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Abstract
Nestohedra are a family of convex polytopes that includes permutohedra, associahedra, and

graph associahedra. In this paper, we study an extension of such polytopes, called extended nesto-
hedra. We show that these objects are indeed the boundaries of simple polytopes, answering a
question of Lam and Pylyavskyy. We also study the duals of (extended) nestohedra, giving a
complete characterization of isomorphisms (as simplicial complexes) between the duals of extended
nestohedra and a partial characterization of isomorphisms between the duals of nestohedra and
extended nestohedra. In addition, we give formulas for their f -, h-, and γ-vectors. This includes
showing that the f -vectors of the extended nestohedron corresponding to a forest F and the nesto-
hedron corresponding to the line graph of F are the same, as well as showing that all flag extended
nestohedra have nonnegative γ-vectors, thus proving Gal’s conjecture for a large class of flag simple
polytopes. We also relate the f - and h-vectors of the nestohedra and extended nestohedra, as well
as give explicit formulas for the h- and γ-vectors in terms of descent statistics for a certain class
of flag extended nestohedra. Finally, we define a partial ordering on partial permutations that is
a join semilattice quotient of the weak Bruhat order on the symmetric group, and such that any
linear extension of the partial order provides a shelling of the dual of the stellohedron.

Contents
1 Introduction 2

2 Background 5
2.1 Simplicial Complexes and Polytope Theory . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Building Sets, Nested Set Complexes, and Extended Nested Set Complexes . . . . . . . 7

3 Polytopality 11

4 Isomorphisms 16
4.1 Graphical building sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Interval, spider, and octupus building sets . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Independence complex and strong building sets . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Isomorphisms between extended nested set complexes . . . . . . . . . . . . . . . . . . . 29

5 Face Counting 37
5.1 Formulas for the f - and h-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 a- and b-rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Gal’s conjecture for flag extended nestohedra . . . . . . . . . . . . . . . . . . . . . . . . 44
∗Columbia University, qvd2000@columbia.edu
†Massachusetts Institute of Technology, mengc@mit.edu
‡Massachusetts Institute of Technology, wellman@mit.edu
§Massachusetts Institute of Technology, zixuanxu@mit.edu
¶Massachusetts Institute of Technology, calvinyw@mit.edu
‖Williams College, twy1@williams.edu

1

qvd2000@columbia.edu
mengc@mit.edu
wellman@mit.edu
zixuanxu@mit.edu
calvinyw@mit.edu
twy1@williams.edu


6 Chordal Building Sets and the γ-Vector 46
6.1 Extended B-Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 B-Partial Permutations and Extended B-Permutations . . . . . . . . . . . . . . . . . . . 50
6.3 γ-Vector of Chordal Extended Nestohedra . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 A Weak Order on Partial Permutations 60
7.1 Shellings of the Dual of the Stellohedron . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Partial Orders on Maximal (Extended) Nested Collections . . . . . . . . . . . . . . . . . 63

1 Introduction
Stasheff’s associahedron has spurred a rich study of polytopes with combinatorial and algebraic
connections. It has been generalized to the graph associahedron, introduced by Carr and Devadoss
[CD06], which in turn has been generalized to the nestohedron in [Pos09; FS05]. The dual simplicial
complex of the nestohedron, called the nested complex, was introduced by DeConcini and Procesi,
along with the notion of building sets [DP95].

The nestohedron and nested set complex have together provided many interesting avenues of study,
among them polytopal realizations and face numbers. The nestohedron has been geometrically realized
as the boundary of a polytope through a variety of methods, including through shaving faces of a
simplex [CD06] and through Minkowski sums [Pos09; FS05]. The face numbers of the nestohedron are
extensively studied in [PRW08], while Gal’s conjecture was proven for all flag nestohedra in [Vol10].

More recently, Lam and Pylyavskyy introduced the extended nested complex in their study
of linear Laurent-phenomenon algebras [LP15]. In the more general context of Laurent-phenomenon
algebras, they conjectured that the extended nested complex N�(BΓ) is dual to the boundary of a
polytope, where Γ is a directed graph [LP15, Conjecture 7.6]. Independently, Devadoss, Heath, and
Vipismakul introduced dual complexes for the extended nested complex when the building sets are
based on undirected graphs; they refer to such complexes as graph cubeahedra. They also show that
graph cubeahedra can be realized by shaving the faces of an n-dimensional cube, partially proving Lam
and Pylyavskyy’s conjecture.

Extended nested complexes are not as well-understood as their non-extended counterparts. How-
ever, in certain cases, extended nested complexes are isomorphic to non-extended nested complexes.
Manneville and Pilaud characterize such isomorphisms for graphical building sets, and show that the
corresponding graphs must be spider and octopus graphs (see [MP17] for further details).

We now give preliminary definitions before stating the main results of our paper. A building set
B on S is a collection of nonempty subsets of S such that

1. if I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B, and

2. B contains all singletons {i} for i ∈ S (see Definition 2.4).

A building set on S is connected if S itself is an element of the building set. An extended nested
collection on a building set B on S is a collection N = {I1, . . . , Im, xi1 , . . . , xir} of elements Ij ∈ B
and xi for i ∈ S satisfying the following three properties.

1. For any i 6= j, either Ii ⊆ Ij , Ij ⊆ Ii, or Ii ∩ Ij = ∅.

2. For any collection Ii1 , . . . , Iik ∈ N of k ≥ 2 pairwise disjoint elements of N , their union
k⋃
`=1

Ii` is

not an element of B.

3. For all xi` , Ij ∈ N , the set Ij does not contain i`.

A (non-extended) nested collection is an extended nested collection with no xi elements (see
Definitions 2.10, 2.13). If B is a building set on S, the nested complex N (B) is the simplicial complex
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with vertices {I | I ∈ B} and faces given by non-extended nested collections {I1, . . . , Ir}. The extended
nested complex N�(B) is the simplicial complex with vertices {I | I ∈ B} ∪ {xi | i ∈ S} and faces
given by extended nested collections {I1, . . . , Im} ∪ {xi1 , . . . , xir} (see Definitions 2.12, 2.15).

We now state several of our results.

Theorem 3.3. If B is a building set, then N�(B) can be realized geometrically as the boundary of a
simplicial polytope.

For a building set B, it is known that the nested complex N (B) is isomorphic to the boundary of a
simplicial polytope, whose polar dual is a simple polytope P(B) called the nestohedron. Similarly, the
simplicial polytope in Theorem 3.3 is polar dual to a simple polytope P�(B) that we call the extended
nestohedron. We also find a way to realize P�(B) as a Minkowski sum over elements of our building
set (Theorem 3.6).

In [MP17], Manneville and Pilaud show that, if B and B′ are graphical building sets, then the only
possible non-trivial isomorphisms between N�(B) ' N (B′) occur when the building sets correspond
to octopus and spider graphs, and the only possible isomorphism between N�(B) ' N�(B′) occur
when the building sets correspond to octopus graphs. After defining interval, octopus, and spider
building sets (see Subsection 4.2), we partially generalize the former result of Manneville and Pilaud
to non-graphical building sets, and generalize the latter result to the following statement.

Theorem 4.40. If N�(B) ' N�(B′), then B and B′ are isomorphic building sets, corresponding
octopus building sets, or corresponding interval building sets.

We also give several examples of non-trivial isomorphisms within nested set complexes and extended
nested set complexes.

For a simple d-dimensional polytope P , the f-vector and h-vector of P are (f0, f1, . . . , fd) and
(h0, h1, . . . , hd), where fi is the number of i-dimensional faces of P and hi’s are given by

∑
hi(t+ 1)i =∑

fit
i. It is well known that the h-vectors of simple polytopes are positive and symmetric.

Theorem 5.4 and Corollary 5.5. For a building set B on [n], the f - and h-polynomials of the
extended nestohedron P�(B) satisfy the following formulas:

fP�(B)(t) =
∑
S⊆[n]

(t+ 1)n−|S|fP(B|S)(t),

hP�(B)(t) =
∑
S⊆[n]

tn−|S|hP(B|S)(t),

where B|S is the building set restricted to elements of S, i.e., {I ∈ B | I ⊆ S}.

In addition, for a graph G, the line graph of G, denoted L(G) is the graph constructed by associating
a vertex with each edge of G and connecting two vertices with an edge if the corresponding edges of G
have a vertex in common. We show that for certain graphs G, the f -vector of the nestohedron P(BG)
is the same as the f -vector of extended nestohedron P�(BL(G)).

Theorem 5.14. Let G be a forest and L(G) be the line graph of G. Then

fP(BG)(t) = fP�(BL(G))
(t).

One can compactify the h-vector using another vector called the γ-vector (γ0, . . . , γbd/2c), which is
defined by the relation

d∑
i=0

hit
i =

bd/2c∑
i=0

γit
i(1 + t)d−2i.

A simplicial complex ∆ is called flag if every collection of pairwise adjacent vertices forms a face
of ∆. We say that a simple polytope is a flag polytope if its dual is a flag simplicial complex. Gal
conjectured in [Gal05] that the γ-vector is nonnegative for any flag simple polytope.
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Theorem 5.18. If B is a building set with P�(B) a flag extended nestohedron, then the γ-vector of
P�(B) is nonnegative.

A connected building set B is chordal if for any element I = {i1 < · · · < ir} ∈ B, all subsets of
the form {is, is+1, . . . , ir} also belong to B; see Definition 6.20. All extended nestohedra P�(B) from
chordal building sets are flag simple polytopes by Lemma 6.21, so their γ-vectors are nonnegative.

For a building set B on [n], define the set of B-partial permutations, denoted Pn(B), as the set
of partial permutations w ∈ SS for some S = {s1, . . . , sk} ⊆ [n] such that for any i ∈ [k], the elements
w(si) and max{w(s1), w(s2), . . . , w(si)} lie in the same connected component of the restricted building
set B|{w(s1),...,w(si)}. Define the map ϕn : Pn(B)→ Sn+1 as follows. For a permutation w ∈ Pn(B) on
entry set S, let ϕn(w) be the permutation formed by appending [n+1]\S to the end of w in descending
order. Let S�

n+1(B) := ϕn(Pn(B)) denote the set of extended B-permutations. See Definition 6.15.
This set is in bijection with vertices of the extended nestohedron P�(B).

Let des(w) = |{i | w(i) > w(i + 1)}| denote the number of descents in a permutation w. Let Ŝn+1

be the subset of permutations w of size n+ 1 without two consecutive descents and no final descent.

Theorem 6.11 and Theorem 6.34. Let B be a connected chordal building set on [n]. Then the
h-vector of the extended nestohedron P�(B) is given by∑

i

hit
i =

∑
w∈S�

n+1(B)

tdes(w),

and the γ-vector of the extended nestohedron P�(B) is given by∑
i

γit
i =

∑
w∈Ŝn+1∩S�

n+1(B)

tdes(w).

Let K1,n denote the star graph consisting of a central vertex connected to n vertices. The simple
polytope P(BK1,n

) is known as the stellohedron. Manneville and Pilaud showed that the extended
nested complex N�(BKn) is isomorphic to the non-extended nested complex N (BK1,n), where Kn

denotes the complete graph on n vertices and K1,n denotes the star graph on n + 1 vertices [MP17].
Thus, the facial structure of the extended nestohedron P�(BKn

) is isomorphic to that of the stellohedron,
and we also refer to P�(BKn

) as the stellohedron. Let Pn denote the set of all partial permutations
w ∈ SS for some S ⊆ [n]. Such permutations are in bijection with the vertices of the stellohedron.

We can use the weak Bruhat order on Sn+1 and the map ϕn defined above to induce a partial
order on Pn as follows. Let π, σ ∈ Pn be two partial permutations. Then π ≤ σ in the partial weak
Bruhat order if and only if ϕn(π) ≤ ϕn(σ) in the weak Bruhat order on Sn+1 (see Definition 7.1).

We say that a pure n-dimensional simplicial complex ∆ with r facets is shellable if its facets can
be arranged into a linear ordering F1, . . . , Fr such that

(⋃k−1
i=1 Fk

)
∩ Fk is pure of dimension n− 1 for

all k = 2, . . . , r. Such an ordering is called a shelling of ∆.

Theorem 7.6. Let B = BKn
, and N�(B) be the extended nested set complex whose facets Fπ are

labeled by the partial permutations π ∈ Pn. If a total ordering π1 ≤ · · · ≤ πm is a linear extension of
the partial weak Bruhat order on Pn, then Fπ1

, . . . , Fπm
is a shelling for N�(B).

This paper is structured as follows. Section 2 contains preliminary definitions and results relating
to simplicial complexes, polytopes, and building sets. In Section 3, it is shown that the extended nested
complex is isomorphic to the boundary of a polytope, and in Section 4, we provide some examples
of isomorphisms between extended and non-extended nested complexes. Section 5 provides recursive
formulas for the f - and h-polynomials of the extended nestohedron, and we prove that the f -vectors
for certain nestohedra and extended nestohedra are the same. We also prove Gal’s conjecture for all
flag extended nestohedra. In Section 6, we discuss extended B-forests and extended B-permutations,
which are both in bijection with the vertices of the extended nestohedron P�(B). We then show that
the h- and γ-polynomials for extended nestohedra on a special class of building sets can be written as a
combinatorial formula in terms of the extended B-permutations. Section 7 provides a partial ordering
on partial permutations and several nice properties of this partial ordering.
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2 Background
In this section, we provide some preliminary definitions and results on simplicial complexes, polytope
theory, building sets, and (extended) nestohedra.

2.1 Simplicial Complexes and Polytope Theory
A simplicial complex ∆ on a finite set S is a collection of subsets of S such that for every X ∈ ∆ and
every Y ⊆ X, we have Y ∈ ∆ as well. The elements of ∆ are called faces, and the maximal elements are
called facets. Note that, by definition, a simplicial complex is uniquely determined by its facets. The
dimension of a face F ∈ ∆ is dimF = |F | − 1; the dimension of ∆ is dim ∆ = max{dimF | F ∈ ∆}.
A simplicial complex is called pure if all of its facets have the same dimension.

For a simplicial complex ∆, the closure of a collection S of its faces is

ClS = {F ∈ ∆ | F ⊆ σ for some σ ∈ S}.

The (open) star of a face σ is
Stσ = {F ∈ Σ | σ ⊆ F},

and the star of a collection S of faces is

StS =
⋃
σ∈S

Stσ.

The link of S is then defined as
LkS = Cl StS − St ClS.

If S consists of just one face σ, then the link of σ in ∆ can be described as

Lk∆ σ = {F ∈ ∆ | σ ∩ F = ∅, σ ∪ F ∈ ∆}.

A subcomplex of a simplicial complex ∆ is a subset of ∆ that is also a simplicial complex. Note
that for any collection of faces S of ∆, the closure and link of S are always subcomplexes, but the star
of S need not be. We also call the closure of S the subcomplex generated by the elements of S.

A morphism of simplicial complexes Φ : ∆ → ∆′ is a map from vertices of ∆ to vertices of ∆′

such that if {v1, v2, . . . , vr} is a face of ∆ then {Φ(v1),Φ(v2), . . . ,Φ(vr)} is a face of ∆′. A morphism of
simplicial complexes induces a morphism on the link of any face in a simplicial complex. A morphism
Φ : ∆→ ∆′ is an isomorphism of simplicial complexes if there exists an inverse Φ−1 such that Φ◦Φ−1

and Φ−1 ◦ Φ are the identities on ∆ and ∆′ respectively. The following proposition follows from these
definitions.

