2 and then adding in p—this operation is clearly injective, since if F1 contains an arc that
F 11 P

ÝÝÑ
FGpT1q does not, any element of

ÝÝÑ
FGpT q corresponding to F 11 will also lack that arc.

We will first show that ϕ´1 is order-preserving; it suffices to show that ϕ´1 preserves the markings of every
arc in F 1i, since if every marking of F 1i is preserved under ϕ´1, if a facet F2i P

ÝÝÑ
FGpTiq is obtained from F 1i by a

flip at arc t, then F2 can be obtained from F 1 by a flip at the arc in
ÝÝÑ
FGpT q corresponding to t. Observe that the

image of any arc t in some F 1i under ϕ´1 can never be marked at a corner that p contains in Ri, since the region
cut out by p containing the corresponding face is always larger. Thus, the markings of the image of t depend only
on the other arcs in F 1i, and ϕ´1 does not alter these markings, so the result follows.

The proof that ϕ is order-preserving is more difficult.

The bijection ϕ naturally induces a surjection ϕ1 :
ÝÝÑ
FGpT q Ñ

ÝÝÑ
FGpT1q. Suppose by contradiction that we have

some F ăÝÝÑ
FGpT q

F 1 but F1 :“ ϕ1pFq ćÝÝÑFGpT1q
F 11 :“ ϕ1pF 1q. Recall the injective lattice map φ from

ÝÝÑ
FGpT q

to BicpT q. We have that φpF1q Ę φpF 11q in BicpT1q and φpFq Ď φpF 1q in BicpT q. Since in this proof we will
frequently be switching between T and T1, if s is a segment of T1, we write it as s1, and its image in T under the
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process of obtaining T from T1 by s, similarly with arcs.

Since φpF1q Ę φpF 11q, there exists s1 P φpF1qzφpF 11q. The first claim is that s1 must overlap p1 along a
segment s1p in T1. If s1 does not overlap p1 at all, then s does not overlap p at all, and thus when we pass from

F to F 1, we cannot obtain s, since no segment from Cp or Cq for q P R2 can be composed with other segments
to form s. Suppose that s1 just overlaps with p1 at a vertex v1. Since s1 R φpF1q, there is no composition of
segments in Cq1 for q1 P F 11 that can form s1. Note that v is an interior vertex in T , and hence s only overlaps
with p at v in T . It follows that no segment in Cp or in Cq for q P R2 can be used in a composition of s, since
all segments in s are not subsegments of p. Thus, s1 overlaps p1 along a segment s1p “ ru

1
1, u

1
2s contained in p1.

Note that sp is a segment contained in p. We can assume that s1 P Cq1 for q1 P F1, since if we show that all such
segments are contained in some Cr1 for r1 P F 11, then any composition of such segments is as well.

Since s1 R φpF 11q, there must be some t “ rv1, v2s P Cp or Cq for q P R2 that is part of a decomposition of s,
specifically of sp, in φpF 1q. Let q be any such arc containing t. Note that since t P Cq, orienting q from v1 to v2
(without loss of generality) must turn right at v1 and left at v2. We claim that one of v1 or v2 is a corner of p
on the R1 side. If q “ p, then since p must turn a different direction at v1 than at v2, one of these turns implies
that vi is part of a corner pvi, F q of p in R1. If q P R2 and by contradiction neither v1 or v2 is a part of corner of
q in R1, then both are parts of corners of q in R2. However, this implies that q turns at the same direction at v1
and v2, which is a contradiction—thus, the claim is true. Now since one endpoint of t is vi such that pvi, F q is a
corner of p in R1 and v1i is not an interior vertex of T1, the segment sp cannot have vi as an endpoint, since both
of its endpoints are vertices of T that are also interior vertices of T1. Thus, we must have some other segment
t1 “ rvi, v3s in some Cq1 , where now q1 is any arc in F 1. Note that since t1 only agrees with t at vi, q

1 must turn
a different direction than q at vi, since if it turns the same direction, the turn at vi is always either an initial
left turn, or a terminal right turn, neither of which allows t1 to be in Cq1 . It follows that q1 P R2, since pvi, F q
is a corner in R1, and the corner that q1 contains at vi is a corner in R2. Hence, the other corner of q1, pv3, F

1q,
cannot be in R2, and is thus a corner of p in R1. But now v3 cannot be an endpoint of sp either, since v13 is not
an interior vertex in T1. It is clear that this process will continue indefinitely, a contradiction. �

Corollary 3.11. The poset Sp a lattice.

Corollary 3.12. Let p be an arc in some tree T . If there exists a facet F P ÝÝÑFGpT q such that p is green in F and

all other arcs are red, then F is the unique facet of r∆NCpT q with this property.

Proof. Let F be such a facet. As described in the proof of Theorem 3.10, F defines facets F1 P
ÝÝÑ
FGpT1q and

F2 P
ÝÝÑ
FGpT2q. Moreover, the proof of Theorem 3.10 also implies that F i “ 1̂ÝÝÑ

FGpTiq
, since the color of every arc

is preserved. If there exists another F 1 P ÝÝÑFGpT q containing p as a green arc and the rest red, then F 1i ‰ F i for

some i P t1, 2u. This implies that
ÝÝÑ
FGpTiq has two distinct maximal elements, which contradicts the fact that

ÝÝÑ
FGpTiq is a lattice. Thus, F is unique.

�

The following result is more general, and addresses how arcs can turn from red to green in a facet of
ÝÝÑ
FGpT q,

and is important in light of the result that will follow it.

Proposition 3.13. Let F P
ÝÝÑ
FGpT q. If p “ ru1, u2s is a green arc in F , then p cannot change color due to a

sequence of flips that do not involve p.

Proof. Suppose by contradiction that this can occur. Then there must be a facet F2 in which p is green, and it
must be separated by a single flip from facet F 1, in which p is red. We can assume without loss of generality that
F2 “ F . Suppose that p is marked at pv1, F1q and pv2, F2q. We will use the Figure 3 (a) throughout the proof as
a reference:

In order to turn p red, we need to change at least one marking of p. It is easy to see that our flip cannot
change both markings. In order to do this, we p must no longer be marked at these corners, which it will be
unless a new arc in F 1 inherits these markings. Thus, the arc that we obtain after the flip to reach F 1 is marked
at both pv1, F1q and pv2, F2q, making it green, a contradiction, since such an arc is always red.

Now suppose that p can be made red by changing one of its markings. Assume without loss of generality that
we change the marking pv1, F1q. In order to do this, the new arc t1 “ rw1, w2s that we obtain in F 1 after flipping
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(v1, F1)

(v2, F2)

v1

v2

p

F2

F1

(v1, F1)

v1

F1

F3

t′

(v3, F4)

(v3, F5)
(v2, F2)v2
F2

p

(v4, F6)

paq pbq pcq

Figure 3.

an arc t “ ru3, u4s in F must be marked at pv1, F1q. Since t1 is red in F 1, the fact that it is marked at pv1, F1q

implies that the other marking of t1 must lie on rw1, v1s, where w1 is the endpoint of t1 whose path to v2 passes
through v1; see Figure 3 (b). Call this other marking of t1 pv3, F4q. Note that t is marked at pv3, F5q and pv1, F3q,
where F5 is the face paired with F4 during the flip.

The key observation now is that in order for p to become red, its new marking in F 1, pv4, F6q, must lie on
rv2, u2s; see Figure 3 (c). However, p is not marked at pv4, F6q, although it contains the corner. Since the only
change from F to F 1 is the position of t, it follows that no arc except t can be marked at pv4, F6q, since if some
other arc r were marked there, p would not be marked there in F 1, since r does not change from F to F 1. Thus,
t is marked at pv4, F6q, which contradicts the fact that one of its markings, pv3, F5q, must lie on rw1, v1s, which
is disjoint from rv2, u2s. It follows that p cannot be turned red with a flip.

�

We now come to a result that follows from the above theorem and Theorem 3.10 that discusses when an arc
cannot be contained in certain facets of

ÝÝÑ
FGpT q.

Theorem 3.14. Let F P ÝÝÑFGpT q and p a green arc in F . Let F 1 be the facet obtained by flipping p in F . Then

rF 1, 1̂s X Sp “ H.

Proof. By Theorem 3.10 if F 1 ă F2 for some F2 P S where p is red, then F2 can be reached from F by a sequence
of flips not involving p. This contradicts the result of Proposition 3.13, since p is green in F and red in F2.

�

Corollary 3.15. For a fixed arc p, Sp is a sublattice of
ÝÝÑ
FGpT q.

Proof. It suffices to show that Sp “ r0̂Sp , 1̂Sps, where this is an interval in
ÝÝÑ
FGpT q. First, it is clear that Sp is

contained in this interval. Suppose by contradiction that we have some facet F that is larger than 0̂Sp and smaller

than 1̂Sp
but is not in Sp; i.e., F does not contain p. Since F ą 0̂Sp

, we can reach F from 0̂Sp
via a sequence of

flips, and since p P 0̂Sp
, this sequence of flips must involve a flip at p. However, we can also reach 1̂Sp

from F via

a sequence of flips, which is a contradiction, since we have already flipped p by the time we reach F from 0̂Sp
,

contradicting Theorem 3.14, as 1̂Sp
P Sp.

�

The result of this theorem can be used alongside the results of the past two subsections to prove that the
lattice NCPpT q is graded, as follows.

Theorem 3.16. The lattice NCPpT q is graded of rank #V opT q ´ 1.
9



Proof. Let B,B1 P NCPpT q, and n “ #V opT q. We will show that if we can merge m blocks of B, where
3 ď m ď n to obtain B1, then we can merge m´ 1 of these blocks to obtain an element B2 P NCPpT q. Let B1 be
the union of m blocks of B. By Theorem 3.4, we can assume without loss of generality that m “ n, since if this
equality does not hold, we can consider B as an element NCPpTB1q.

For a facet F P
ÝÝÑ
FGpT q, define IF :“ r

Źm
i“1tF i P

ÝÝÑ
FGpT q | pF i,Fq P Covp

ÝÝÑ
FGpT qqu. Now let F P

ÝÝÑ
FGpT q be

the unique facet corresponding to B. By Theorem 2.8, this facet satisfies λÓpFq “ SegpBq and ψpFq “ SegpBq.

Recall that ψpFq is the set of all labels appearing in IF . We will construct a facet F 1 P ÝÝÑFGpT q where IF Ă IF 1

and #λÓpF 1q “ n´ 2.

By assumption, F contains at least two green arcs, p and q. By Corollary 3.15, Sp is a sublattice of
ÝÝÑ
FGpT q,

and hence
Ž

ÝÝÑ
FGpT q

Sp “ 1̂Sp P Sp; from now on all meets and joins involving Sp are taken in
ÝÝÑ
FGpT q unless oth-

erwise specified. We claim that
Ž

Sp is our desired facet. By Theorem 3.14, p is green in
Ž

Sp, since F ďŽ

Sp,

and p P
Ž

Sp. This implies that
Ž

Sp is the unique facet in
ÝÝÑ
FGpT q with p green and all other arcs red, since if

Ž

Sp contained any other green arcs, it would be strictly less than another element of S. Hence, we know that
#λÓp

Ž

Spq “ n´ 2, as desired.

Observe now that every element that
Ž

Sp covers in
ÝÝÑ
FGpT q is contained in Sp. Moreover,

Ź`
i“1tF i P

ÝÝÑ
FGpT q |

pF i,
Ž

Spq P Covp
ÝÝÑ
FGpT qqu “

Ź

Sp, since

tF i P
ÝÝÑ
FGpT q | pF i,

ł

Spq P Covp
ÝÝÑ
FGpT qqu “ ϕ´1pST1

q, ST1
:“ tpF 1i, 1̂ÝÝÑFGpT2q

q,F 1i P
ÝÝÑ
FGpT1q | pF 1i, 1̂ÝÝÑFGpT1q

q

P Covp
ÝÝÑ
FGpT1qqu \ ϕ´1pST2

q, ST2
:“ tp1̂ÝÝÑ

FGpT1q
,F2i q,F2i P

ÝÝÑ
FGpT2q | pF2i , 1̂ÝÝÑFGpT2q

q P Covp
ÝÝÑ
FGpT2qqu,

and hence
Ź`
i“1tF i P

ÝÝÑ
FGpT q | pF i,

Ž

Sq P Covp
ÝÝÑ
FGpT qqu “

Ź

pϕ´1pST1
q Y ϕ´1pST2

qq “ ϕ´1p
Ź

pπ1pST1
q Y

π1pST2qq,
Ź

pπ2pST1qYπ2pST2qqq “ ϕ´1p0̂ÝÝÑ
FGpT1q

, 0̂ÝÝÑ
FGpT2q

q “
Ź

Sp, where πi is the canonical projection; the fact

that the meet in
ÝÝÑ
FGpTiq of all elements covered by 1̂ÝÝÑ

FGpTiq
is 0̂ÝÝÑ

FGpTiq
follows from the fact that

ÝÝÑ
FGpTiq is a

CU-lattice.

Hence, we have that Sp “ r
Ź

Sp,
Ž

Sps “ IŽSp
. To finish the proof, it suffices to show that IF Ď Sp. Since p

is green in F , all of the facets that F covers in
ÝÝÑ
FGpT q are in Sp, and therefore their meet is in Sp. Thus, if any

member of IF is not in Sp, then p must be flipped in some facet strictly between the minimal element of IF and
F , which by Theorem 3.14 cannot occur, since p P F .

Now if B Ì B1 in NCPpT q, we must combine two blocks of B to obtain B1, or else by the above result there
is at least one element strictly between B and B1. The theorem follows.

�

3.3. Further lattice properties. In this subsection, we show that, unlike the classical noncrossing partition
lattice NCpnq, in general the lattice NCPpT q is not self-dual. We investigate a bijection defined on NCPpT q in
[3] called the Kreweras Complement and show that NCPpT q is rank-symmetric.