Proposition 2.1. Φ : ∆ → ∆′ is a simplicial complex isomorphism if and only if Φ extends to a
bijection between the faces of ∆ and ∆′.

Given a finite set of points S = {x1, . . . , xk} in Rn, the convex hull of S, denoted Conv(S), is
defined to be the smallest convex set that contains X, or

Conv(S) :=

{
k∑
i=1

aixi | ai ≥ 0 for all i = 1, . . . , k and
k∑
i=1

ai = 1

}
.

Such a space is called a convex polytope. We can also define a convex polytope as a bounded
intersection of finitely many closed half-spaces, where a closed half-space H is the collection of points
(x1, . . . , xn) in Rn satisfying a linear inequality a1x1+· · ·+anxn ≤ b for some a1, . . . , an, b ∈ R. Since we
only consider convex polytopes in our paper, we shall simply write polytope instead of convex polytope.

The vertices of a polytope P are the minimal set of points S such that P = Conv(S). The
dimension of P is then defined to be the dimension of the affine linear span of S, considered as an
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affine subspace in Rn A face of a polytope P is an intersection of P with a closed half-space H such
that none of the interior points of P lie on the boundary of the half-space. Note that each face of a
polytope P is itself a polytope. The boundary of a polytope P , denoted ∂P , is the union of all proper
faces of P . If P is a d-dimensional polytope, then the vertices, edges, ridges, and facets of P are
the 1, 2, (d− 2), and (d− 1)-dimensional faces respectively.

Given a polytope P , the dual polytope P ∗ can be defined as the set of points y in the dual space
(Rn)∗ such that 〈y, x〉 > 0 for all x ∈ P , where 〈·, ·〉 is the usual pairing. We can see that when
dualizing, dimP ∗ = d if P is d-dimensional, and that the k-dimensional faces of P correspond to the
(d − k)-dimensional faces of P ∗ for all k = 0, . . . , d. Furthermore, the double dual of a polytope P is
isomorphic to P itself.

A polytope is called simplicial if all of its faces are simplices. In other words, all of its faces are
the convex hull of d+ 1 points if the face is d-dimensional. A polytope is called simple if every vertex
is adjacent to exactly d edges, where d is the dimension of the polytope. A polytope is simplicial if and
only if its dual is simple.

Given a simplicial polytope P , its boundary can be viewed as a simplicial complex by taking the set
of vertices for each face F of P . More generally, given a simplicial complex ∆, a geometric realization
of ∆ is a simplicial polytope P and a map φ : V (∆)→ V (P ) of the vertex sets of ∆ and P such that σ
is a face of ∆ if and only if Conv(φ(σ)) is a face of P .

If P is a d-dimensional polytope, then the face number fi(P ) is the number of i-dimensional faces
of P . We call the vector (f0(P ), . . . , fd(P )) the f-vector of P , and the polynomial

fP (t) :=

d∑
i=0

fi(P )ti

the f-polynomial of P . Note that if f = (f−1, f0, . . . , fd) is the f -vector of a polytope P with f−1 := 1,
then f ′ = (fd, . . . , f0, f−1) is the f -vector of its dual P ∗.

We can more compactly encode the face numbers of P using smaller nonnegative integers. The
h-vector (h0(P ), . . . , hd(P )) and h-polynomial hP (t) :=

∑d
i=0 hi(P )ti of a simple polytope P are

determined uniquely by the relation
fP (t) = hP (t+ 1).

From the Dehn-Sommerville relation, the h-vector of a simple polytope is always symmetric; in other
words, we have hi = hd−i for all i = 0, . . . , bd/2c.

Definition 2.2. A simplicial complex ∆ is called flag if a collection C of vertices of ∆ forms a simplex
in ∆ if and only if there exists an edge in the 1-skeleton of ∆ between any two vertices in C.

If ∆P is a flag simplicial complex, then we say that its dual simplicial complex, P is a flag polytope.
Definition 2.2 is equivalent to saying that a simple polytope P is flag if any collection of pairwise
intersecting facets has non-empty intersection.

The γ-vector gives another encoding of the f - and h-vectors of a simple poytope P , but with smaller
integers. The entries γi(P ) of the γ-vector (γ0, γ1, . . . γbd/2c) and γ-polynomial γP (t) :=

∑bd/2c
i=0 γit

i are
determined by the h-polynomial:

hP (t) =

bd/2c∑
i=0

γit
i(1 + t)d−2i = (1 + t)dγP

(
t

(1 + t)2

)
.

Gal conjectured the following statement about the γ-vector.

Conjecture 2.3 ([Gal05]). The γ-vector of any flag simple polytope has nonnegative entries.

In Section 5.3, we prove Gal’s Conjecture for all flag extended nestohedra P�(B).
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2.2 Building Sets, Nested Set Complexes, and Extended Nested Set Com-
plexes

In this subsection, we introduce definitions related to building sets, nested set complexes, and extended
nested set complexes.

Definition 2.4. A building set B on a finite set S is a collection of subsets of S satisfying two
conditions:

(B1) {i} ∈ B for all i ∈ S;

(B2) For any I, J ∈ B such that I ∩ J 6= ∅, I ∪ J ∈ B.

Definition 2.5. Let B be a building set on S and I ⊆ S. The restriction of B to I is the building
set on I

B|I := {J | J ⊆ I, J ∈ B}.

The contraction of B by I is the building set on S \ I

B/I := {J \ (J ∩ I) | J ∈ B, J * I}.

Definition 2.6. For any building set B, let Bmax denote the set of maximal elements of B with respect
to inclusion. Then for any M ∈ Bmax, the restriction B|M is called a connected component of B.

If B is a building set on S and S ∈ B, then we say that B is connected. Note that the elements of
Bmax form a disjoint union of S, with Bmax = {S} if B is connected.

We say that building sets B,B′ on S are equivalent if there exists a permutation σ : S → S giving
a one-to-one correspondence B → B′.

We can use graphs to define a large family of building sets.

Definition 2.7. Let Γ be a directed graph without loops and multiple edges on node set S. The
graphical building set BΓ is defined to be {I ⊆ S | Γ|I is strongly connected}.

Example 2.8. Let Γ be the path graph on [n], denoted Pn. If the graph is labeled from left to right in
increasing order, then the building set BΓ consists of all subsets of [n] that are intervals. For example,
if n = 4, then

BΓ = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}.

Example 2.9. Not all building sets are graphical. For example, consider

B = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}.

If B = BΓ for some directed graph Γ, then {1, 2}, {2, 3}, {1, 3} ∈ B implies that Γ must contain anti-
parallel edges between 1 and 2, 2 and 3, and 3 and 1. However, {1, 2, 3, 4} ∈ B implies that Γ contains
an edge from 4 to some u ∈ {1, 2, 3}, and an edge from some v ∈ {1, 2, 3} to 4. Then we would have
{4, u, v} ∈ B, but this is impossible.

Definition 2.10. A nested collection N of a building set B on S is a collection of elements
{I1, . . . , Im} of B \ Bmax, such that:

(N1) For any i 6= j, Ii and Ij are pairwise disjoint or nested;

(N2) For any Ii1 , . . . , Iik , pairwise disjoint, k ≥ 2, their union is not an element of B.

We call a nested collection maximal if no other nested collection properly contains it.
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Example 2.11. Consider the building set BΓ from Example 2.8. An example of a nested collection is

N = {{1}, {3}, {1, 2, 3}}.

It turns out N is also a maximal nested collection for BΓ. An example of something that is not a nested
collection is

N ′ = {{2, 3}, {3}, {4}},

since {3} ∪ {4} = {3, 4} is an element of our building set.

Definition 2.12. Let B be a building set. The nested complex N (B) is defined to be the simplicial
complex with vertices {I | I ∈ B\Bmax} and faces {I1, . . . , Im} for every nested collection {I1, . . . , Im} ⊆
B \ Bmax.

We now extend our definitions for nested collections and nested complexes.

Definition 2.13. Let B be a building set on S. An extended nested collection

N� = {I1, . . . , Im, xi1 , . . . , xir}

on B is a collection of elements of subsets Ij ∈ B and xi for i ∈ S such that:

(E1) The collection {I1, . . . , Im} ⊆ B form a nested collection;

(E2) For all 1 ≤ k ≤ r and 1 ≤ j ≤ m, we have that ik 6= Ij .

The xi elements are extensions of what [DHV11] call design tubings on graphs. We refer to the
xi’s as design vertices.

We say an extended nested collection is maximal if no other extended nested collection properly
contains it. Notice that any (non-extended) nested collection can be considered as an extended nested
collection that does not contain any xi elements.

Example 2.14. Again consider the building set BΓ from Example 2.8. An example of an extended
nested collection is

N = {{1}, {3}, {3, 4}, x2}.

This is a maximal nested collection for our building set. An example of a collection that is not an
extended nested collection is

N ′ = {{2, 3}, {3}, x1, x2},

since the number 2 appears as both an index of an xi and as an element of one of the subsets in N ′.

Definition 2.15. Let B be a building set on S. The extended nested complex N�(B) is defined to
be the simplicial complex with vertices {I | I ∈ B}∪ {xi | i ∈ S} and faces {I1, . . . , Im} ∪ {xi1 , . . . , xir}
where {I1, . . . , Im, xi1 , . . . , xir} is an extended nested collection.

The extended nested complex is referred to as the design nested complex in [MP17]. For a
building set B and extended nested complex N�(B), we refer to the elements of B and the design
vertices collectively as the vertices of N�(B). At times, we may also refer to the elements of B as the
vertices of N (B).

Notice that for a building set B on S, the nested complex N (B) is isomorphic to the subcomplex of
the extended nested complex N�(B) involving neither the xi vertices nor the vertices corresponding to
elements in Bmax.

In [Pos09; FS05; CD06], it was shown that for a building set B, the nested complex N (B) is
isomorphic to the boundary of a simplicial polytope. The polar dual of this polytope is the simple
polytope P(B) called the nestohedron. In Section 3, we show that the extended nested complex
N�(B) is also isomorphic to the boundary of a simplicial complex. We call the polar dual of this
polytope the extended nestohedron, and we denote it by P�(B).
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We now state some basic properties of the nested complex and the extended nested complex. The
first observation is that these complexes are pure. For a building set B on S, Zelevsinsky showed that
the nested complex N (B) is pure of dimension |S| − |Bmax| (see [Zel06, Proposition 4.1]). We state and
prove the result for the extended case.

Proposition 2.16. For a building set B on S, the extended nested complex N�(B) is pure of dimension
|S|.

Proof. Note that for an extended nested collection

N� = {I1, . . . , Ik} ∪ {xi1 , . . . , xi`}

to be a facet of N�(B), we must have that I1 ∪ · · · ∪ Ik ∪ {i1, . . . , i`} = S, and that N = {I1, . . . , Ik}
is a maximal nested collection of B|S\{i1,...,i`}. We then use the result from the non-extended case to
conclude that N has |S| − ` elements, and so N� has |S| elements, completing the proof.

Next, we prove that N (B) and N�(B) only depend on the connected components of B. To make
this precise, we first recall the definition of the join of simplicial complexes.

Definition 2.17. For two simplicial complexes X,Y , their join X ∗ Y is the simplicial complex such
that:

(a) The vertex set is equal to the disjoint union of the vertex sets of X and Y ;

(b) The faces are of the form FX t FY where FX , FY are faces of X and Y respectively.

Lemma 2.18. Let B be a building set, and let B1, . . . ,Bk be its connected components. We then have

N (B) ' N (B1) ∗ · · · ∗ N (Bk) and N�(B) ' N�(B1) ∗ · · · ∗ N�(Bk).

Proof. The proof of both parts is based on the observation that a nested collection (resp., extended
nested collection) on B is the same as the disjoint union of nested collections (resp. extended nested
collections) on its connected components B1, . . . ,Bk.

Remark 2.19. In [Vol10, p.5 Corollary 5], the author shows that for any building set B on [n], there
exists a connected building set B′ on [n− |Bmax|+ 1] such that N (B) ' N (B′). Thus in most cases, it
suffices to consider building sets that are connected for the nested complex.

Remark 2.20. When G is one of the three graphs in Figure 1, then computer checking shows that
N�(BG) is not isomorphic to N (B′) for any connected building set B′ on 5 elements. Thus, the class
of extended nested complexes is not contained within the class of nested complexes.

Figure 1: Graphs G for which N�(BG) is not a nested complex

Next, we characterize flag extended nested complexes in terms of when a non-extended nested
complex is flag.

Proposition 2.21. For any building set B, N (B) is flag if and only if N�(B) is flag.

9



Proof. The vertex set of N (B) is a subset of the vertex set of N�(B), so we can refer to collections of
elements of B \ {[n]} as a potential face in either one. Note that a collection of elements of B \ {[n]} is
a face in N (B) if and only if it is a face in N�(B). Recall that a simplicial complex is flag if and only
if these minimal non-faces all only use two vertices. We will look at the minimal non-faces of these two
simplicial complexes.

Suppose N�(B) is flag. Notice that any minimal non-face F in N (B) is also a non-face in N�(B).
In particular, it is also minimal because subsets of the vertices of F in N�(B) are still only a face if
they are a face in N (B). Therefore we must have |F | = 2, and so N (B) is flag.

Now suppose that N (B) is flag. If F is a non-face in N�(B), then F can be of one of the following
forms:

1. F consists only of vertices from B \ {[n]}, or

2. F contains some vertex xi, or

3. F contains the vertex [n].

If we are in the first case, then by the same argument above, any minimal non-face of N�(B) which
uses only vertices which are also in N (B) must be of size 2.

Now suppose we are in the second case. If F \ {xi} is not a face, then F is not a minimal non-face.
If F \ {xi} is a face, then xi must be stopping F from being a face somehow. Therefore there exists
I ∈ F such that i ∈ I. But then {I, xi} ⊆ F is a non-face, so either F is not minimal, or it has size 2.

The last case, when [n] is the vertex of F which doesn’t appear in N (B), is analogous to the second
case.

Remark 2.22. [PRW08, Propostion 7.1] characterizes when the building set B has N (B) flag; in
particular, for any graphical building set BΓ, the nested complex N (BΓ) is flag. Thus, we have that
all of the equivalent characterizations given by [PRW08] are also equivalent to the extended nested
complex N�(B) being flag, and the complex N�(BΓ) is flag, where BΓ is a graphical building set.

We now provide a characterization of the link of a vertex v in the extended nested complex N�(B).
This allows us to “build up” the complex in terms of smaller complexes.

Definition 2.23. Let B be a building set on S, and N (B) the associated nested complex. For every
C ∈ B \ Bmax, the link of C in N (B) is

N (B)C = {N ∈ N (B) | N ∩ {C} = ∅, N ∪ {C} ∈ N (B)}.

For any C ∈ {I | I ∈ B} ∪ {xi | i ∈ S}, the link of C in the extended nested complex N�(B) is

N�(B)C = {N� ∈ N�(B) | N� ∩ {C} = ∅, N� ∪ {C} ∈ N�(B)}.