Definition 3.17. For a tree T , a red-green tree T is a collection of pairwise noncrossing colored segments such
that every pair of vertices in V opT q is connected by a sequence of curves in T . The segments in T are allowed to
be red or green.

Theorem 3.18. Let B be a noncrossing tree partition. There exists a unique red-green tree T whose set of red
segments is SegpBq.

See [3] for the proof of this result.

Definition 3.19. Let B be a noncrossing tree partition. Let T be the tree corresponding to B as discussed in
the above theorem. Garver and McConville show in [3] that the green segments in T define a new noncrossing
tree partition of T . We call this partition the Kreweras Complement of B, and denote it by KrpBq.

Theorem 3.20. [3] The map Kr : NCPpT q Ñ NCPpT q is a bijection.
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The following result discusses what we can deduce about KrpBq given what we know about B.

Theorem 3.21. If B P NCPpT q has m blocks, then KrpBq has #V opT q ´m` 1 blocks.

Proof. In order to obtain a red-green tree, there must be a path consisting of green segments from every block of
B to every other block. For a block B P B, if a vertex in B is connected by a segment in SegpKrpBqq to another
block of B, then we call this vertex a connecting vertex. Otherwise, we call it an isolated vertex. Observe
that every isolated vertex in a block of B corresponds to a singleton block in KrpBq.

We claim that a maximal sequence of green segments rw1, w2s, rw2, w3s, . . . , rwn´1, wns, where wi is a connect-
ing vertex, defines a block of KrpBq, and that the two types of blocks of KrpBq that we have described make up
all of its blocks. It is clear that the above sequence is at least contained in a block of KrpBq. To see that in fact it
is the entire block, note that if this block contained any more elements, they would be other connecting vertices,
contradicting the maximality of our construction. The fact that the two types of blocks previously described
encompass all of the blocks of KrpBq is clear. Note that in the above sequence of green segments, for i ‰ j, wi
and wj cannot be in the same block of B, or else T contains a cycle. Thus, it suffices to show that the number of
isolated vertices and maximal sequences of connecting vertices, call this sum SpBq, is always #V opT q ´m` 1.

By the above remarks, the blocks of B form the vertices of a tree, where each edge in this tree is given by a
segment of a block in KrpBq. Hence, there are m´ 1 such segments. Note that the upper bound for the number
of blocks of KrpBq is #V opT q. We claim that every one of the green segments in T between blocks of B reduces
the numbers of blocks in KrpBq by 1. If we add a green segment s between two vertices u and v, we have three
cases:

(1) u and v are connecting vertices prior to adding s. In this case, the number of blocks in KrpBq decreases
by 1, since we combine two separate blocks of sequences of green segments;

(2) (without loss of generality) v is a connecting vertex prior to adding s, but u is not. In this case, we lose
1 block of KrpBq, since u is no longer an isolated vertex;

(3) neither u nor v is a connecting vertex prior to adding s. In this case, we lose two blocks of KrpBq, since
both u and v are no longer isolated vertices, but gain a block of KrpBq, since we now have the beginning
of a sequence of green segments.

The result follows.
�

In light of this result, we see that the noncrossing tree partition lattice has the following additional structure:

Corollary 3.22. The noncrossing tree partition lattice is rank-symmetric.

The name “Kreweras Complement” comes from a similar bijection defined on the NCpnq lattice, which has
the important property of being order-reversing. In fact, it is modified in [5] to prove that the NCpnq lattice is
self-dual. We now show that in general there does not exist an order-reversing bijection on the noncrossing tree
partition lattice. In particular, unlike this classical bijection, the Kreweras Complement is not order-reversing.

Theorem 3.23. In general, there does not exist an ordering-reversing bijection on the noncrossing partition
lattice.

Notation 3.24. When we write a noncrossing tree partition B, we only write the blocks of B that are not
singletons.

Proof. We employ the following tree as a counterexample:

1

5

2 3 4

6
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Suppose by contradiction that there exists some order-reversing bijection on NCPpT q. Consider B “ t1, 2, 5ut3, 4u P
NCPpT q. Note that B covers four elements of NCPpT q : t1, 2, 5u, t1, 5ut3, 4u, t2, 5ut3, 4u, and t1, 2ut3, 4u. More-
over, B is covered by three elements: t1, 2, 5, 6ut3, 4u, t1, 2, 3, 4, 5u, and t1, 2, 5ut3, 4, 6u. In order for an order-
reversing bijection to exist, NCPpT q must contain an element that covers three elements and is covered by four
elements. We claim there does not exist such a partition. First, it is trivial that no element consisting of five
blocks can satisfy this property—these are the atoms. Similarly, no elements consisting of two blocks can satisfy
this property. Moreover, this element cannot contain three blocks either: for a partition three blocks, there are a
maximum of three elements covering it.

We now explain why no four-block element of NCPpT q can satisfy the desired properties. Note that we have
two types of four-block elements, either two pairs of two vertices and the rest singletons, or a triple of vertices
and the rest singletons. Our element cannot be of the first type, as such partitions cover exactly two elements.
By symmetry, it suffices to check that none of t1, 2, 3u, t1, 2, 5u, t1, 2, 6u, t1, 2, 4u, t2, 3, 5u, t1, 3, 4u, and t1, 3, 6u
are covered by four elements, which is a straight-forward computation.

�

Corollary 3.25. In general, the noncrossing tree partition lattice is not self-dual.

The fact that the noncrossing tree partition lattice is not self-dual marks a significant difference from the
classical noncrossing partition lattice. However, we conjecture that the following structural similarity does hold:

Conjecture 3.26. The noncrossing tree partition lattice is rank-unimodal.

4. Shellability

In [1], the author shows that the lattice NCpnq is EL-shellable. In this short section, we discuss the way in
which a similar labeling system to that employed in [1] fails in general for the noncrossing tree partition lattice.

Definition 4.1. For a tree T with #V opT q “ n, assume that we label the interior vertices with t1, . . . , nu, with
each number appearing as only one label. We can define a labeling of NCPpT q, where if pB,B1q P CovpNCPpT qq,
then λpB,B1q “ maxpminB1,minB2q, where B1 and B2 are the blocks of B that are merged to obtain B1. We
call this labeling an ordered vertex labeling. Note that for NCpnq, this same function λ is an EL-labeling.

Proposition 4.2. In general, there does not exist an ordered vertex labeling of the noncrossing tree partition
lattice that is an EL-labeling.

Proof. We employ the following tree as a counterexample:

b

v1

v2

v3

The three circled subgraphs in our picture are called the outer triples of T . In a given outer triple, the lone
vertex with three edges to other interior vertices of T is called the center vertex of the triple, and the other two
vertices in the triple are called the edge vertices of the triple. We call the very center vertex the base vertex
of the tree, denoted by b. Note that the center vertex of one outer triple must receive a label that is greater than
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or equal to 3; denote this vertex by v1, its triple by G, and the edge vertices of G by v2 and v3.

More generally, let rB,B1s be an interval in NCPpT q. Note that any maximal chain in this interval is also a
maximal chain in the lattice of set partitions of rns, Πpnq, since every covering relation in NCPpT q is given by
combining two blocks. It is known that λ gives an EL-labeling for Πpnq, and so there exists a unique increasing
lexicographically-minimal maximal chain in rB,B1s Ď Πpnq, and this must be the same chain in NCPpT q. More-
over, this maximal chain is given by combining two blocks that yield the smallest possible covering label under λ
at every step. Denote the smallest possible covering relation label in rB,B1s involving B by πpB,B1q. Hence, if
we can show that in every case, there is such an interval where the smallest possible covering label under λ can
never be achieved by an element covering B in NCPpT q, then we are done.

Suppose by contradiction that some ordered vertex labeling of NCPpT q is an EL-labeling. Denote the label of
a vertex v P V opT q by `pvq. Note that one edge vertex in G must have a label greater than that of v1; if both of
their labels are smaller, then B “ tv2, butv3u and B1 “ tv1, v2, v3, bu are both in NCPpT q with B ă B1. We have
that πpB,B1q is achieved by merging tv2, bu and tv3u. However, the resulting set partition is not in NCPpT q, so
that we cannot have an increasing chain from B to B1.

Suppose first that `pv1q ą 3. Observe that two of t1, 2, 3u must be labels of vertices outside of G; call the
two vertices with these labels w1 and w2 (there may be three of such vertices—in that case just pick the ones
with labels 1 and 2). Let p1 be the path in T from w1 to v2, and p2 the path in T from w2 to v3 (including the
endpoints). Then B “ tv2, w1utv3, w2u and B1 “ tV opp1q, V

opp2qu; we remark that the roles of w1 and w2 may
have to be interchanged in order to ensure that B P NCPpT q— the important thing to note is that no matter
where w1 and w2 are located in T , (at least) one of tv2, w1utv3, w2u and tv2, w2utv3, w1u is in NCPpT q, and we
assume without loss of generality that the configuration given above is in NCPpT q. Thus, we have that B and B1

are in NCPpT q, with B ă B1. Moreover, πpB,B1q is given by merging tv2, w1u and tv3, w2u in B, which gives a
set partition that is not in NCPpT q.

Hence, we can assume that `pv1q “ 3. If `pv2q, `pv3q ą 3, then the identical argument used in the paragraph
above can be used to show that there exist B,B1 P NCPpT q with B ă B1 and no increasing maximal chain in
rB,B1s Ď NCPpT q. Therefore, assume further that `pv2q P t1, 2u. However, this means that a center vertex of one
of the two other outer triples has a label strictly greater than 3, so that again the same argument from the above
paragraph carries over to provide the same contradiction. It follows that our ordered vertex labeling cannot be
an EL-labeling.

�

5. A CU-labeling of BicpT q

In [3], the authors prove that BicpT q is congruence-uniform. Thus it admits a CU-labeling. In this section,
we will explicitly construct such a labeling.

Definition 5.1. A lattice is congruence-uniform if it can be constructed from the element lattice by a finite
sequence of interval doublings. Alternatively, the set of its covering relations permits a CU-labeling.

Definition 5.2. For a tree T , segments s1, s2 are composable if s1 ˝ s2 P SegpT q. A subset B Ă T is closed if for
s1, s2 P B, s1 ˝ s2 P B. B is biclosed if both B and its complement, BC , are closed.

Definition 5.3. We say a segment s is a split of segment t if s is contained in t, and s and t share exactly one
endpoint.
A break of a segment ra, cs is a pair of splits pra, bs, rb, csq, of ra, cs for some vertex b of segment ra, cs lying between
a and c. We say that b is the faultline of the break pra, bs, rb, csq.

Definition 5.4. Define the poset P whose elements are of the form stf1,f2,...,fmu, where s is a segment of T
with m breaks and each fi is a split of s with no two f 1is from the same break. The ordering is given by
ra, csts1,s2,¨¨¨ ,sku ě rd, estm1,m2,¨¨¨ ,mlu if ra, cs contains rd, es.

Theorem 5.5. Bic(T ) has a CU-labeling, rλ : CovpBicpT qq Ñ pSegpT qˆ2SegpT qq, given by: rλpS Ì pSYtra, csuqq “
ra, csts1,s2,¨¨¨ ,sku where s1, s2, ¨ ¨ ¨ , sk are the splits of ra, cs which are contained in S.
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Example 5.6. Consider the tree T “ P4, consisting of a path of 4 vertices numbered 1,2,3,4 in order. Consider
the biclosed sets B “ tr1, 2s, r1, 3su and C “ tr1, 2s, r1, 3s, r1, 4su.

Then rλpB Ì Cq “ r1, 4str1,2s,r1,3su.

Proof. of Theorem 5.5
We will verify axioms (CN1)-(CN3), as well as (CU1) and (CU2) [3]. For convenience, we will let λ :

CovpBicpT qq Ñ SegpT q denote the first coordinate function of rλ. Note that λpB Ì B Y tsuq “ s.
(CN1): Given C and D which both cover B where C “ B Y ra, cs and D “ B Y rd, es. The biclosed set

C _ D Ą tra, cs, rd, esu Say C _ D covers C 1 ě C and D1 ě D. If C 1 Ą trd, esu, then C 1 ě C ě B so C 1 ě D
meaning that C _D is not the least upper bound of C and D, a contradiction. So C 1 does not contain rd, es and

similarly, D1 does not contain ra, cs. Thus rλpC 1 Ì C _Dq is rd, es with some subscript, while rλpD1 Ì C _Dq is
ra, cs with some subscript.

The label rλpB Ì Cq is ra, css1,s2,¨¨¨ ,sk and rλpB Ì Dq is rd, esm1,m2,¨¨¨ ,ml
. Thus C contains s1, s2, ¨ ¨ ¨ , sk, so C 1

does as well. The set D contains m1,m2, ¨ ¨ ¨ ,ml, so D1 does as well. Thus the subscripts forrλpC 1 Ì C _Dq are

s1, s2, ¨ ¨ ¨ , sk and the subscripts for rλpD1 Ì C _Dq are m1,m2, ¨ ¨ ¨ ,ml. So rλpC 1 Ì C _Dq “ rλpB Ì Dq while
rλpD1 Ì C _Dq “ rλpB Ì Cq.

(CN2): Let C and D cover B and both C 1 ą C and D1 ą D be covered by C _ D. Labels of the form
rλpG Ì Hq where C ď G,H ď C 1 or D ď G,H ď D1 consist of elements of C _D which are not elements of B,
with some subscript. C _D is the closure of C YD. It consists of four types of segments:

(1) segments in B
(2) a composition of ra, cs with segments in B, which is necessarily in C.
(3) a composition of rd, es with segments in B, which is necessarily in D.
(4) a composition of both ra, cs, rd, es and perhaps some segments in B.

A segment of type 1 is in B and thus cannot be λpG Ì Hq. A segment of type 2 cannot be used as a label
between C and C 1 since it is contained in C. It cannot be λpG Ì Hq where D ď G Ì H ď D1 because it is
a segment including ra, cs and thus not included in D1. A segment of type of type 3 cannot be used as a label
between D and D1 since it is contained in D. It cannot be λpG Ì Hq where C ď G Ì H ď C 1 because it is a

segment including rd, es and thus not included in C 1. Hence any label rλpG Ì Hq is a segment of type 4) with
some subscript.