Zelevinsky first found a formula for the link decomposition for the nested complex N (B) in [Zel06],
and Aisbett provides an alternative proof in [Ais12, Lemma 3.2].

Proposition 2.24 ([Zel06], Proposition 3.2). Let B be a building set on S. Then the link of C ∈ B in
N (B) is isomorphic to N (B|C) ∗ N (B/C).

We now state the analogous link decompositions for extended nested complexes. Since the extended
nested complexes have two kinds of vertices, those labeled by elements of the building set and those
labeled by design vertices, we have two different formulas for a link decomposition. Note that these
formulas have appeared without proof in [MP17, Lemma 84] for graphical building sets.

Proposition 2.25. Let B be a building set on S, and let v be a vertex of the extended nested complex
N�(B) corresponding to the design vertex xi. Then, the link of v in N�(B) is given by

N�(B)v ' N�(B1) ∗ · · · ∗ N�(Bk),

where B1, . . . ,Bk are the connected components of B|S\{i}.
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Proposition 2.26. Let B be a building set on S, and let v be a vertex of the extended nested complex
N�(B) corresponding to an element of the building set C ∈ B. Then, the link of v in N�(B) is given
by

N�(B)v ' N (B|C) ∗ N�(B/C).

Proof of Proposition 2.25. By definition, we have:

N�(B)xi = {{xj1 , . . . , xj`} ∪ {I1, . . . , Ik} ∈ N�(B) | {xi, xj1 , . . . , xj`} ∪ {I1, . . . , Ik} ∈ N�(B)}
= {{xj1 , . . . , xj`} ∪ {I1, . . . , Ik} ∈ N�(B) | ∪ks=1Is ∪ {j1, . . . , j`} ⊆ S \ {i}}
=
{
{xj1 , . . . , xj`} ∪ {I1, . . . , Ik} ∈ N�

(
B|S\{i}

)}
= N�

(
B|S\{i}

)
' N�(B1) ∗ · · · ∗ N�(Bk),

where the last isomorphism follows from Lemma 2.18.

Proof of Proposition 2.26. For a vertex v corresponding to the building set element C ∈ B, the link of
v in N�(B) corresponds to all extended nested collections containing C. Thus, we will show that the
complex of extended nested collections of B that contain C is isomorphic to N (B|C) ∗ N�(B/C). Let
one direction of the isomorphism be given by the map

(N1, N2) ∈ N (B|C) ∗ N�(B/C) 7→ N1 ∪N ′2 ∪ {C},

where

N ′2 := {I | I ∈ N2 and I ∪ C /∈ B} ∪ {I ∪ C | I ∈ N2 and I ∪ C ∈ B} ∪ {xi | xi ∈ N2}.

If N is an extended nested set of B containing C, then the inverse of the above map is given by

N 7→ N1 ∪N2,

where
N1 := {I ∈ N | I ( C} and N2 := {I \ (I ∩ C) | I ∈ N, I * C} ∪ {xi | xi ∈ N}.

Notice that N1 ∈ N (B|C) and N2 ∈ N�(B/C).
Both of these maps preserve inclusion. Thus we have an isomorphism.

3 Polytopality
In this section, we provide two proofs of the fact that N�(B) can be realized as the boundary of a
polytope; this is equivalent to showing that its dual P�(B) can also be realized as the boundary of a
polytope. Our first proof is based on stellar subdivisions of a cross polytope, and our second proof is
based on Minkowski sums.

Definition 3.1. Let ∆ be a simplicial complex and F be a face of ∆. The stellar subdivision on the
face F of ∆ is defined to be

∆′ = (∆ \ Cl St∆(F )) t ({v} ∗ ∂F ∗ Lk∆(F )).

In other words, we remove the subcomplex generated by all facets of ∆ containing F , then add in the
subcomplex generated by all facets of the form {v} ∪ (F \ {u}) ∪ G where v is a new vertex, u is an
element of F and G is a facet of Lk∆(F ).

Remark 3.2. If ∆ has a geometric realization P , and ∆′ is the result of stellar subdivision on a face F
of ∆, then ∆′ can be realized as Conv(P ∪ {v}) for any point v that lies beyond the facet hyperplanes
for facets that contain F and beneath any other facet hyperplanes of P . For a precise definition of
“beyond” and “beneath”, see [ES74].
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We now provide a geometric realization of N�(B) for any building set B.
Theorem 3.3. Let B be a building set on [n]. Then N�(B) can be realized as the boundary of a
polytope NB in the following way:

(i) Consider Rn with standard basis vectors e1, . . . , en. Start with the cross polytope in Rn with
vertices ei labeled {i} ∈ B and vertices −ei labeled xi for all i ∈ [n].

(ii) Order the non-singletons of B by decreasing cardinality, then for each I ∈ B a non-singleton,
perform stellar subdivision on the face I = {{i} | i ∈ I}, with the new added vertex labeled I.

(iii) The boundary of the resulting polytope PB will be isomorphic to N�(B).

Before providing the proof, we give an example of the process of obtaining the polytope PB.

Example 3.4. Consider the building set B = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}. We begin with a three-
dimensional cross polytope P0 with vertices labeled by singletons 1, 2, 3 as well as x1, x2, and x3. The
polytope P0 is illustrated in Figure 2(a).

The remaining non-singleton elements of the building set are {1, 2} and {1, 2, 3}. Since {1, 2, 3} is
larger in terms of cardinality, we start by adding a vertex corresponding to this element to the polytope.
To do this, we stellarly subdivide the face {{1}, {2}, {3}} of P0, obtaining a new polytope P1. This is
shown in Figure 2(b). Next, we add a vertex corresponding to the element {1, 2} by stellarly subdividing
the face {{1}, {2}} of P1, obtaining the final polytope PB, shown in Figure 2(c). The boundary of this
polytope is isomorphic to N�(B).

1

2

3

x1

x2

x3

(a) P0

1

2

3

x1

x2

x3

123123

(b) P1

1

2

3

x1

x2

x3

123123

12

(c) PB

Figure 2: Process of stellar subdivision of a cross polytope to obtain PB.

Proof of Theorem 3.3. First, note that our construction is always well-defined. When we stellarly sub-
divide any face F of a polytope P , the faces that are removed are precisely the faces containing F ,
which means we do not remove any face with lower dimension than that of F , or any different face of
the same dimension. This implies that the faces of the form I = {{i} | i ∈ I} remain faces of PB after
stellarly subdividing every face of dimension at least dim I, hence step (ii) of our construction is always
doable.

Our strategy is to show that the facets of PB are in bijection with the facets of N�(B), where the
bijection is the one sending xi to the vertex xi of PB, and I ∈ B to the vertex I of PB. Such a vertex
always exists because either I = {i} is a singleton, hence is in the original cross polytope, or I is not a
singleton and is obtained after stellar subdivision on the face I. With this identification of vertices, we
can say that the facets of PB are the same as those of N�(B).

We prove the claim for any building set B on [n] by downward induction on min{|I| | I ∈ B, |I| > 1}.
If B has no non-singletons, then define this minimum to be∞. This is also the base case of our induction,
where we have B = {{1}, . . . , {n}}. Here, PB is the cross polytope, and its facets are

{{j1}, . . . , {js}, xi1 , . . . , xir},
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for any J = {j1, . . . , js} and I = {i1, . . . , ir} that satisfies I ∩ J = ∅ and I ∪ J = [n]. Notice that these
are also the facets of N�(B) for B = {{1}, . . . , {n}}, so our claim is proved for this case.

Now, assume that our claim is true for some building set B on [n], whose non-singletons are all of
order at least m. It then suffices to show that if we add to B a new subset I ⊆ [n] of size at most
m, then the facets of N�(B ∪ {I}) are the same as the facets of the polytope obtained by stellarly
subdividing PB on the face I; denote this polytope by P ′B. By definition, we obtain the facets of P ′B by
removing the facets F containing I of PB, and adding in facets of the form {I} ∪ (I \ {i}) ∪ G, where
i ∈ I and G is a facet of LkPB(I). We now show that the same addition and removal of facets get us
from N�(B) to N�(B ∪ {I}).

First, consider the facets of N�(B) that no longer remain facets of N�(B ∪ {I}). If

N� := {I1, . . . , Ik} ∪ {xj1 , . . . , xj`}

is such a facet, then N� not being a facet of N�(B∪{I}) means that it is no longer an extended nested
collection. The only condition that could prevent N� from being an extended nested collection is the
condition that there does not exist Ii1 , . . . , Iir ∈ {I1, . . . , Ik} pairwise disjoint such that Ii1∪· · ·∪Iir = I.
This implies that there does exist such a collection whose union is I. Since the size of I is the smallest
among the non-singletons of B, each Iit must be a singleton for all t = i1, . . . , ir, hence {Ii1 , . . . , Iir} = I.
In other words, N� is a facet of N�(B) that contains I. Conversely, any facet of N�(B) that contains
I will fail to be a facet of N�(B ∪ {I}) for the same reason. Thus, the facets removed by stellarly
subdividing PB are indeed the maximal extended nested collections of B that fail to remain maximal
extended nested collections of B ∪ {I}.

Now consider any facet N� of N�(B ∪ {I}) that is not a facet of N�(B). This can only happen if
I ∈ N�. Furthermore, by Proposition 2.26, we have

N�(B ∪ {I})I ' N (B|I) ∗ N�(B/I).

Since N� \ {I} is a facet of N�(B∪{I})I , it corresponds to the join of a facet of N (B|I) with a facet of
N�(B/I). Since B|I = I ∪ {I}, its facets are of the form I \ {i} for some i ∈ I, and so N� \ {I} must
contain I \{i} for some i ∈ I. We now write N� = {I}∪(I \{i})∪N�

1 , where N�
1 is an extended nested

collection for B; in fact, we have that N�
1 is in LkN�(B)(I). Thus, this is one of the facets that are added

in the stellar subdivision on the face I of PB. Conversely, any facet of the form {I} ∪ (I \ {i}) ∪ G for
some i ∈ I and G a facet of LkPB(I) is a facet of N�(B ∪ {I}), but is not a facet of N�(B) since I 6∈ B.
Therefore, the facets added by stellarly subdividing PB are the maximal extended nested collections
added when we go from B to B ∪ {I}. This proves the induction hypothesis.

Remark 3.5. In [DHV11], the authors provide a polytopal realization for the extended nestohedron
P�(B) when B = BG is the building set of an undirected graph. Their argument works the same for
general building set, and could be seen as the dual to our stellar subdivision approach. In particular,
P�(B) is obtained as the boundary of the following polytope:

(i) Take the n-dimensional cube Cn, whose opposite facets are labeled by {i} and xi for every i ∈ [n],

(ii) For each I ∈ B (ordered by decreasing cardinality), we shave face I, i.e., the face corresponding
to the intersection of all facets {i | i ∈ I}.

Here, a shaving of a face F corresponding to a polytope P is defined as follows: consider any closed
half-space H that intersect P at exactly F . Then the shaving of F corresponds is the intersection of P
with a closed half-space Hε parallel to H, and is moved a small amount ε toward the polytope.

We obtain a different polytopal realization of the extended nestohedron P�(B), as the following
Minkowski sum.

Theorem 3.6. For a building set on [n], the extended nestohedron P�(B) is isomorphic to the boundary
of the polytope:

P :=
∑
i∈[n]

Conv(0, ei) +
∑
I∈B

Conv({eS |S ( I}),
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where e1, . . . , en are the standard basis vectors of Rn, and eS =
∑
i∈S ei for all S ⊆ [n].

The intuition for the Minkowski sum is that we start with the cube [0, 1]n, and then each added
term Conv({eS | S ( I}) corresponds to shaving face I of the cube. We again provide an example
before providing the proof.

Example 3.7. Consider the building set B = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}, which is the same building
set as in Example 3.4. Then the desired polytope P will be the Minkowski sum

Conv(0, e1) + Conv(0, e2) + Conv(0, e3) + Conv(e1, e2) + Conv(e1, e2, e3, e1 + e2, e1 + e3, e2 + e3),

as illustrated in Figure 3.

Conv(0,e1) Conv(0,e2) Conv(0,e3)

+ + + +

Conv(e1, e2) Conv(e1, e2, e3, e1 + e2, e1 + e3, e2 + e3)

Figure 3: Decomposition of P into Minkowski sum.

The resulting polytope P is shown in Figure 4 (not drawn to scale). Labelling the vertices by the
maximal extended nested collections of B, we see that P is indeed the dual of the polytope constructed
in Example 3.4.

{{3}, x1, x2}
{{2}, {3}, x1}

{{2}, x1, x3}

{{2}, {1, 2}, x3}

{{1}, {1, 2}, x3}{{1}, x2, x3}

{{1}, {3}, x2}

{{2}, {1, 2}, {1, 2, 3}}

{{2}, {3}, {1, 2, 3}}

{{1}, {1, 2}, {1, 2, 3}}

{{1}, {3}, {1, 2, 3}}

{x1, x2, x3}

Figure 4: Polytope P = P�(B).

Proof of Theorem 3.6. As in [Pos09], each face of a polytope can be identified by the set of linear
equations f which are maximized on that face. The face which maximizes an equation f in a Minkowski
sum is the Minkowski sum of faces which are maximized at f . Our proof will involve two steps: (1)
We form a map from extended nested collections of B to faces of P which is inclusion-reversing with
facets corresponding to vertices, and (2) we show every linear equation is maximized exactly at a face
corresponding (via our map from (1)) to an extended nested collection.

(1) View an extended nested collection σ̃ for B as a nested collection Nσ̃ of B and a set of xi’s.
Define AI for I ∈ Nσ̃ as AI := {i ∈ I | for any J ∈ Nσ̃, J ( I, i 6∈ J}. Define A−1 := {i ∈ [n] | xi ∈ σ̃}
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and A0 := [n] \ (A−1 ∪
⋃
I∈B AI). A linear equation

f(~t) = a1t1 + a2t2 + · · ·+ antn,

such that

• If i ∈ A−1, then ai ≤ 0;

• If i ∈ A0, then ai = 0;

• If i, j ∈ AI for I ∈ Nσ̃, then ai = aj ≥ 0;

• If i ∈ AI , j ∈ AJ for I, J ∈ Nσ̃ and I ( J , then ai ≥ aj ;

will be maximized on the same face QI of Conv({xS | S ( I}) for I ∈ B and the same face F of∑
i∈[n] Conv(0, ei). Namely,

F =
∑

i 6∈A−1∪A0

ei +
∑
i∈C0

Conv(0, ei),

for I ∈ B such that I ∩A−1 6= ∅, we have that QI = xI\(A−1∩I). For I ∈ B such that I ∩A−1 = ∅ and
I ∩A0 6= ∅,

QI = Conv(xS | S = I \ {non-zero subsets of (A0 ∩ I)}).

For J ∈ B such that J ∩ (A−1 ∪A0) = ∅, let I be the smallest element of Nσ̃ containing I. Then

QJ = Conv(xS | S = I \ {an element of AI}).