A segment of type 4) contains both ra, cs and rd, es so rλpG Ì Hq ě rλpB Ì Cq, rλpB Ì Dq.
(CN3): Within a maximal chain of the interval rx, ys, the label given to the covering relation S Ă T is the

element of T not contained in S, (possibly) along with some subscripts. For S1 Ă T1 and S2 Ă T2 where S1 ă S2,
we have T1 ď S2 so S2 already contains the element of T not contained in S and thus such an element cannot be
involved in the label of S2 Ă T2. So all labels in a maximal chain are unique.

(CU2): Consider elements M and M 1 of Bic(T ) which are uniquely covered by M˚ and M 1˚ respectively.

Assume for the sake of contradiction that rλpM Ì M˚q “ rλpM 1 Ì M 1˚q. Thus M˚ “ M Y tra, csu and M 1˚ “

M 1 Y tra, csu for some segment ra, cs. The sets M and M 1 contain the same split ra, bs or rb, cs for each break
pra, bs, rb, csq of ra, cs.

Also M _ M 1 ě M˚,M 1˚. Thus the closure of M Y M 1 contains ra, cs. So there exist some composable
set of segments ra, b1s, rb1, b2s, rb2, b3s, ¨ ¨ ¨ , rbn´1, bns, rbn, cs in M YM 1. Without loss of generality, ra, b1s P M ,
rb1, b2s P M

1, rb2, b3s P M , etc. Since ra, b1s P M , then ra, b1s P M
1. rb1, b2s P M

1 as well so ra, b2s P M
1 via

composition. Thus, ra, b2s P M . rb2, b3s P M , so ra, b3s P M via composition. Thus ra, b3s P M
1. Continuing in

this manner, we see that ra, cs PM , which is a contradiction. Thus M ÌM˚ and M 1 ÌM 1˚ have different labels.
(CU1): Consider elements J and J 1 of Bic(T ) which uniquely cover J˚ and J 1˚ respectively. Thus J˚, J

1
˚ ě

J ^ J 1. Assume for the sake of contradiction that rλpJ˚ Ì Jq “ rλpJ 1˚ Ì J 1q. Say that this label is ra, cs with some
subscripts. Thus J and J 1 both contain ra, cs, so ra, cs P J _ J 1. J˚ and J 1˚ do not contain ra, cs so J ^ J 1 does
not either. The set J ^ J 1 is the complement of JC _ J 1C so JC _ J 1C contains ra, cs. So ra, cs is in the closure
of the union of the biclosed sets JC and J 1C . For each break of ra, cs, J˚ and J 1˚ and thus J and J 1 contain the
same split. Thus JC and J 1C contain the same split. We then apply argument used for (CU2). �

6. Shard Intersection Poset

Throughout this section, we let rλ : CovpBicpT qq Ñ pSegpT q ˆ 2SegpT qq denote the CU-labeling constructed in

Section 5 and λ : CovpBicpT qq Ñ SegpT q denote the first coordinate function of rλ.
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Definition 6.1. For an element B of the poset of biclosed sets, define ψpBq as tλpu, vq | R ď u Ì v ď Bu where
R is the meet of the biclosed sets covered by B.

Definition 6.2. ΨpT q is the poset whose elements are ψpBq for biclosed sets B of T , partially ordered by
inclusion.

Conjecture 6.3. ΨpT q is a lattice.

Lemma 6.4. The shard intersection order of Bic(T ) has a unique maximal element.

Proof. The top element, X of Bic(T ) is the set of all segments of T . It covers every set consisting of all segments
of T except ra, bs where a and b are adjacent in T: Such a set is necessarily closed because it contains any segment
rc, es that is formed from composing two segments of T . Its complement is necessarily closed since it contains
only one segment. It is covered by X because it contains all but one segment of T .

Thus the meet of the elements covered by X cannot contain any segments ra, bs where a, b are adjacent in T .
Thus the complement of the meet contains all segments ra, bs of T where a, b are adjacent. By composition, the
complement of the meet must contain all segments in T so the meet contains no segments. Thus ψpXq consists
of the set of all labels. �

Given a biclosed set B, which covers B1, B2, . . . , Bk, with rλpBi, Bq “ λi for i “ 1, 2, . . . k, we let S “

ts1, s2, . . . , sku where si is the segment part of λi, given by λpBi, Bq. The set of compositions of segments in S
is denoted by S.

Definition 6.5. Let s P S be a segment expressed as si1 ˝ si2 ˝ . . . ˝ siw with each sij P S. Let t be a split of s
such that there exists a break pt, t1q or pt2, tq of s. We say that t is a faultline split if the faultline of such a break
occurs at the endpoint of some sij . Otherwise, we say that t is a non-faultline split.

Proposition 6.6. Given a biclosed set B, which covers B1, B2, . . . , Bk, with λpBi, Bq “ siδi for i “ 1, 2, . . . k,
we can describe ψpBq as consisting of all labels of the following form:

psi1 ˝ si2 ˝ . . . ˝ siwqδ

where ra, cs “ si1 ˝ si2 ˝ . . . ˝ siw P S and δ is a list of segments containing one split per break of s with any of
the 2w´1 possible choices for the faultline splits and with the non-faultline splits determined as follows: for b, a
vertex within rx, ys “ sij for some 1 ď j ď w, where x is the endpoint of sij closer to a, then δ contains ra, bs if
δij contains rx, bs and δ contains rb, cs if δij contains rb, ys.

Example 6.7. Consider the tree T “ P4 given by a path of 4 vertices numbered 1,2,3,4 in order. Con-
sider the biclosed set B “ tr1, 2s, r2, 3s, r1, 3s, r1, 4su. In BicpT q, B covers B1 “ tr1, 2s, r1, 3s, r1, 4su and B2 “

tr1, 2s, r2, 3s, r1, 3su. The meet of the elements covered by B is B1 ^B2 “ tr1, 2s, r1, 3su.
Thus, the set ψpBq is given by tr2, 3stu, r1, 4str1,2s,r1,3suu.

Proof. of Proposition 6.6

Lemma 6.8. For a biclosed set B and any pBi, Bq and pBj , Bq in Cov(Bic(T)), the segment λpBi, Bq is not a
split of λpBj , Bq.

Proof. Suppose for the sake of contradiction that there exist some biclosed sets B1, B2 such that λpB1, Bq is a
split of λpB2, Bq. Then B1 “ B ´ tra, bsu and B2 “ B ´ tra, csu where ra, bs is a split of ra, cs.

Consider L “ B ´ tra, bs, ra, csu. Since L Ă B1, B2, a composition of composable elements in L lies in B1 and
B2. Thus it lies in B1 X B2 “ L so L is closed. A composition of two elements in LC is a composition of two
elements in BC1 XB

C
2 and perhaps ra, cs and ra, bs. A composition of two elements in BC1 is in BC1 and thus in LC .