Thus f is maximized on the face F +
∑
I∈BQI , which we denote Qσ̃. Notice that if σ̃ 6= π̃ are distinct

extended nested collections for B, then Qσ̃ 6= Qπ̃. To show that the map σ̃ 7→ Qσ̃ is inclusion-reversing,
first notice that adding an xj to σ̃ corresponds to expanding the set of f which are maximized on Qσ̃
to include aj ≤ 0 rather than just aj = 0. Next, denote the nested collection formed from adding an
element I∗ to σ̃ by σ̃∗. Then letting A∗I be the AIs for the nested collection σ̃∗, we see that for a parent
I ∈ σ̃ of I∗, A∗I = AI ∩ ([n] \ I∗), and for any other I ∈ σ̃, A∗I = AI . It follows that if I∗ has a parent
in σ̃, then the set of f which are maximized on Q∗σ̃ consists of expanding the set of f maximized on Qσ̃
to include ai ≥ aj for i ∈ A(I∗)∗ and j in the parent of I∗ rather than just ai = aj for i ∈ A(I∗)∗ and
j in the parent of I∗. If I∗ does not have a parent in σ̃′, then the set of f which are maximized on Q∗σ̃
consists of expanding the set of f maximized on Qσ̃ to include 0 ≤ aj ≤ ai for i ∈ A(I∗)∗ and j ∈ J for
some J ∈ Nσ̃ rather than just ai = 0 for i ∈ A(I∗)∗.

(2) We will find the face FI of Conv(0, {xS |S ( I}) and the face F of
∑
i∈[n] Conv(0, ei) which

maximizes an arbitrary linear equation of the form

f(t) = a1t1 + a2t2 + · · ·+ antn.

First, divide the ai into sets C−1, C0, C1, . . . , Cr as follows:

• C−1 = {ai | ai < 0};

• C0 = {ai | ai = 0};

• If i, j ∈ Ck, then ai = aj ;

• If k < ` with i ∈ Ck and j ∈ C`, then ai < aj ;

• Cr is nonempty for every r ≥ 0.
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There is a unique set of subsets of [n], C−1, C0, . . . , Cr which satisfy these conditions (Cr will be the
set of largest ais, and so on). The face F is∑

i6∈C−1∪C0

ei +
∑
i∈C0

Conv(0, ei).

For an element of the building set I with I ∩ C−1 6= ∅, then FI = xI\(C−1∩I). For an element of the
building set I with I ∩ C−1 = ∅ and I ∩ C0 6= ∅,

FI = Conv(xS | S = I \ {non-zero subsets of (C0 ∩ I)}).

For J ∈ B such that J ∩ (C−1 ∪ C0) = ∅, let a be the smallest integer such that J ∩ Ca 6= ∅, then

FJ = Conv(xS | S = I \ {an element of Ca}).

Thus f is maximized on the face F +
∑
I∈B FI , which we denote Fσ̃. We construct the extended nested

set σ̃ which corresponds to this face as follows:

a) If i ∈ C−1, then xi ∈ σ̃.

b) Add in maximal elements (which are unique) of B|[n]\(C0∪C−1) to σ̃. These are the maximal
elements of σ̃.

c) Recursively, when we add an element I to (σ̃), we do the following: Partition I’s elements into
sets I ∩ C1, I ∩ C2, and so on. Let I ∩ Ca be the first nonempty subset in this partition. Add in
the maximal element under I in B|I\(I∩Ca).

Conditions a) and b) show that f is maximized on the same face of
∑
i∈[n] Conv(0, ei) as the face Qσ̃

in the Minkowski sum. Let Qσ̃|I refer to the face of Conv({xS |S ( I} in the Minkowski sum of Qσ̃.
We will show Qσ̃|I = QI for all I ∈ B using the descriptions of QI above.

For any I ∈ B with I ∩ C−1 6= ∅, Qσ̃|I = QI since condition a) implies A−1 = C−1. For any I ∈ B,
with I ∩ C−1 = ∅ and I ∩ C0 6= ∅, conditions b) and c) implies Qσ̃|I = QI since they imply A0 = C0.
For any other J ∈ B, let I be the smallest element of σ̃ which contains J . Then, condition c) shows
that

Qσ̃|J = Conv({xS | S = J \ i for i ∈ A(I)})
= Conv({xS | S = J \ i for i ∈ Ca for minimal a such that Ca ∩ I 6= ∅)}) = Q|J ,

with the last equality coming from the fact that J∩Ca 6= ∅; otherwise, there would be a smaller element
of σ̃ which contains J by condition c). It follows that f is maximized exactly on the face Qσ̃

4 Isomorphisms
In this section, we study isomorphisms within and between extended nested set complexes and nested
set complexes. We begin by constructing some examples of isomorphisms within and between extended
nested set complexes and nested set complexes. Once we have constructed these, we work towards
characterizing the isomorphisms between extended nested set complexes.

4.1 Graphical building sets
First we consider isomorphisms in the graphical case. Manneville and Pilaud call isomorphisms between
(extended) nested set complexes trivial if they arise from a graph isomorphism. We extend this
definition to non-graphical building sets: We say building sets B and B′ are isomorphic if there exists a
bijection σ : [n]→ [n] which extends to a bijection between the building set elements. Then σ induces
an isomorphism between (extended) nested set complexes. We call such an isomorphism trivial.

Given this terminology, Manneville and Pilaud show that the following graphs are the only graphs
that we have to consider when studying non-trivial isomorphisms [MP17].
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Definition 4.1. Let n := (n1, . . . , n`) ∈ N`.

• The spider graph Xn is a complete graph on vertices {vi0}i∈[`] (the body of the spider) and `
legs [vi1, v

i
ni

] attached to vertex vi0.

• The octopus graph Xn consists of a single vertex labeled ∗ (the head of the spider) and ` legs
[vi0, v

i
ni

] attached.
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Figure 5: Spider and octopus graphs for n = (2, 4, 2, 1, 2, 3).

In particular, Manneville and Pilaud found that all non-trivial isomorphisms between graphical
nested set complexes, i.e., those not induced by a graph isomorphism, occur between spider graphs.
They also prove an analogous result for graphical extended nested set complexes and octopus graphs.

Theorem 4.2 ([MP17], Theorem 44). LetG andG′ be two connected graphs and Φ : N (BG)→ N (BG′)
be a non-trivial isomorphism. Then G and G′ are both the spider graph Xn.

Theorem 4.3 ([MP17], Theorem 67). Let G and G′ be two connected graphs and Φ : N�(BG) →
N�(BG′) be a non-trivial isomorphism. Then G and G′ are both the octopus graph Xn.

Manneville and Pilaud also found that, for graphical building sets, the only isomorphism between
extended and non-extended nested set complexes is between spider and octopus graphs.

Theorem 4.4 ([MP17], Proposition 64). Let G and G′ be two connected graphs such that N�(BG) '
N (BG′). Then G is a spider Xn and G′ is an octopus Xn.

Notice that if n = (0, . . . , 0) ∈ Z`≥0, then Xn is K`, the complete graph on ` vertices, and Xn is the
star graph on ` + 1 vertices K1,`. Furthermore, if n = (k) ∈ Z≥0, then Xn is Pk+1, the path graph on
k+1 vertices, and Xn is Pk+2, the path graph on k+2 vertices. Theorem 4.4 therefore has the following
consequences.

Corollary 4.5 ([MP17], Example 62). For all n ∈ N, the simplicial complexes N�(BKn
) and N (BK1,n

)
are isomorphic.

Corollary 4.6 ([MP17], Example 62). For all n ∈ N, the simplicial complexes N�(BPn
) and N (BPn+1

)
are isomorphic.

4.2 Interval, spider, and octupus building sets
We now generalize Manneville and Pilaud’s results to non-graphical building sets. For such building
sets, there are more isomorphisms between extended nested set complexes and nested set complexes.
We first introduce an important difference between graphical and non-graphical building sets.
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Definition 4.7. For a building set B, a collection of its elements {I1, . . . , Ik} is aminimal non-nested
collection if {I1, . . . , Ik} is not a nested collection for B, but {Ii | i ∈ S} is a nested collection for any
subset S ( [k].

We extend this definition for extended nested set complexes by saying a minimal non-nested collec-
tion of elements of B∪{design vertices of B} is not an extended nested collection but any proper subset
is an extended nested collection.

Using the definition from [MP17], we will call a pair of building set elements (or design vertices)
e and e′ incompatible if {e, e′} is a minimal non-nested collection, and otherwise we will call them
compatible. In the graphical case, all minimal non-nested collections are pairs of incompatible elements
by Remark 2.22. This fact allows Manneville and Pilaud to define and use a “compatibility degree” to
determine many aspects of graphical nested and extended nestohedron, including characterizing their
isomorphisms. In our case, we have some extra structure in minimal non-nested collections with more
than 2 elements.

Lemma 4.8. Let {I1, I2, . . . , Ik} be a minimal non-nested collection of B. Then the union
⋃
i Ii is in

B. Furthermore, I1, . . . , Ik are pairwise disjoint except for when k = 2, in which case I1 and I2 can
have non-trivial intersection, i.e., I1 ∩ I2 is non-empty and is neither I1 or I2.

Proof. If k = 2 and {I1, I2} is not a nested collection, then I1 and I2 either have non-empty intersection,
in which case I1 ∪ I2 ∈ B by property (B2) of a building set, or are disjoint and satisfy I1 ∪ I2 ∈ B.
If k ≥ 3, then since any two-element subset {Ii, Ij} is a nested collection, condition (N1) of a nested
collection is satisfied for {I1, . . . , Ik}. Similarly, since {Ii | i ∈ S} is a nested collection for any S ( [k],
condition (N2) is satisfied for {I1, . . . , Ik} except possibly for when I1, . . . , Ik are pairwise disjoint and
their union is an element of B. But we know that {I1, . . . , Ik} is not a nested collection, hence the Ii’s
are pairwise disjoint and I1 ∪ · · · ∪ Ik is an element of B.

Note that a simplicial complex isomorphism is a bijection on the vertices, which induces a bijection
between collections of minimal non-faces.

Proposition 4.9. N (B) ' N (B′) if and only if there is a bijection Φ : B → B′ which extends to
a bijection between minimal non-nested collections. Similarly, N�(B) ' N (B′) or N�(B) ' N�(B′)
if and only if there is a bijection Φ between vertices of the simplicial complexes which extends to a
bijection between minimal non-faces.

Proof. From Proposition 2.1, Φ : ∆→ ∆′ is a simplicial complex isomorphism if and only if Φ extends to
a bijection between the subsets of vertices of ∆ and ∆′ which are not faces. Notice that for a simplicial
complex, σ is not a face implies for every τ ⊇ σ, τ is not a face; thus, Φ is an isomorphism if and only if
Φ extends to a bijection between minimal non-faces. In the case of N (B) ' N (B′), these are the same
as minimal non-nested collections.

We now provide the first isomorphism for possibly non-graphical building sets. Let B be a building
set such that every element of a building set I ∈ B is an interval, i.e., I = {a, a + 1, . . . , b − 1, b} for
some a ≤ b. We refer to such building sets as interval building sets.

Theorem 4.10. Let B be an interval building set on [n]. Define

B′ := B ∪ {{n+ 1}, {n, n+ 1}, {n− 1, n, n+ 1}, . . . , [n+ 1]}.

Then B′ is a building set on [n+ 1] and N�(B) ' N (B′).

Proof. First we show B′ is a building set. Notice that B′ contains all singletons and [n+1]. In addition,
B′ contains all intervals which contain n + 1. Now suppose that I, J ∈ B′ with n + 1 in at least one
of I or J , and I ∩ J 6= ∅. The union of two intersecting intervals is an interval, and n + 1 ∈ I ∪ J , so
we have that I ∪ J ∈ B′. If I, J ∈ B′ are such that n + 1 /∈ I, J and I ∩ J 6= ∅, then this implies that
I, J ∈ B, which is a building set. Thus, I ∪ J ∈ B ⊆ B′.
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To show N�(B) ' N (B′), we map elements of B to B ⊆ B′ by their natural inclusion, and we map
xi to [i+ 1, n+ 1] = {i+ 1, . . . , n, n+ 1} for each i = 1, . . . , n. Call this map φ.

Now we show that σ is a minimal non-nested collection if and only if φ(σ) is. Since B = B′|[n],
the image of a minimal non-nested collection which does not contain a design vertex is a minimal non-
nested collection. Similarly the preimage of a minimal non-nested collection which does not contain
an element which contains the singleton n + 1 is a minimal non-nested collection. The minimal non-
nested collections which contain design vertices are exactly the sets of the form {xi, e} for a building set
element e which contains i. Since [i, n+ 1] ∈ B′ for all i and B′ is an interval building set, the minimal
non-nested collections which contain [i+1, n+1] are exactly the sets of the form {[i+1, n+1], e} where
e contains i and does not contain n + 1. Notice that [i + 1, n + 1] = φ(xi) and e = φ(e). It follows by
Proposition 4.9 that φ defines a bijection.

To prove Theorems 4.2 and 4.3, Manneville and Pilaud define the rotation as a simplicial automor-
phism of the dual of the associahedron, N (BPn

). Here, we generalize this isomorphism to some other
nested set complexes on interval building sets. In the following map, we consider the empty set ∅ and
the entire set [1, n] as elements of every nested collection. This becomes useful in later isomorphisms
when we consider reverse inclusion on some nested collections.

Definition 4.11. Let B be an interval building set on [n] such that [1, k] ∈ B for all k ∈ [n]. The
interval rotation of B is the map Φrot : B → B′ defined by

Φrot(I) =


[a− 1, b− 1], if I = [a, b] with 1 < a ≤ b ≤ n,
[b+ 1, n], if I = [1, b] with b < n,
∅, if I = [1, n],
[1, n], if I = ∅,

with B′ the building set on [n] defined by this map.

Proposition 4.12. For a building set B satisfying the conditions of Definition 4.11, interval rotation
defines an isomorphism N (B) ' N (B′).
Proof. First, we show B′ is a building set. Notice that for any singleton {a} = [a, a] ∈ B for 1 < a ≤ n,
the singleton {a− 1} ∈ B′, and [1, n− 1] ∈ B implies that {n} ∈ B′; thus, all singletons are in B′. Now
suppose that [a, c], [b, d] ∈ B′ with [a, c]∩[b, d] 6= ∅. Then either a ≤ b ≤ c ≤ d < n or a ≤ b ≤ c ≤ d = n.
If a ≤ b ≤ c ≤ d < n, then [a+ 1, c+ 1], [b+ 1, d+ 1] ∈ B with [a+ 1, c+ 1] ∩ [b+ 1, d+ 1] 6= ∅. Since
B is a building set, this implies that [a + 1, d + 1] ∈ B, so Φ([a + 1, d + 1]) = [a, d] ∈ B′. Notice that
by the hypothesis for B and the definition of Φrot, we have that [k, n] ∈ B′ for all k ∈ [n]. Thus, if
a ≤ b ≤ c ≤ d = n, then [a, d] = [a, n] ∈ B′.

Now we show σ is a minimal non-nested collection if and only if Φrot(σ) is a minimal non-nested
collection. Since B[2,n] ' B′|[1,n−1], the image of a minimal non-nested collection consisting of elements
which do not contain the singleton 1 is a minimal non-nested collection. Similarly, the pre-image of a
minimal non-nested collection consisting of elements which do not contain the singleton n is a minimal
non-nested collection. Since [1, i] ∈ B for all i, the minimal non-nested collections which contain [1, i]
are exactly the sets of the form {[1, i], e} where 1 6∈ e and i + 1 ∈ e, similarly the minimal non-nested
collections of B′ which contain [i+ 1, n] are exactly the sets of the form {e′, [i+ 1, n]} where n 6∈ e′ and
i ∈ e′. These sets are in bijection by our mapping Φrot.