A composition of two elements in BC2 is in BC2 and thus in LC . The only other possible composition of elements
would be ra, bs and ra, cs but those are not composable, so LC is closed. Thus L is biclosed.

Consider the segment rb, cs. If it is not contained in B, then B1 contains ra, cs without containing ra, bs or
rb, cs, meaning it is not biclosed. If rb, cs is contained in B, then it is contained in B2, which then contains ra, bs
and rb, cs without containing ra, cs. But B1 and B2 are biclosed, so this is a contradiction.

�

Lemma 6.9. Let B1, ¨ ¨ ¨ , Bk P BicpT q denote the biclosed sets covered by B and define si “ λpBi, Bq for
i “ 1, ¨ ¨ ¨ , k. Then

k
ľ

i“1

Bi “ B ´ ts1, ¨ ¨ ¨ , sku

.
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Proof.

k
ľ

i“1

Bi “ ^tB ´ tsu | s P Su

“ p_tB ´ tsu | s P SuqC

“ pYtBC Y tsu | s P SuqC

The set YtBC Y tsu | s P Su contains BC and S. Any composition of two composable elements of BC is

in BC and any composition of two composable elements of ts1, ¨ ¨ ¨ , sku is in ts1, ¨ ¨ ¨ , sku. The composition
of n P BC and si1 ˝ si2 ˝ . . . ˝ sim can be rewritten as pn ˝ si1q ˝ psi2 ˝ . . . ˝ simq, but BC Y tsi1u is biclosed,
so n1 “ n ˝ si1 P B

C . Continuing in this manner, utilizing that each BC Y tsiu is biclosed, we see that the

composition of composable elements from BC and from ts1, ¨ ¨ ¨ , sku is itself in BC and thus in BC Yts1, ¨ ¨ ¨ , sku.

So simply,
Źk
i“1Bi “ pB

C Y ts1, ¨ ¨ ¨ , skuq
C “ B ´ ts1, ¨ ¨ ¨ , sku. �

Lemma 6.10. If s “ λpBi, Bq for some Bi covered by the biclosed set B, then RY tsu is biclosed.

Proof. A composition of two composable elements in RY tsu is either a composition of two elements in R which
is therefore in R or the composition of s with an element, r in R. A segment s ˝ r is in B so it is either in R or in
S. If s ˝ r is in S then we can write it as si1 ˝ si2 ˝ . . . sim , where si1 shares an endpoint with r and sim shares an
endpoint with s. However s is not a split of sim or vice versa, so s “ sim . If m “ 1, this would mean r ˝ s “ s,
so m ą 1. Thus r “ si1 ˝ si2 ˝ ¨ ¨ ¨ sim´1

, a contradiction since r P R “ B ´ S. Thus s ˝ r P R Ă R Y tsu. So

Rtsu is closed. A composition of two composable elements in pRtsuqC “ RC ´ tsu is a composition of elements
in RC so the only way it would not be in pRtsuqC is if it equals s. Suppose n1 ˝ n2 “ s for n1, n2 P R

C . If
n1, n2 P R

C ´ S, then n1 ˝ n2 P R´ S, a contradiction, so either n1 or n2 is in S. Without loss of generality, say
n1 “ si1 ˝ si2 ˝ . . . ˝ sim , where si1 shares an endpoint with s. This means si1 is a split of s, contradicting 6.8. So
pRY tsuqC is closed, and thus RY tsu is biclosed. �

Consider the set of segments in S. We can consider a subset, A of S to be biclosed if for every two composable
segments a, b P A, we have a ˝ b P A and for every break of a segment s P A where the splits of the break are in
S, at least one of those splits is in A.

Lemma 6.11. The biclosed subsets in the interval rR,Bs are precisely those of the form R Y A where A is a
biclosed subset of S.

Proof. Let A be a subset of S. R Ă R Y A and A Ă S Ă pBq, so R Y A Ă B. Thus, if R Y A is biclosed, it is in
the interval rR,Bs. (If A is not a subset of S, then RYA would either contain some element not in B or would
be equivalent to RYA1 for some A1 P S)

If A is a biclosed subset of S, consider the composition of two composable segments in R Y A. If they are
both in R, their composition is in R and if they are both in A, their composition is in A. If one is some r P R
and the other is some si1 ˝ si2 ˝ ¨ ¨ ¨ ˝ sim P A, then their composition is r ˝ si1 ˝ si2 ˝ ¨ ¨ ¨ ˝ sim . However r ˝ si1 is
in the biclosed set R Y tsi1u, but it is not equal to si1 , so it must be some other r1 P R. In general for rj P R,
rj ˝ sij`1

P RY tsij`1
u but is not equal to sij`1

, so it is equal to some other rj`1 P R. Thus

r ˝ si1 ˝ si2 ˝ ¨ ¨ ¨ ˝ sim “ r1 ˝ si2 ˝ ¨ ¨ ¨ ˝ sim

“ r2 ˝ si3 ˝ ¨ ¨ ¨ ˝ sim

“ . . .

“ rm´1 ˝ sim “ rm P R Ă pRYAq

so RYA is closed.
For two composable elements of pR Y AqC “ RC ´ A, their composition is in RC . pR Y AqC is closed unless

the composition of some n1, n2 P R
C ´A is in A. If n1, n2 P R

C ´ S, their composition is in RC ´ S, so without
loss of generality, n1 P S. Given n1 ˝ n2 “ psi1 ˝ si2 ˝ . . . ˝ simq ˝ n2 “ sj1 ˝ sj2 ˝ . . . ˝ sjd “ a P A, where
si1 and sj1 share an endpoint, we have that one of si1 and sj1 is a split of the other unless si1 “ sj1 . Thus
psi2 ˝ . . . ˝ simq ˝n2 “ sj2 ˝ . . . ˝ sjd where si2 and sj2 share and endpoint, so one is a split of the other unless they
are the same. Thus psi3 ˝ . . .˝simq˝n2 “ sj3 ˝ . . .˝sjd . Continuing in this manner, we see that n2 “ sjm`1

˝ . . .˝sjd .

This means that both n1, n2 P S. Since A is a biclosed subset of S and a P A, either n1 or n2 must be in A.
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So the composition of n1, n2 P R
C ´ A cannot be in A, and we get that RC ´ A is closed, and hence R Y A is

biclosed.
If A is not a biclosed subset of S, it either contains (i) some a, b without a ˝ b or (ii) there exist some a, b P S

for which a, b R A, but a ˝ b P A. In case (i), R Y A contains a, b but neither R nor A contains a ˝ b, so R Y A is
not closed. In case (ii), R Y A contains a ˝ b but since a, b R R,A, it does not contains a or b. Thus pR Y AqC is
not closed. So RYA is not biclosed in either case.

�

For a segment t “ re, f s “ si1 ˝ si2 ˝ . . . ˝ sim in S “ B ´R, it has m´ 1 breaks. To show that t with any of
the 2m´1 choices of one split per break occurs as a label in rR,Bs consider the following:

We will build a set D with the property that D is a biclosed subset of S which contains an arbitrarily chosen
split for each faultline break of t.

First, choose one split for each of the m´ 1 breaks of t and add them to D. For each split p included in D:

(1) Consider a faultline break of p into a, b where a shares an endpoint with t. If a was one of the original
splits chosen to be in D, do nothing. If a R D, add b to D.

(2) Now add compositions of segments in D to D.
(3) Repeat this process for the next break of p.

We never add something that is a split of t, except perhaps in the phase where we add compositions of segments
already in D. Since none of the original splits p P D are composable, such a composition will include at least one
b “ rx, ys (with x closer to e than y is) that was added later. This would require the presence of either re, xs or
ry, f s in D in order for a split of t to result from a composition. Initially, there is no break of t for which both
splits are contained in D. By induction, this is true before we add b to D. In the case that rx, ys was added to
D as a split of p “ re, ys: If re, xs was already in D, then it was one of the original elements of D and we would
already have the split a “ re, xs of the split p “ re, ys and not have added rx, ys to D per the rules outlined earlier.
If ry, f s was already in D, then re, ys was not, a contradiction.

In the case that rx, ys was added to D as a split of p “ rx, f s: If re, xs was already in D, then rx, f s could not
have been, a contradiction. If ry, f s was already in D then the split a “ ry, f s of rx, f s would have already been
in D and we would not have added rx, ys as per the rules outlined earlier.

The last step of this process involves taking compositions of all the elements already in D and adding them
to D so the resulting D is closed. D will be biclosed if for every element, q “ rx, ys of D and every break of q,
some split corresponding to that break is also in D.

By virtue of how the b’s were added to D any split, p, of t that was used as a seed for D has a split in D
corresponding to each of its breaks.

Consider any other rx, ys P D where x is closer to e than y is. Since this does not have e or f as an endpoint,
it is the composition of some set of b’s added during phase (1), including some rg, ys. Assume for the sake of
contradiction that there is some vertex c P rx, ys where neither rx, cs nor rc, ys is in D. Either re, cs or rc, f s was
one of the splits used to seed D. Without loss of generality, say rc, f s is in D. Since the split rc, ys of rc, f s is not
in D, we must have ry, f s P D. However, this means ry, f s was one of the original splits used to seed D. Since
rg, ys, ry, f s P D, then rg, f s P D. Thus rg, f s was one of the splits used to seed D. But since the split ry, f s of
rg, f s was already in D, the split rg, ys would not have been added in phase (1) except perhaps as a split of re, ys.
However, the split ry, f s P D so re, ys R D and thus there is no way rg, ys could have been added, a contradiction.

So D is a biclosed subset of S. The only way it could include t would be if t had been added as a composition
of two splits corresponding to the same break of t. But that situation never occurs so the biclosed set R Y D
does not include t, but B does. Some covering relation on a chain from RYD to B will have a label tµ where µ
includes the splits we originally chose as seeds for D.

For label tδ P ΨpBq and each non-faultline break, pre, hs, rh, f sq of t, either re, hs or rf, hs is in δ. h is a vertex
inside some segment sij “ rx, ys within t, where x is the endpoint of sij closer to e. If λij contains rx, hs, then
B (and R)contain rx, hs. R contains either re, hs or rh, f s. If R contains rh, f s, then R contains rx, f s since R is
biclosed. This contradicts rx, f s P S, so R contains re, hs. Thus, δ contains re, hs.

Similarly, if λij contains rh, ys, then B (and R) contains rh, ys. If R contains re, hs, then R contains re, ys P S,
a contradiction. So R, and thus δ, contains rh, f s. �

For biclosed sets B and B1 of SegpT q, we can consider the structure of ψpBq X ψpB1q. Suppose λpBi, Bq “ si
while λpB1j , B

1q “ tj . Then any label in ψpBq X ψpB1q consists of a segment s which can be expressed as a
composition of both si’s and ti’s along with some subscripts. If this composition of si’s and the corresponding
composition of ti’s share m faultlines, then we can consider this label as corresponding to both a composition
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of m ` 1 s1is and a combination of m ` 1 t1is which do not share any faultlines. We call labels in ψpBq X ψpB1q
corresponding to compositions of si’s and ti’s that share no faultlines pseudominimal. An element of ψpBqXψpB1q
is of the form sδ where s is a composition of pseudominimal elements of ψpBq XψpB1q and δ consists of one split
per break of s. There are independent choices for which faultline splits are included in δ but which non-faultline
splits are included are predetermined by the splits in the subscripts of the pseudominimal elements, in much the
same way the non-faultline splits of an element of ψpBq depend on the subscripts of the labels on the covering
relations pB1, Bq.

As a result, if the pseudominimal elements of ψpBq XψpB1q form a canonical join representation, then we can
take B2 equal to their join to obtain ψpB2q “ ψpBq X ψpB1q, which would prove Conjecture 6.3.

Remark 6.12. ΨpT q is not always graded. For example, ΨpS4q and ΨpS6q are not graded.

Proof. Label the degree 4 vertex of S4 as 0 and label the others clockwise as 1,2,3,4. For convenience, let
a “ r0, 1s, b “ r0, 2s, c “ r0, 3s, d “ r0, 4s, e “ r1, 2s, f “ r2, 3s, g “ r3, 4s, h “ r1, 4s.

We demonstrate that ΨpS4q is not graded by producing two maximal chains of differing lengths:
ψptuq “ tu Ì ψptb, euq “ tetbuu Ì ψptb, e, fuq “ tetbu, ftbuu Ì ψptb, d, e, f, guq “ tetbu, ftbu, gtduu Ì ψptb, d, e, f, g, huq “

tetbu, ftbu, gtdu, htduu Ì ψpta, b, c, d, e, f, g, huq “ tatu, btu, ctu, dtu, etau, etbu, ftbu, ftcu, gtcu, gtdu, htdu, htauu

and

ψptuq “ tu Ì ψptb, euq “ tetbuu Ì ψptb, c, e, fuq “ tctu, etbuu Ì ψpta, b, c, e, fuq “ tatu, btu, ctu, etau, etbu, ftbu, ftcuu Ì
ψpta, b, c, d, e, f, g, huq “ tatu, btu, ctu, dtu, etau, etbu, ftbu, ftcu, gtcu, gtdu, htdu, htauu

�

Conjecture 6.13. ΨpBicpSkqq for n ě 3 is graded if and only if n is odd.

7. Enumerative Results

The results developed in the Section 3 can be used to make calculations concerning the noncrossing tree
partition lattice. In particular, there are nice methods to calculate the numbers of maximal chains for the
noncrossing tree partition lattices corresponding to one-parameter families of trees. For a lattice L, we let mcpLq
denote the number of maximal chains in L. We focus on a family of trees called stars.

Definition 7.1. Define the star Sk to be a tree with k` 1 interior vertices, one of which is adjacent to the other
k, all of which have degree 3.

Proposition 7.2. The number of maximal chains, mcpNCPpSkqq is
k!Fk`1

2 where Fk is the kth Fibonacci number
with F0 “ 1, F1 “ 1.

Proof. Let taiu
m
i“1 be the set of coatoms of Sk.