We also introduce an analogue of interval rotation for extended nestohedra.

Definition 4.13. Let B be an interval building set on [n] such that [1, k], [k, n] ∈ B for all k ∈
[n]. The extended interval rotation of B is a map Φ�

rot : B ∪ {design vertices of B} → B∗ ∪
{design vertices of B∗} defined by

Φ�
rot(I) =


[a− 1, b− 1], if I = [a, b] and a > 1,
xb, if I = [1, b],
[b, n], if I = xb,
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with B∗ the building set [n] defined by this map.

Proposition 4.14. With B as in Definition 4.13, extended interval rotation defines an isomorphism
N�(B) ' N�(B∗)

Proof. Let Φ̃ be the isomorphism N�(B)→ N (B′) from the proof of Theorem 4.10, then

Φ�
rot = Φ̃−1 ◦ Φrot ◦ Φ̃

which implies that Φ�
rot is an isomorphism.

The following trivial isomorphism, which we call the flip operation, will be involved in later isomor-
phism constructions.

Definition 4.15. Let w ∈ Sn be the permuation w = (n, n − 1, . . . , 2, 1), i.e., sending i to n + 1 − i.
For a building set B on [n], we define its flipped building set flip(B) to be

flip(B) = {{w(s1), . . . , w(sr)} | {s1, . . . , sr} ∈ B}.

We then have the involution

flip : B → flip(B), sending {s1, s2, . . . , sr} 7→ {w(s1), . . . , w(sr)},

which extends to a bijection between nested collections. If we let flip(xv) = xn+1−v for all v ∈ [n], then
it also extends to a bijection between extended nested collections.

We now proceed to generalize the notion of spider and octopus graph building sets to the non-
graphical case.

Definition 4.16. A spider building set is a building set on {vi,j | 0 < i ≤ m, 0 < j ≤ `i}, where m is
the number of legs and `i is the length of leg i. Define the i-th leg Bi of B to be Bi = B|{vi,1,vi,2,...,vi,`i}.
The building set B satisfies the following:

1. Each leg Bi of the spider is an interval building set consisting of intervals [vi,a, vi,b]. Furthermore,
Bi contains every interval of the form [vi,1, vi,k]. Every building set element which intersects but
is not contained in Bi contains vi,1.

2. Any union of building set elements containing vi,1 for some i is a building set element of B.

3. The restriction of any building set element to leg i is an element of Bi.

We refer to any building set element containing a vi,1 as a body set and any other element as a leg
set.

Definition 4.17. An octopus building set is a building set on {∗} ∪ {vi,j | 0 < i ≤ m, 0 < j ≤ `i}
where m is the number of legs and `i is the length of leg i. We say the leg i of the building set is the
set of elements of B consisting of ∗, vi,1, vi,2, . . . , vi,`i . When referring to a leg, we also refer to ∗ as vi,0.
The building set B satisfies the following:

1. Each leg Bi of the octopus is an interval building set consisting of intervals [vi,a, vi,b]. Bi contains
every interval of the form [vi,k, vi,`i ] and every interval of the form [vi,0, vi,k]. Every building set
element which intersects but is not contained in Bi contains vi,0.

2. Any union of building set elements containing ∗ is a building set element of B.

3. The restriction of any building set element to a leg i is an element of Bi.

We refer to any building set element containing ∗ as a body set, any element containing vi,1 and not
∗ as a suction cup set, and any other element as a leg set.

20



Both spider and octopus building sets are ways of gluing together interval building sets. In the
octopus case we glue together an end point of each of the legs and glue together the corresponding
building set elements. In the spider building set we connect the ends of the legs into a larger body and
connect the corresponding building set elements. One can check that spider and octopus building sets
are indeed valid building sets.

Proposition 4.18. All spider and octopus building sets are valid building sets.

Remark 4.19. The minimal non-nested collections of a spider building set are

(i) Minimal non-nested collections of leg sets in a leg Bi which do not contain vi,0,

(ii) A body set D and a leg set E in leg i such that D intersected with the leg i is incompatible with
E, and

(iii) Two body sets D,E which intersect but neither contains the other.

The minimal non-nested collections of an octopus building set are

(i) Minimal non-nested collections of leg sets in a leg Bi which do not contain vi,0,

(ii) A body set D and a leg set E in leg i such that D intersected with the leg i is incompatible with
E, and

(iii) Two body sets D,E which intersect but neither contains the other.

Let B be a spider building set; we want to construct an octopus building set B̃ such that N�(B) '
N (B̃) from the legs of the octopus and spider. Recall from Definition 4.11 that Φrot denotes the interval
rotation. For a leg Bi, let Bi be the building set from Theorem 4.10 such that N�(Bi) ' N (Bi).
Consider flip(Φrot(Bi)), which is the interval rotation of Bi, followed by a flip. When we consider the
elements of flip(Φrot(Bi)) and relabel vertices vi,k → vi,k−1, denote the resulting building set B̃i; these
are the legs of the soon-to-be octopus building set. Gluing our legs at vertices of the form vi,0 and
relabeling the vertex ∗ yields the octopus building set B̃.

Example 4.20. An example of a spider building set is

B = B1 ∪ B2 ∪ B3 ∪ Bbody,

where B1,B2, and B3 are given by the following posets ordered by containment:

{v1,1, v1,2, v1,3}

{v1,1, v1,2}

{v1,1} {v1,2} {v1,3}
(a) B1

{v2,1, v2,2}

{v2,1} {v2,2}
(b) B2

{v3,1}
(c) B3

Recall that we refer to any building set element containing a vi,1 as a body set, and any other
element as a leg set. The remaining body set elements of B are given by

Bbody = {J1 ∪ J2 ∪ J3 | Ji ∈ Bi a body set, or Ji = ∅}.

One can visualize the spider building set as in Figure 6; the leg sets are circled in dashes, the body
sets that are restricted to a leg are encircled with a solid line, and the edges between v1,1, v2,1, and v3,1

represent the ways that the remaining body sets can be formed.
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v1,1

v1,2

v1,3

v3,1

v2,1

v2,2

Figure 6: Spider building set B.

We now construct B̃1, the leg of the octopus corresponding to B1. First, we obtain B1, shown
in Figure 7(a), such that N�(Bi) ' N (Bi) from Theorem 4.10. Then, apply the interval rotation,
Φrot(B1), which is shown in Figure 7(b). Finally, flipping and relabeling the vertices, we get B̃1, shown
in Figure 7(c), which is the leg of the octopus corresponding to B1 of the spider building set.

{v1,1, v1,2, v1,3, v1,4}

{v1,1, v1,2, v1,3} {v1,2, v1,3, v1,4}

{v1,1, v1,2} {v1,3, v1,4}

{v1,3}{v1,1} {v1,2} {v1,4}
(a) B1

{v1,1, v1,2, v1,3, v1,4}

{v1,1, v1,2, v1,3} {v1,2, v1,3, v1,4}

{v1,3, v1,4}

{v1,3} {v1,4}

{v1,2, v1,3}

{v1,1} {v1,2}
(b) Φrot(B1)

{v1,0, v1,1, v1,2, v1,3}

{v1,1, v1,2, v1,3} {v1,0, v1,1, v1,2}

{v1,0, v1,1}

{v1,1} {v1,0}

{v1,1, v1,2}

{v1,3} {v1,2}
(c) B̃1

Figure 7: Building sets in the process of constructing B̃1.

Applying this procedure to find the other legs of the octopus, we get

{v2,0, v2,1, v2,2}

{v2,0, v2,1} {v2,1, v2,2}

{v2,0} {v2,1} {v2,2}
(a) B̃2

{v3,0, v3,1}

{v3,0} {v3,1}
(b) B̃3
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Gluing the vertices v1,0, v2,0, v3,0 into a single vertex labeled ∗ yields the octopus building set with
the following building set elements:

leg sets: {{v1,3}, {v1,2}, {v2,2}},
suction cup sets: {{v1,1}, {v1,1, v1,2}, {v1,1, v1,2, v1,3}, {v2,1}, {v2,1, v2,2}, {v3,1}},

body sets: {{∗} ∪ J1 ∪ J2 ∪ J3 | Ji is a suction cup set in leg i, or Ji = ∅}.

We can visualize this octopus building set as in Figure 8. The leg sets are denoted with dashed
circles, the suction cup sets are encircled with solid lines, and the edges between ∗ and the vertices
v1,1, v2,1, and v3,1 represent the ways that body sets can be formed.

*
v3,1

v2,1

v2,2

v1,1

v1,2

v1,3

Figure 8: Octopus building set B̃.

Theorem 4.21. If B is a spider building set and B̃ is the corresponding octopus building set, then
N�(B) ' N (B̃).

Proof. By Theorem 4.10 and Proposition 4.12, the building set Φ(Bi) is a valid interval building set;
since B̃i is obtained from Φ(Bi) by flipping and relabeling vertices and neither operation changes the
structure of the building set, we have that B̃i is a valid interval building set.

By Proposition 4.18, the set B̃ is a valid building set since the leg B̃i is an interval building set. For
each leg Bi, composing the bijections between elements of the building set (and design vertices) and ele-
ments of the building set in our chain of isomorphisms gives a bijection ϕi : Bi∪{design vertices of Bi} →
B̃i which extends to a bijection {extended nested collections of Bi} → {nested collections of B̃i}. We
construct an isomorphism Ω̃ : B ∪ {design vertices of B} → B̃, where C|i is the restriction of C to the
leg i:

Ω̃(C) :=


⋃
i∈[m] ϕi(C|i), if C is a body building set element,

ϕi(C|i), if C is a leg building set element in leg i,
ϕi(C|i), if C is a design vertex xv with v in leg i.

Now we will show Ω̃ extends to a bijection between minimal non-nested collections. For each leg
Bi, ϕi is a composition of simplicial isomorphisms and thus Ω̃ extends to a bijection between minimal
non-nested collections between the legs Bi and B′i. It follows that Ω̃ extends to a bijection between the
minimal non-nested collection of forms (i) and (ii) for the spider and (i) and (ii) of the octopus from
Remark 4.19. Since for body sets D,E, in each leg i, ϕi reverses the inclusion of D and E, Ω̃ extends to
a bijection between the minimal non-nested collection of form (iii) for the spider and (iii) of the octopus
from Remark 4.19.
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We now find an isomorphism between nested set complexes of spider building sets. Given a spider
building set B, let B′ be the spider building set constructed in the following manner. For each leg Bi,
let B′i = flip(Φ(Bi)), where Φ is still the interval rotation.

For each leg Bi, composing the bijections between elements of the building set gives a bijection
ϕi : Bi → B′i which extends to a bijection {nested collections of Bi} → {nested collections of B′i}. We
construct an isomorphism Ω : B → B′ where C|i is the restriction of C to the leg i, by

Ω(C) :=

{⋃
i∈[m] ϕi(C|i), if C is a body building set element,

ϕi(C|i), if C is a leg building set element in leg i.

Theorem 4.22. The map Ω : B → B′ defines a non-trivial isomorphism N (B) ' N (B′).

Proof. As in our previous theorem, B′ is a valid building set since each B′i is an interval building set.
Now we will show Ω extends to a bijection between minimal non-nested collections. For each leg Bi, ϕi is
a composition of simplicial isomorphisms and thus Ω extends to a bijection between minimal non-nested
collections between the legs Bi and B′i. It follows that Ω extends to a bijection between the minimal
non-nested collection of forms (i) and (ii) for the spider for B and B′ from Remark 4.19. Since for body
sets D,E, in each leg i, ϕi reverses the inclusion of D and E, Ω extends to a bijection between the
minimal non-nested collection of form (iii) for the spider and (iii) of the octopus from Remark 4.19.

We now find an isomorphism between extended nested set complexes of octopus building sets. For
a leg Bi, let Bi be the building set from Theorem 4.10 such that N�(Bi) ' N (Bi). Then let flip(Φ(Bi))
be the interval rotation and then flip of Bi. Finally, let B′i be the building set from Theorem 4.10 such
that N�(B′i) ' N (flip(Φ(Bi)).

For each leg Bi, composing the bijections between elements of the building set gives a bijection

ϕi : {vertices of N�(Bi)} → {vertices of N�(B′i)},

which extends to a bijection {extended nested collections of Bi} → {extended nested collections of B′i}.
We construct an isomorphism

Ω� : {vertices of N�(B)} → {vertices of N�(B)},

where C|i is the restriction of C to the leg i, by

Ω�(C) =


⋃
i∈m ϕi(C|i), if C is a body building set element,

ϕi(C|i), if C is a suction cup or leg building set element in leg i,
ϕi(xv), if C = xv with v 6= 1 and in leg i,
x∗ = ϕi(x∗), if C = x∗ and for all i.

.

Theorem 4.23. The map Ω� defines a non-trivial isomorphism N�(B) ' N�(B′).

The proof that this is a non-trivial isomorphism follows the proof of Theorem 4.22 very closely.

4.3 Independence complex and strong building sets
We now work towards proving that all non-trivial isomorphisms of extended nested set complexes are, up
to relabeling vertices, a rotation or Ω� from Theorem 4.23. In Manneville and Pilaud’s characterization
of isomorphisms between (extended) nested set complexes of graphical building sets, they determined
that isomorphisms of products of (extended) nested set complexes of graphical building sets factor along
connected components and use this as their main tool [MP17, Lemma 78]. In this subsection, we will
introduce the concept of strongly connected components within a building set and demonstrate
that nested set complexes are determined by their strongly connected components, yielding a natural
class of building sets which we call strong building sets. We then show that an isomorphism between
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products of extended nested set complexes of connected building sets and nested set complexes of strong
and connected building sets factor into pairs of smaller isomorphisms. The main tool we will use is the
independence complex, which we define soon.

Throughout this subsection and the next, we assume that the underlying building set B of a nested
complex N (B) does not contain a maximal element which is a singleton. This is because such singletons
add nothing to the nested complex. In other words, if B contains a maximal element e which is a
singleton, then N (B) ' N (B′), where B′ is B with the maximal singleton e removed.

From our earlier discussion of minimal non-nested collections (see Lemma 4.8 and Proposition 4.9),
we have the following corollary.

Corollary 4.24. Let {I1, I2, . . . , Ik} be a minimal non-nested collection of B. Then I1, . . . , Ik are
in the same connected component of B. If we have an isomorphism Φ : N (B) → N (B′), then
Φ(I1),Φ(I2), . . . ,Φ(Ik) are in the same connected component of B′.

Proof. By Lemma 4.8, I = I1 ∪ · · · ∪ Ik ∈ B, hence I1, . . . , Ik are in the same connected component as
e. If Φ : N (B)→ N (B′) is an isomorphism, then {Φ(I1), . . . ,Φ(Ik)} is a minimal non-nested collection
of B′, hence similar reasoning shows that they are also in the same connected component.

We now introduce the independence complex, which captures the structure of the minimal non-
nested collection of B.