First note that mcpNCPpSkqq “
řm
i“1 mcpr0̂, aisq. Also, each ai consists of two blocks. There are two possi-

bilities: either there is a block of size 1 (not the vertex of degree k) and a block of size k or there is a block of
size k ´ 1 involving the vertex of degree k along with a block of size 2.

For k ě 3, there are k of each type. So if a coatom ai consists of blocks A and B, we have mcpr0̂, aisq “
mcpNCPpAq ˆNCPpBqq.

Thus, mcpNCPpSkqq “ kpmcpNCPpS1q ˆ NCPpSk´2qq ` mcpNCPpS0q ˆ NCPpSk´1qq “ kpmcpNCPpS1q ˆ

NCPpSk´2qq `mcpNCPpSk´1qqq.
The minimal element in NCPpSk´2q has k´ 1 blocks and the maximal element has 1, so a maximal chain has

k´ 2 covering relations. Thus there are pk´ 2q` 1 “ k´ 1 ways to insert the single covering relation of NCPpS1q

into a maximal chain of NCPpSk´2q to form a maximal chain of NCPpS1q ˆ NCPpSk´2q. So mcpNCPpSkqq “
krpk ´ 1q ˚mcpNCPpSk´2qq `mcpNCPpSk´1qqs

Note that mcpNCPpS1qq “ 1 and mcpNCPpS2qq “ 3. These don’t meet the specifications for T but it is still

possible to count their maximal chains. Now for l ě 3, assume we have mcpNCPpSkqq “
k!Fk`1

2 for 1 ď k ă l.

Then mcpNCPpSlqq “ lrp´1q ˚ mcpNCPpSl´2qq ` mcpNCPpSl´1qqs “ lrpl ´ 1q
pl´2q!Fl´1

2 `
pl´1q!˚Fl

2 s “ lrpl ´

1q!
Fl´1`Fl

2 s “ l!
Fl`1

2 and the induction is complete.
�

Definition 7.3. Two vertices of degree 3 in Sk, which are each adjacent to 2 leaves, are called outer neighbors
if there is a segment with those endpoints. Such a segment would necessarily consist of two edges.
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Proposition 7.4. |NCP pS3q| “ 14, |NCP pS4q| “ 34. For k ě 5, |NCP pSkq| “ 2|NCP pSk´1q| ` |NCP pSk´2q|.
These are known as the Pell-Lucas numbers.

Proof. One can verify |NCP pS3q| “ 14, |NCP pS4q| “ 34.
For n ě 5, consider some interior vertex, A of Sk which has degree 3. A is either (i) in a block of size 1, (ii)

in a block of size 2 along with some other interior vertex of degree 3, or (iii) in the same block as the vertex of
degree k.

Let Subk denote the number of noncrossing partitions of Sk such that a given pair of vertices of degree 3 (in
particular vertices of degree 3 adjacent to two leaves) form a block of size 2.

Case (i): The remaining vertices other than A form a Sk´1 but the two vertices which had been outer neighbors
of A cannot be in the same block of size 2. Thus there are |NCP pSk´1q| ´ Subk´1 possibilities.

Case(ii): There are two choices for which outer neighbor, B, of A is included in the same block as A. The
remaining vertices form a Sk´2 where the vertices which had been outer neighbors of A and B respectively cannot
constitute a block of size 2. Thus there are 2 ˚ p|NCP pSk´2q| ´ Subk´2q possibilities.

Case(iii): We can contract the edge between A and the vertex of degree k in order to form a Sk´1. Choosing
a noncrossing tree partition of the Sk´1 which does include a block of size 2 constituted by what were the
outer neighbors of A and then uncontracting the edge we contracted is equivalent to choosing a noncrossing tree
partition of Sk in which A is in the same block as the vertex of degree k. Thus there are |NCP pSk´1q| ´ Subk´1

possibilities.
In total:

|NCP pSkq| “ |NCP pSk´1q| ´ Subk´1 ` 2 ˚ p|NCP pSk´2q| ´ Subk´2q ` |NCP pSk´1q| ´ Subk´1

“ 2|NCP pSk´1q| ` 2|NCP pSk´2q| ´ 2pSubk´1 ` Subk´2q

Note that Sub3 “ 2, Sub4 “ 5, and Sub5 “ 12. We claim that for k ě 3: |NCP pSkq| “ 2Subk`1 ` 2Subk. We
will prove this by induction.

Base cases: |NCP pS3q| “ 14 “ 2˚5`2˚2 “ 2Sub4`2Sub3 and |NCP pS4q| “ 34 “ 2˚12`2˚5 “ 2Sub5`2Sub4
For some n ě 4, we have NCP pSkq “ 2Subk`1 ` 2Subk for all k ď n. Now consider

|NCP pSn`1q| “ 2|NCP pSnq| ` 2|NCP pSn´1q| ´ 2pSubn ` Subn´1q

“ 2p2Subn`1 ` 2Subnq ` 2p2Subn ` 2Subn´1q ´ 2pSubn ` Subn´1q

“ 4Subn`1 ` 6Subn ` 2Subn´1

Now consider Subk`1. It is the number of noncrossing partitions of Sk`1 which include a given block of size
2 constituted by 2 outer neighbors. This is equivalent to

|NCP pSk´1q| ´ Subk´1 “ 2Subk ` Subk´1

Thus |NCP pSn`1q| “ 2Subn`2 ` 2Subn`1, completing the induction. So

|NCP pSkq| “ 2|NCP pSk´1q| ` 2|NCP pSk´2q| ´ 2pSubk´1 ` Subk´2q

“ 2|NCP pSk´1q| ` |NCP pSk´2q|

�

In the case of a star, it is also possible to explicitly compute |BicpT q|.

Proposition 7.5. For k ě 3, |BicpSkq| “ 3k ` p´1qk

Proof. Each member of BicpSkq is analogous to choosing some vertices and edges of an k-gon such that if two
adjacent edges are chosen, the vertex between them must be chosen and if two adjacent edges are both not chosen,
then the vertex between them cannot be chosen either.

The number of vertices for which one neighboring edge is chosen and the other is not is necessarily even. For
each choice of of such vertices, there are two ways to pick which of the sets of intervening edges are chosen and
which are not. There are then two ways to pick whether each of these vertices is chosen.

Thus

|BicpSkq| “
i“k
ÿ

i“0
i even

ˆ

k

i

˙

˚ 2i`1
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Note that

3k “ p2` 1qk “
i“k
ÿ

i“0

ˆ

k

i

˙

˚ 2i

and

1 “ p2´ 1qk “
i“k
ÿ

i“0

p´1qk´i ˚

ˆ

k

i

˙

˚ 2i

Adding these expressions together gives us:

3k ` 1 “ 2 ˚
i“k
ÿ

i“0
i even

ˆ

k

i

˙

˚ 2i

for even k and

3k ´ 1 “ 2 ˚
i“k
ÿ

i“0
i even

ˆ

k

i

˙

˚ 2i

for odd k.
So in either case, |BicpSkq| “ 3k ` p´1qk

�
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