Definition 4.25. For a simplicial complex ∆, we define its independence complex I(∆) to be the
simplicial complex with the minimal non-faces of ∆ as its facets. We define the independence graph
G(∆) to be the 1-skeleton of I(∆). For a connected component C of the independence graph G(∆), we
define the M-size of C to be the dimension of the subcomplex ∆ restricted to the vertices in C.

When ∆ = N (B) is a nested complex, we define G(B) := G(N (B)) to be the independence graph
of B. A strongly connected component of B is a connected component of G(B).

We now show that there is a correspondence between isomorphisms of simplicial complexes and
isomorphisms of their independence complexes. Note that I(∆) has the same vertices as ∆, hence a
map Φ : {vertices of ∆} → {vertices of ∆′} could be considered as both a map of vertices Φ : ∆→ ∆′

and Φ : I(∆)→ I(∆′).

Proposition 4.26. Let Φ be a map between the vertices of ∆ and those of ∆′. Then Φ : ∆ → ∆′

is an isomorphism if and only if Φ : I(∆) → I(∆′) is an isomorphism. In this case, restricting to the
1-skeleton gives an isomorphism Φ1 : G(∆) → G(∆′), which sends connected components of G(∆) to
connected components of G(∆′) and preserves M -size.

Proof. Since a simplicial map is an isomorphism if and only if it is a bijection of the facets, Φ : I(∆)→
I(∆′) is an isomorphism if and only if Φ is a bijection from the facets of I(∆) to the facets of I(∆′). But
this is the same as saying Φ is a bijection between minimal non-faces of ∆ and ∆′. By an observation
in Proposition 4.9, this is the case if and only if Φ : ∆→ ∆′ is a simplicial complex isomorphism.

If Φ : I(∆) → I(∆′) is an isomorphism, then its restriction on the 1-skeletons is also an isomor-
phism, and a graph isomorphism sends connected components to connected components. This mapping
preserves M-size since for any connected component C of G(∆), we can restrict Φ to an isomorphism
between ∆ restricted to C and ∆′ restricted to Φ(C). In particular, the dimensions of these complexes
are the same.

Since the minimal non-faces of the join of simplicial complexes are the union of the sets of minimal
non-faces for both complexes, we have the following Proposition.

Proposition 4.27. For simplicial complexes ∆ and ∆′,

I(∆ ∗∆′) = I(∆) t I(∆′), and hence G(∆ ∗∆′) = G(∆) t G(∆′).

Furthermore, for a simplicial complex ∆ with connected components Ci of the G(∆), ∆ is equal to the
join over i of ∆ restricted to the vertices of Ci.
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Remark 4.28. By Corollary 4.24, any connected component of G(B) must be a subset of a connected
component of B. We call B a strong building set if all connected components of B are strongly
connected components. We define the size of a strongly connected component to be the number of
minimal elements in the strongly connected component.

An important class of strong building sets are graphical building sets. A proof of the following
statement for graphical building sets can be found in [MP17, Lemma 78]. More importantly, we show
that any building set is equivalent to a strong building set, in the sense that their nested complexes are
isomorphic. To do so, we need the following results.

Lemma 4.29. For every non-singleton building set element e, there exists a minimal non-nested col-
lection e1, e2, . . . , er such that

⋃
i ei = e

Proof. let e1, e2, . . . , es be the maximal element of B|e \{e}. Since {i} ∈ B|e \{e} for all singletons i ∈ e,
i ∈ eji for some ji and thus the union of e1, . . . , es equals e. Pick some minimal subset of them with
union e; we can reindex so that they are e1, e2, . . . , er. Since this subset is minimal and e1, e2, . . . , er
are maximal in B|e \ {e}, no union of a subset of their elements can be an element of B|e \ {e} and thus
e1, e2, . . . , er is a minimal non-nested collection.

Lemma 4.30. Let {Ci | i ∈ S} be the set of strongly connected components of B. DefineMi =
⋃
e∈Ci

e
and M = {Mi | i ∈ S}. Then we have the following.

(i) Mi is an element of B.

(ii) Every building set element e contained in Mi is contained in a strongly connected component Cj
with Mj ⊆Mi.

(iii) Every building set element e which intersects Mi but is not contained in Mi contains Mi.

Proof. (i) Choose any spanning tree in the connected component of G(B), and for each edge ei =
{vi, v′i} of the tree, choose a minimal non-nested collection Ei that contains v and v′. By
Lemma 4.8, the union of elements in Ei is an element ui of the building set. Since we select
a spanning tree, each ui has non-empty intersection with some other uj . We then take the union
of all ui’s, which is in B by property (B2). However, this also equals the union of all elements in
a strongly connected component, so we are done.

(ii) We prove (ii) and (iii) simultaneously using an interdependent induction. We prove (ii) for an
element Mi ∈ M such that for every Mj ∈ M satisfying Mj ( Mi, we have already proven (iii).
We also need to prove a base case of (ii) where Mi is a minimal element of M .

We first prove the base case. Suppose for the sake of contradiction that there exists a building
set element strictly contained in Mi and not contained in the corresponding strongly connected
component Ci. Then there exists some minimal building set element J strictly contained in Mi

which is not contained in Ci.

First suppose J is not a singleton. By Lemma 4.29, there exists a set I1, I2, . . . , Ir of building set
elements whose union is J and any strict subset of elements of I1, I2, . . . , Ir is a nested collection.
By our assumption that J is minimal, every element of I1, I2, . . . , Ir is contained in Ci. Thus,
there exists some strict subset R of [r] and Ki ∈ B such that {Ii | i ∈ R} ∪ {K1,K2, . . . ,Kr} is a
minimal non-nested collection whose union U ⊂Mi contains a singleton which is not in J .

If U contains J , then U = J ∪ K1 ∪ K2 ∪ · · · ∪ Kr implies that (noting that any subset of
Ki’s is a nested collection) there exists a subset of the Ki’s which form with J a minimal non-
nested collection. Thus J is in the same strongly connected component as the Ii’s, which is a
contradiction.

If U does not contain J , then U, J intersect each other and are not nested, hence U and J are
in the same strongly connected component. Then U ∪ J = U ∪ {Ii | i 6∈ S} ∈ B implies that a
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subset of the Ii’s form with U a minimal non-nested collection. Thus J is in the same strongly
connected component as the Ii’s, which is again a contradiction.

Now suppose J is a singleton, then there exists a set {J, I1, I2, . . . , In} which is a minimal non-
nested collection and U = J ∪ I1 ∪ · · · ∪ In is not contained in Mi. Then for any building set
element J ′ with J ⊆ J ′ (Mi, we have that U ∪ J ′ ∈ B, and U ∪ J ′ = J ′ ∪ I1 ∪ I2 ∪ · · · ∪ In. Since
any subset of the Ii’s form a nested collection, there exists a subset of the Ii’s which, together
with J ′, forms a minimal non-nested collection. Thus, no element of Ci contains J , which is a
contradiction since the union of all elements in Ci is Mi which contains J .

We conclude that (ii) is true for any minimal Mi ∈M .

Now we show that (ii) holds for Mi if (iii) holds for every Mj ∈M satisfying Mj (Mi. Consider
the building set

B∗ := {I ∈ B | I ⊇ m′ for all Mj ∈M satisfying Mj (Mi}.

By (iii), for all Mj ( Mi, the minimal non-nested collections of B∗ are exactly the minimal
non-nested collections of B whose edges in G(B) are not contained in a connected component
corresponding to an Mj ∈ M satisfying Mj ( Mi. If we define {C∗i | i ∈ S∗} to be the set of
strongly connected components of B∗, and M∗ = {

⋃
e∈C∗i

e | i ∈ S∗}, then the above sentence
shows that Mi is a minimal element of M∗. By the base case above applied to the building set
B∗, we have that (ii) holds for Mi in B∗. But since B∗ ⊂ B, we conclude that (ii) holds for Mi in
B as well.

(iii) Now we prove (iii) for any Mj which we have already proven (ii) for. Suppose that an element
J ∈ B does not contain nor is contained by Mj , so that J ∪Mj ∈ B. By Lemma 4.29, there
exists a minimal non-nested collection I1, I2, . . . , Ik of Cj with I1 ∪ I2 ∪ · · · ∪ Ik = Mj . We have
J ∪Mj = J ∪ I1 ∪ I2 ∪ · · · ∪ Ik ∈ B. Since the Ii’s are contained in Mj it is enough to show J
is in the same strongly connected component as the Ii’s. Since J intersects Mj , J must intersect
some Ii. If J does not contain this Ii, then J is incompatible with Ii (since J contains an element
outside of Mj , and thus outside of Ii) and thus J is in the same strongly connected component
as Ii. If J contains Ii, then J union some proper subset of the Ii’s is J ∪Mj . Since any union of
a proper subset of the Ii’s form a nested collection, this implies there exists a subset of the Ii’s
which, together with J , forms a minimal non-nested collection. Thus J is in the same connected
component as the Ii’s.

Corollary 4.31. Every strongly connected component of B is contained in a connected component of
B.

Proof. By part (i) of Lemma 4.30, the union of all elements of a strongly connected component C is in
B and thus in some connected component of B. Then all elements in C are contained in that connected
component of B.

Proposition 4.32. For every building set B, there exists a strong building set B′ such that N (B) '
N (B′) and B and B′ have the same strongly connected size partition.

Proof. By Corollary 4.31, it is enough to prove the statement for connected building sets B. Define
B ∗ J to be {I ∈ B | I ⊃ J}. By Lemma 4.30 (iii), for any m ∈M (as defined in the lemma),

N (B) ' N (B|m t (B ∗m)),

and the strongly connected component sizes of B|M t (B ∗M) are the same as the strongly connected
component sizes of B under the natural bijection between strongly connected components.
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Now let B0 = B. We inductively pull strongly connected components from Bi of the form Bi|mi
,

where mi is a minimal element of the set of unions of the elements of strongly connected components
for Bi and form Bi+1 = B ∗mi. Repeating this process separates B into a strong building set

B0|m0
t B1|m1

t · · · t Br|mr
,

and
N (B) ' N (B0|m0

t B1|m1
t · · · t Br|mr

).

Notice that in Proposition 4.32 and Lemma 4.30, each N (Bi|mi) is isomorphic to the subcomplex of
N (B) restricted to a connected component C of G(B) of size |{minimal elements of C}|. Each Bi ∗mi

preserves the strongly connected component sizes and thus we have,

Corollary 4.33. The M-size of a connected component C of G(B) is |{minimal elements of C}| − 1.

We have a similar characterization for the M-size of an extended nested complex N�(B).

Lemma 4.34. The connected components of G(N�(B)) are the connected components of B. The M -
size of a connected component of G(N�(B)) is the size of the corresponding connected component of B
(i.e. the number of singletons).

Proof. Let C be a connected component of B with maximal element MC ∈ B. Any design vertex xv
for v ∈ C has an edge to MC in G(N�(B)). Any building set element containing v is contained in C
and has an edge to xv in G(N�(B)). Thus, every two elements e1, e2 in C are connected. Notice that
for any minimal non-nested collections {e1, e2, . . . , en} of building set elements, the union

⋃n
i=1 ei is an

element of B. Then, there is no edge from a building set element to a building set element in another
connected component in G(B).

Since the minimal non-nested collections which contain a design vertex xv consist only of incompat-
ible pairs {xv, e} with v ∈ e, it must be that e is contained in the connected component which contains
v. Thus, there are no edges between design vertices in a connected component and vertices in a different
connected component. The connected components of G(N�(B)) are the connected components of B.
For each of these connected components C, the subcomplex of N�(B)) restricted to the vertices of C
is N�(B|MC

)), which has dimension equal to the size of C.

We now prove that an isomorphism of (extended) nested complexes factors into isomorphisms be-
tween (extended) nested complexes of (strongly) connected components.

Proposition 4.35. For indexing sets A,B,C,D and for each a ∈ A, b ∈ B, c ∈ C, d ∈ D, let Ba,Bc be
connected building sets and Bb,Bd be strong and connected building sets. An isomorphism (where the
product is the ∗-product)∏

a∈A
N�(Ba) ∗

∏
b∈B

N (Bb) '
∏
c∈C
N�(Bc) ∗

∏
d∈D

N (Bd)

factors into isomorphisms between single extended or non-extended set complexes on the LHS (N�(Ba)
or N (Bb)) and RHS (N�(Bc) or N (Bd)), which have equal M-sizes.

Proof. By Proposition 4.27, the independence graph of LHS and RHS is the disjoint union of the
graphs of each term in the join. By Lemma 4.34 and the fact that Bb,Bd are strong and connected, the
independence graph of each of the term in the join above is connected. Thus, the connected components
of the LHS and RHS are precisely the terms of the join. By Proposition 4.26, this isomorphism factors
into isomorphisms between connected components of both sides, which are precisely isomorphisms of
the form

N ε(Bu) ' N δ(Bv),
where ε, δ ∈ {∅,�}, and u, v are in the corresponding index sets according to ε, δ. Since these are
isomorphisms, both sides have equal M-size.
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Applying the above Proposition to the case where both sides only has one (extended) nested complex
yields the following.

Corollary 4.36. Let B be a connected building set on [n].

(i) If N�(B) ' N�(B′), then B′ is a connected building set on [n].

(ii) If N�(B) ' N (B′), then B′ is a strong and connected building set on [n+ 1].

(iii) If N (B) ' N (B′) and B is strong, then B′ is a strong and connected building set on [n].

When we consider links of vertices in our (extended) nested set complexes, by the link decomposition
(proved in section 2), we have an isomorphism of the form∏

a∈A
N�(Ba) ∗

∏
b∈B

N (Bb) '
∏
c∈C
N�(Bc) ∗

∏
d∈D

N (Bd),

where Bb,Bd might not be strong or connected. In this case, we can factor each of N (Bb),N (Bd)
into a join of its strongly connected components, and use Proposition 4.35 to pair up these connected
components on both sides into isomorphisms. We can thus bound the size of the image of an element
in an isomorphism as follows.

Lemma 4.37. Let B be a connected building set on [n] with e ∈ B.

(i) If there is an isomorphism Φ� : N�(B) → N�(B′) with Φ�(e) not a design vertex of B′, then
|Φ�(e)| ≤ |e| or |Φ�(e)| ≥ n− |e|+ 1.

(ii) If there is an isomorphism Φ̃ : N�(B)→ N (B′), then |Φ̃(e)| ≤ |e| or |Φ̃(e)| ≥ n− |e|+ 1.

Proof. (i) Considering the links of e and Φ�(e) gives us an isomorphism

N�(B/e) ∗ N (B|e) ' N�(B′/Φ�(e)) ∗ N (B|Φ�(e)).

By the observation above, N�(B/e) is isomorphic to either N�(B′/Φ�(e)) or a strongly connected
component ofN (B′|Φ�(e)). Comparing their maximal M-size components gives us either |Φ�(e)| =
|e| or |Φ�(e)| ≥ n− |e|+ 1.

(ii) We have a similar isomorphism

N�(B/e) ∗ N (B|e) ' N (B′/Φ̃(e)) ∗ N (B′|Φ̃(e)).

ThusN�(B/e) is isomorphic to either a strongly connected component ofN (B′/Φ̃(e)) or a strongly
connected component of N (B′|Φ̃(e)). This gives us |Φ̃(e)| ≤ |e| or |Φ̃(e)| ≥ n− |e|+ 1.

Remark 4.38. This lemma implies that in such an isomorphism (either Φ� or Φ̃), any singleton s ∈ B
is either sent to a design vertex, a singleton or a complement of a singleton. We say a singleton s ∈ B
is maintained by an isomorphism Φ if |Φ(s)| = 1 and s is swapped if |Φ(s)| = n.

4.4 Isomorphisms between extended nested set complexes
In this subsection, we will prove the following theorems.

Theorem 4.39. For a strong and connected building set B, every isomorphism Φ̃ : N�(B)→ N (B′) is
either the isomorphism from Theorem 4.21 or the isomorphism from Theorem 4.10.

Theorem 4.40. For a connected building set B, every non-trivial isomorphism Φ� : N�(B)→ N�(B′)
is an extended rotation or the isomorphism from Theorem 4.23.
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We will use the results from the previous subsection on the factoring of isomorphisms and the
possible images of the singletons. Our main focus will be to study the images of the design vertices,
whose rigid structure allows us to determine to where most elements of the building set are mapped.
We will also frequently use the results of the following Lemma.

Lemma 4.41. Let B be a building set.

(i) Two elements e, e′ ∈ B are incompatible if and only if neither contain each other and their union
is in B.

(ii) If {I1, . . . , Ik} is a nested collection with I = I1 ∪ · · · ∪ Ik, then {I1, . . . , Ik} contains all the
maximal elements of B|I .

Proof. (i) Two building set elements e, e′ are incompatible if and only if they intersect each other
but neither is contained in the other, or they are disjoint but their union is in B. In both cases,
we have that e, e′ don’t contain each other, and in the first case e ∪ e′ ∈ B as well since their
intersection is non-empty.

(ii) Note that the maximal elements of B|I are disjoint, and they form the connected components of
B|I . Thus, any Ij is contained in one such element. Now, assume that {I1, . . . , Ik} doesn’t contain
some M ∈ (B|I)max. Let Ij1 , . . . , Ijl be the elements that are contained in M . Then their union
must be M , or otherwise the union I1 ∪ · · · ∪ Ik is not all of I, contradiction. But then using
the same argument as in Lemma 4.29, a subset of {Ij1 , . . . , Ijl} will form a minimal non-nested
collection. This contradicts the fact that {I1, . . . , Ik} is a nested collection, hence any subset is a
nested collection.

4.4.1 Proof of Theorem 4.39

We first study the images of the design vertices and the singletons of B.

Lemma 4.42. For a connected building set B on [n] and an isomorphism Φ̃ : N�(B) → N (B′), let
{Li | i ∈ S} be the maximal elements of the nested collection {Φ̃(xs) | s ∈ [n]}, where S is some
indexing set. Then

(i) all images of design vertices are contained in exactly one Li,

(ii) for every singleton s with Φ̃(xs) ( Li, Φ̃(s) is a singleton in Li

(iii) all images of design vertices contained in Li are nested, and

(iv) if Φ̃(xs) = Li, then Φ̃(s) is either the unique singleton B′ \
⋃
i∈S Li or it is the complement of the

unique singleton of the form Li − Φ̃(xt).

Proof. (i) The image of any design vertex must be contained in some Li by definition. It is contained
in exactly one Li since the images of design vertices form a nested collection, hence no two elements
intersect without one containing the other.

(ii) By Corollary 4.36, B′ is strong and connected on [n + 1], and
∣∣∣Φ̃(s)

∣∣∣ ∈ {1, n} by Remark 4.38.

If Φ̃(s) is swapped, then it must not contain Li since its design vertex is contained in Li. But
then it is incompatible with Li which is the image of another design vertex since Φ̃(xs) ( Li,
contradiction. Now let Φ̃(s) be a singleton contained in Lj . Since the image of the design vertices
which map to elements contained in Lj form a maximal nested collection in Lj , Φ̃(s) union the
images of these design vertices is not a nested collection. This implies that {s} union these design
vertices is not a nested collection, and this only happens when xs is one of these design vertices.
We then conclude that j = i since Φ̃(xs) ( Li.
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(iii) We prove this by induction. Since the image of the design vertices is a maximal nested collection,
there is some design vertex xs which maps to a singleton in Li. Now suppose there is a design vertex
xt which maps to an element of size r < |Li| inside Li. The corresponding vertex t is mapped to a
singleton which implies that the union of these Φ̃(xt)∪ Φ̃(t) is in B′. Let Φ̃(e) be this union, where
e is either a building set element or a design vertex of B. Since the images of xt and [n] do not
form a nested collection, Φ̃(xt) ∪ Φ̃([n]) ∈ B′. Then Φ̃([n]) ∪ Φ̃(e) =

(
Φ̃([n]) ∪ Φ̃(xt)

)
∪ Φ̃(e) ∈ B′

as well, which implies that [n] and e are incompatible. Thus, e is a design vertex whose image is
of size |Φ̃(xt) ∪ Φ̃(t)| = r + 1.

(iv) Suppose
∣∣∣Φ̃(s)

∣∣∣ = 1. By our argument in (ii), Φ̃(s) cannot be contained in any Lj for j 6= i. Then

Φ̃(s) cannot be contained in Li since Φ̃(s) is incompatible with Φ̃(xs) = Li. Since the set of design
vertices form a maximal nested collection, there is exactly one singleton not contained in ∪i∈SLi,
which s is mapped to.

Suppose
∣∣∣Φ̃(s)

∣∣∣ = n. By our arguments in (iii), there exists a t′ such that Φ̃(t′) = Li \ s′ for some

singleton s′. Thus Φ̃(s) must contain Li \ s′ and be incompatible with Li. It follows that Φ̃(s) is
the complement of s′.

To prove Theorem 4.39, we first use the fact that B is strong and connected to conclude that
|Φ̃([n])| ∈ {1, n}. This is because considering the link of [n] and Φ̃([n]) gives us the isomorphism

N (B) ' N (B′|Φ̃([n])) ∗ N (B′/Φ̃([n]))

Now Proposition 4.35 implies that one of the terms in the RHS is trivial, hence Φ̃([n]) is either a
singleton or the complement of a singleton. Therefore, to finish the proof it suffices to consider the two
cases separately. They are dealt with in the following theorems.

Theorem 4.43. For a connected building set B on [n] and an isomorphism Φ̃ : N�(B) → N (B′),
assume |Φ̃([n])| = n. Then B′ is isomorphic to an interval building set which contains [i, n + 1] for all
i, and B is an interval building set such that Φ̃ is isomorphic to the isomorphism in Theorem 4.10.

Proof. Since B is connected, Proposition 4.35 implies that B′ is strong and connected on [n + 1]. We
relabel so that Φ̃([n]) = [n]. Since Φ̃([n]) is incompatible with the image of any design vertex, Φ̃(xs)
must contain n + 1 for all design vertex xs. By Lemma 4.42, it follows that the images of all design
vertices are nested. We then re-label the singletons of B′ and B such that Φ̃(xi) = [i+ 1, n+ 1] for all
i = 1, . . . , n. Also by Lemma 4.42, for i ≥ 2, Φ̃(i) = {i} and Φ̃(1) is either {1} or {1} ∪ [3, n+ 1].

We now prove that B′ is an interval building set. First note that the elements of B′ which contain n+1
are exactly the images of design vertices, since any such element is incompatible with Φ̃([n]), and thus
its pre-image must be some design vertex. In particular, this rules out the case Φ̃(1) = {1} ∪ [3, n+ 1],
hence Φ̃(1) = {1}. Also, if there was some element J ∈ B′ which contains i and i− k > 1 but not i− 1,
then [i, n+ 1] ∪ J ∈ B′ contains n+ 1 but cannot be the image of a design vertex since all such images
are intervals, a contradiction.

Finally, to show that Φ̃ is the isomorphism from Theorem 4.10, it suffices to show that Φ̃−1([a, b]) =
[a, b] for any interval [a, b] ∈ B′ with 1 ≤ a ≤ b ≤ n. This follows from two observations. Since
{[a, b], [i, n + 1]} is a nested collection for i < a + 1 or i > b + 1, Φ̃−1([a, b]) is compatible with xi for
i < a or i > b. This implies Φ̃−1([a, b]) ⊆ [a, b]. Similarly, since {[a, b], [i, n + 1]} is a not a nested
collection for a+ 1 ≤ i ≤ b+ 1, Φ̃−1([a, b]) is incompatible with xi for a ≤ i ≤ b, thus Φ̃−1[a, b] ⊇ [a, b].
Together these observations imply Φ̃−1([a, b]) = [a, b].

Theorem 4.44. For a connected building set B on [n] and an isomorphism Φ̃ : N�(B) → N (B′), if
|Φ̃([n])| = 1 then under relabeling vertices Φ̃ is the isomorphism from Theorem 4.21.
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Proof. Let L′1, . . . , L′k be the maximal elements among the images of the design vertices. Since the
elements L′1, . . . , L′k are incompatible with {∗} = Φ̃([n]), we have that ∗ 6∈ L′i for any i. By part (ii) of
Lemma 4.41, L′1, . . . , L′k are the maximal elements of B|L′ , where L′ = L′1 ∪ · · · ∪ L′k. Let |L′i| = ni for
all i. By Lemma 4.42, we can label the vertices of B and B′ so that L′i = {vi,1, . . . , vi,ni+1} for all i, B
is a building set on L1 t · · · t Lk with Li = {vi,0, . . . , vi,ni

}, and these vertices satisfy for each i,

(i) Φ̃(xi,ni−j) = [vi,1, vi,j+1] for j = 0, . . . , ni,

(ii) Φ̃(vi,ni−j) = vi,j+2 for j = 0, . . . , ni − 1, and

(iii) Φ̃(vi,0) = {∗} ∪ L′ \ {vi,ni+1}.

We also identify ∗ with vi,0 for any i = 1, . . . , k. For the rest of the proof, we will proceed by steps
as follows.

(a) Our first step is to show that B′|L′i is an interval building set for each leg L′i. It suffices to show
that there does not exist any non-interval building set element that contains vi,1. This is because if
e′ ∈ B′|Li is not an interval, then there exists 1 ≤ j < l ≤ ni+1 such that vi,j ∈ e′, vi,j+1 6∈ e′ and
vi,l ∈ e′. Then [vi,1, vi,j ]∪e′ is a non-interval building set element that contains vi,1, contradicting
our assumption. Now consider e′ ∈ B′|L′i containing vi,1 but is not an interval. Since all design
vertices have been mapped to, Φ̃−1(e′) ∈ B and thus is compatible with [n]. This implies e′ is
compatible with {∗}, hence their union e′ ∪{∗} 6∈ B′. However, e′ ∪{∗} = e′ ∪ ({∗}∪ {vi,1}) ∈ B′,
where {∗}∪ {vi,1} ∈ B′ because they are the images of [n] and xi,ni

which are incompatible. This
is a contradiction, thus B′|L′i is an interval building set for each i.

(b) Next, we will show that for any interval [vi,a, vi,b] with 0 < a < b,

Φ̃−1([vi,a, vi,b]) = [vi,ni−a+2, vi,ni−b+2].

First, note that for any i′ 6= i, Φ̃(xi′,j) ⊂ L′i′ and [vi,a, vi,b] ⊂ L′i are in two different connected
components of B′|L′ , hence they are compatible and thus the preimage of [vi,a, vi,b] doesn’t contain
vi′,j for any i′ 6= i. In other words, the preimage is contained in L′i of B. Now, we have that
[vi,a, vi,b] and [vi,1, vi,t] = Φ̃(xi,ni−t+1) are incompatible for a−1 ≤ t ≤ b−1, since neither contain
each other or that in the case of t = a − 1, they are disjoint but their union is an element of B′.
Similarly, they are compatible for t ≥ b since they are nested. Furthermore, they are compatible
for t ≤ a − 2 since their union is not an interval. Thus, Φ̃−1([vi,a, vi,b]) contains exactly vi,t for
ni − a+ 2 ≤ t ≤ ni − b+ 2, which is what we want.

(c) We now determine the preimage of elements e′ ∈ B′ containing {∗} whose restriction to each
leg L′i is an interval. Using the fact that [n] is incompatible with any design vertex, we have
that Φ̃([n]) = {∗} is incompatible with [vi,1, vi,j ] for any i = 1, . . . , k, j = 1, . . . , ni + 1. Thus,
{∗} ∪ [vi,1, vi,j ] ∈ B′ for all such i, j. Now consider S ⊂ [k] and 1 ≤ ji ≤ ni for all i ∈ S. Since
{∗} ∪ [vi,1, vi,ji ] ∈ B′ for all i ∈ S and each of them contains {∗}, their union is

e{ji|i∈S} = {∗} ∪
⋃
i∈S

[vi,1, vi,ji ] ∈ B′.

We will prove that
Φ̃−1(e{ji|i∈S}) =

⋃
i∈S

[vi,1, vi,ni−ji ] ∪
⋃
i′ 6∈S

Li′ ,

where [vi,1, vi,ni−j ] = ∅ if j = ni + 1. Indeed, note that e{ji|i∈S} is incompatible with Φ̃(xi′,l) for
any i′ 6∈ S, since their union is e{ji|i∈S}∪{n′i−l} ∈ B

′. Thus, Φ̃−1(e{ji|i∈S}) contains vi′,l for any
i′ 6∈ S. For each i ∈ S, note that e{ji|i∈S} is compatible with [vi,1, vi,j ] = Φ(xi,ni−j) for j ≤ ji

and incompatible with j ≤ ji + 1, hence Φ̃−1(e{ji|i∈S}) contains precisely [vi,1, vni−ji ] for each leg
L′i with i ∈ S. This finishes our claim.

32



(d) Finally, we show that if e′ ∈ B′ contains {∗}, then e′ ∩L′i is an interval of the form [vi,0, . . . , vi,ji ]
for all i. For each leg L′i, let ji = max{j ∈ [0, ni + 1] | [vi,1, vi,j ] ⊂ e′}. We then see that e′ and
Φ̃(xi,ni−t+1) are compatible for t ≤ ji since they are nested. Furthermore, they are incompatible
for t ≥ ji + 1 since they are not nested and their union e′ ∪ [vi,0, vi,t] = e′ ∪ ({∗}∪ [vi,0, vi,t]) ∈ B′.
Thus, Φ̃−1(e′) =

⋃k
i=1[vi,0, vi,ni−ji ], but this is the image of an element considered in (c), hence

e′ = Φ̃(Φ̃−1(e′)) is of the form in (c), which finishes our claim.

We now explain how the above parts complete the proof. Any e′ ∈ B′ either contains {∗} or doesn’t
contain {∗}. If ∗ 6∈ e′, then e′ is contained in one of the legs Li, which by (a) is an interval building
set. If ∗ ∈ e′, then (d) shows e′ must be of the form considered in (c). These imply that B′ is an
octopus building set. Parts (b) and (c) then shows that Φ̃−1 acts the same way as the inverse of the
isomorphism from Theorem 4.21, and thus B is a spider building set. In other words, Φ̃ is the same as
the isomorphism from Theorem 4.21.

Remark 4.45. When B is not strong, it is possible to have an isomorphism Φ̃ : N�(B)→ N (B′) where
|Φ̃([n])| 6∈ {1, n}. Take

B = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}

and
B′ = {{1}, {2}, {3}, {4}, {1, 3}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

Define Φ̃ to be the map sending

x1 7→ {2, 3, 4}, x2 7→ {3, 4}, x3 7→ {4}

and
{1} 7→ {1, 3, 4}, {2} 7→ {2}, {3} 7→ {3}, {1, 2} 7→ {1}, {1, 2, 3} 7→ {1, 3}.

We then check that Φ̃ : N�(B)→ N (B′) is an isomorphism with
∣∣∣Φ̃([3])

∣∣∣ = 2.

Remark 4.46. We might hope that there is a similar characterization of nested set complex isomor-
phism Φ : N (B) → N (B′) for a strong and connected building set B, namely that Φ is either the
rotation isomorphism of Definition 4.11 or the isomorphism in Theorem 4.22. However, we can produce
a counter-example from Remark 4.45. Namely, take B and B′ as above, and let

B′′ = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}, {4}, {3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

Let Φ̃′ : N�(B)→ N (B′′) be the isomorphism from Theorem 4.10. Then we can check that B′,B′′ are
strong building sets but

Φ̃′ ◦ Φ̃−1 : N (B′)→ N (B′′)

is neither of the desired isomorphisms.

4.4.2 Proof of Theorem 4.40

We now have the necessary results on isomorphisms between nested set complexes and between extended
and non-extended nested set complexes to characterize isomorphisms between extended nested set
complexes. We begin in the same way as we began studying Φ̃, namely by considering the images of
design vertices and singletons as in Lemma 4.42.

Lemma 4.47. For a connected building set B on [n] and an isomorphism Φ� : N�(B) → N�(B′), let
L1, . . . , Lk be the maximal (building set) elements of the extended nested collection {Φ�(xs) | s ∈ [n]}.
Then for each Li,

(i) all images of design vertices are either design vertices in [n] \
⋃k
i=1 Li or contained in exactly one

Li,
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(ii) for every singleton s with Φ�(xs) ( Li, Φ�(s) is a singleton in Li,

(iii) all images of design vertices contained in Li are nested, and

(iv) if Φ�(xs) = Li ∈ B′, then Φ�(s) is the design vertex of the unique singleton of the form Li−Φ�(xt).

Proof. (i) If Φ�(xs) is a design vertex xt, then t cannot be contained in any Li since otherwise Φ�(xs)
is incompatible with Li. Now consider the design vertices that map to a building set element.
Their images form a nested collection, thus each of them is contained in some maximal element
Li. It is contained in exactly one Li since no two elements of a nested collection can intersect
without one containing the other.

(ii) By Corollary 4.36, B′ is connected on [n], and by Remark 4.38, Φ�(s) is either [n], a design vertex,
or a singleton. Note that Φ�(s) cannot be [n] since then it would be compatible with Φ�(xs). If
Φ�(s) is a design vertex, then it must be incompatible with Φ�(xs) and thus incompatible with
Li ⊃ Φ�(xs) which is the image of another design vertex, hence Φ�(s) is not a design vertex. Now
let Φ�(s) be a singleton. It must be contained in Lj for some j since otherwise its design vertex
is of the form Φ�(xt) for some t 6= s. This implies s and xt are incompatible, a contradiction. If
j 6= i, then Φ�(s) union the images of all design vertices contained in Lj is a nested collection,
since none of these design vertices are xs. This contradicts the fact that the images of these design
vertices form a maximal nested collection in Lj . Thus, Φ�(s) is a singleton in Li.

(iii) If Φ�([n]) is not a design vertex, the same argument as in Lemma 4.42 implies (iii) holds. If
Φ�([n]) is a design vertex, then the images of all design vertices in Li contain the corresponding
singleton of Φ�([n]), and since the image of the design vertices form a nested collection all design
vertices are nested.

(iv) From part (ii), Φ�(s) is either a singleton or a design vertex. Suppose Φ�(s) was a singleton. By
the same argument as in (ii), Φ�(s) cannot be contained in any Lj for j 6= i. Notice that Φ�(s)
cannot be contained in Li since Φ�(s) is incompatible with Φ�(xs) = Li. Thus Φ�(s) is a design
vertex. Φ�(s)’s corresponding singleton must be contained in Li and not in the image of any
other design vertex thus it’s corresponding singleton is of the form Li − Φ�(xt).

Next, we will prove a lemma about restricting the isomorphism Φ� to each leg Li.

Lemma 4.48. For an isomorphism Φ� : N�(B)→ N�(B′) with Φ�(xv) as a maximal element among
images of design vertices in B′, let S be set of singletons s ∈ B such that Φ�(xs) ⊆ Φ�(xv). Then Φ�

restricts to an isomorphism
Φ�|S : N�(B|S)→ N�

(
B′|Φ�(xv)

)
,

which, under relabeling singletons, is the extended rotation isomorphism of Proposition 4.14, and for
any e′ ∈ B which intersects but is not contained in S, v ∈ e′ and e′ intersected with S is an interval
building set.

Proof. Let |S| = k. Using Lemma 4.47, we may relabel the singletons of B and B′ such that the
singletons contained in S and Φ�(xv) are labeled with 1, 2, . . . , k and

Φ�(I) =


[i, k], if I = xi,
x1, if I = 1,
i− 1, if I = i for i > 1.

First we will show for any isomorphism Φ and any set S as defined in the lemma, for all e ∈
S, Φ�(e) ⊆ B′|[k]. Considering the inverse will imply that Φ�−1(e) ⊆ S since Φ�−1(e) is also an
isomorphism and by Lemma 4.47 and our earlier argument that Φ�−1([1, i]) = xi, we know that [k] is
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a valid building set element in S (its design vertices are nested and the singleton k maps to a design
vertex).

Consider Φ� acting on the link of x1. The link of x1 is of the form

N�(B|T1
) ∗ · · · ∗ N�(B|Tl

),

where T1, . . . , Tl are the maximal elements of B|[n]\1, and the link of Φ�(x1) = [k] is the complex
N�(B′/[k]) ∗ N

(
B′|[k]

)
. Proposition 4.35 then implies that N (B′|[k]) is isomorphic to the join of a

subset of N�(B|Tj
)’s; upon reindexing, we may assume that

N�(B|T1
) ∗ · · · ∗ N�(B|Tp

) ' N
(
B′|[k]

)
.

The images of the design vertices in S\{1} are contained in N
(
B′|[k]

)
, hence the connected components

containing S \ {1} must be contained in T1 ∪ · · · ∪ Tp hence T1 ∪ · · · ∪ Tp ⊇ S \ {1}. The dimension of
N�

(
B|S\{1}

)
equals k−1 = |S \{1}| which is the dimension of N

(
B′|[k]

)
, so equality must occur. This

implies for all e ⊆ S \ {1}, Φ(e) ⊆ [k]. It also implies the second to last statement in our Proposition,
since if e′ ∈ B does not contain 1, then it is compatible with x1 and thus lies in either S \ {1} or the
complement of S.

Now we will show that any building set element e ∈ B intersected with S is an interval building set
under our labeling. This will imply that the only elements e ⊆ S which contain 1 are [1, i] which we
have already shown map to design vertices.

A design vertex xi, i ∈ [k] is not compatible with Φ�(xj) if and only if j ∈ {1, 2, . . . , i}. It follows
that the preimage of xi is [1, i] under this labeling. Let e ∈ B not contain a singleton r of S and contain
a singleton s with s < r in our labeling of S. If Φ�(e) is design vertex xv, since xv would need to be
incompatible with Φ�(x1) = [k], thus v ∈ [k], but all such design vertices are already the images of
[1, i]. If Φ�(e) is not a design vertex, Φ�(e) is incompatible with Φ�(xs), thus Φ�(e) cannot contain
Φ�(xs) ⊂ Φ�(xr) and

Φ�(e) ∪ Φ�(xs) ∈ B′.

Since Φ�(xr) ⊆ Φ�(x1),
Φ�(e) ∪ Φ�(xr) ∈ B′.

Since Φ�(xr) and Φ�(e) are compatible, Φ�(e) ⊆ Φ�(xr). But then for singletons a < s in S, Φ�(e) ⊆
Φ�(xa), and so a 6∈ e.

Finally, we show that Φ� acts like extended rotation on S. We have already described how Φ� acts
on any interval containing 1 and in particular the image of any interval [a, b] with a > 1 is not a design
vertex. Any interval [a, b] with a > 1 in S is incompatible with [1, i] if and only if a − 1 ≤ i ≤ b − 1,
it follows that a singleton i ∈ [k] is in a if and only if a − 1 ≤ i + 1 ≤ b − 1. In other words,
Φ�([a, b]) = [a− 1, b− 1].

We now have the following corollaries.

Corollary 4.49. For a connected building set B on [n] and an isomorphism Φ� : N�(B)→ N�(B′), if
Φ�([n]) is a design vertex, then Φ� is an extended rotation.

Proof. From part (iii) of Lemma 4.47, all design vertices map to building set elements of B′, and they
only have 1 maximal element. Thus, applying Lemma 4.48 with S = [n] gives the desired result.

Corollary 4.50. For a connected building set B on [n] and an isomorphism Φ� : N�(B)→ N�(B′), if
no design vertices maps to a design vertex, then Φ� is an extended rotation.

Proof. The image of [n] must be compatible with all design vertices and thus must be a design vertex.

This next lemma provides sufficient conditions on an isomorphism for it to be the isomorphism from
Theorem 4.23.
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Lemma 4.51. For a connected building set B on [n] with n > 1 and an isomorphism Φ� : N�(B) →
N�(B′), if exactly one design vertex maps to a design vertex, then Φ� is the isomorphism from Theo-
rem 4.23.

Proof. Suppose xi is the design vertex which maps to a design vertex, which we can relabel to be xi
itself. Then the corresponding singleton i cannot map to a design vertex since it is incompatible with
xi. It follows that i maps to either i itself or [n].

First consider the case where Φ�(i) is the singleton. Then Φ� acting on the link of i defines an
isomorphism

Φ�/i : N�(B/{i})→ N�(B′/{i}).

Notice that Φ�/i sends no design vertex to another design vertex, so by Corollary 4.50, it is an extended
rotation. This implies that Φ�([n]) is a design vertex, but then Φ�([n]) is compatible with Φ�(xi), which
implies no such isomorphism Φ� exists.

Now consider the case where Φ�(i) = [n]. Then Φ� acting on the link of xi defines an isomorphism

Φ�|[n]\{i} : N�(B|[n]\{i})→ N�(B′|[n]\{i}),

where no design vertex is mapped to a design vertex. Using Proposition 4.35, we can factor this isomor-
phism into isomorphisms between each of the connected components of B|[n]\{i} and the corresponding
connected component of B′|[n]\i. By Corollary 4.50, each of these isomorphisms is an extended rotation.
Thus we may relabel B and B′ such that i is now ∗, the connected components on [n] \ {i} are the legs
L1, . . . , Lk with size n1, . . . , nk respectively. Furthermore, since the isomorphism between each leg is an
extended rotation, we can relabel the vertices of each leg Li = {vi,0, . . . , vi,ni} such that every building
set element contained in Li is an interval [vi,a, vi,b] and

Φ�(I) =


xvi,ni−b

, if I = [vi,1, vi,b],
[vi,1, vi,ni+1−a], if I = xi,a,
[vi,ni+2−b, vi,ni+2−a], if I = [vi,a, vi,b] with a, b > 0.

It remains to show that

(i) the set
⋃k
i=1[vi,1, vi,ji ] ∪ {∗} ∈ B where −1 ≤ ji ≤ ni for all i = 1, . . . , k,

(ii) the map Φ� acts as the isomorphism from Theorem 4.23 on all building set elements which do
contain ∗, and

(iii) no elements not of the above form containing ∗ are in B,

We now tackle each of these claims.

(i) The isomorphism Φ�−1 sends design vertices to [vi,1, vi,ji ] and [n] to ∗, and since ∗ is incompatible
with any design vertex, we have {∗} ∪ [vi,1, vi,ji ] ∈ B for any i, ji. Since for any two building
elements which intersect, their union is in the building set, this implies

⋃k
i=1[vi,0, vi,ji ] ∪ {∗} ∈ B

for any set of ji’s.

(ii) Notice that the set
⋃k
i=1[vi,0, vi,ji ] ∪ {∗} ∈ B is compatible with the interval [vi,1, vi,b] if and

only if b ≤ ji. Since the intervals [vi,1, vi,a] map to design vertex xvi,ni−b
, this implies that

Φ�

(⋃k
i=1[vi,1, vi,ji ] ∪ {∗}

)
contains vi,ni−b if and only if b > ji.

(iii) This follows from the last statement in Lemma 4.48.

We are now able to prove our main result.
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Proof of Theorem 4.40. Let S be the set of design vertices which map to design vertices. Corollary 4.50
and Lemma 4.51 consider the cases when |S| ≤ 1. Now suppose |S| ≥ 2. As in Lemma 4.51, the image
of a corresponding vertex i to an xi ∈ S is either the corresponding singleton of the image of xi or [n].

First suppose there exists a design vertex xi ∈ S where Φ�(i) = [n]. Then Φ�(xi) is a design vertex.
The inverse image of the corresponding singleton to Φ�(xi) is [n] since it must either be the singleton
corresponding to xi or [n], and it is not i since Φ�(i) = [n] already. But then for any other xj ∈ S,
the image of xj , which is a design vertex different from Φ�(xi), is compatible with Φ�([n]), which is
a singleton corresponding to Φ�(xi). This is a contradiction since xi is incompatible with [n], hence
there is no such isomorphism.

Now suppose for all xi ∈ S, i maps to the singleton corresponding to Φ�(xi). Consider Φ� acting
on the subcomplex formed by restriction N�(B) to the set of vertices that are compatible with each
i ∈ S. This subcomplex is isomorphic to N�(B/{i | xi ∈ S}). Its image is the set of B′ compatible with
each i ∈ S, giving us an isomorphism

Φ�/{i|xi∈S} : N�(B/{i | xi ∈ S})→ N�(B/{Φ(i) | xi ∈ S}).

Notice that Φ�/{i|xi∈S} sends no design vertex to another design vertex, so by Corollary 4.50 it is an
extended rotation. This implies that either Φ�([n]) is a design vertex or {i|xi ∈ S} = [n]. If Φ�([n]) is
a design vertex, then Φ�([n]) is compatible with Φ�(xi) for any i ∈ S, contradicting the fact that [n] is
incompatible with any design vertex, so we must have {i | xi ∈ S} = [n]. But then we may relabel our
elements of the building set B′ so that xi 7→ xi and i 7→ i. Then under this labeling for e ∈ B, Φ�(e) ⊆ e
from considering design vertices such that {e, xt} is an extended nested collection. Similarly, Φ�(e) ⊇ e
since Φ�(e) from considering design vertices such that {e, xt} is not a extended nested collection. Thus
Φ� is trivial.

Since by Proposition 4.35, every isomorphism of Φ� of non-connected building sets factors into
isomorphisms between connected components of building sets, Theorem 4.40 completely characterizes
the isomorphisms Φ� between extended nested set complexes.

5 Face Counting
In this section, we study the face numbers of the extended nestohedron. This includes finding recursive
formulas for their f - and h-polynomials and showing that the γ-vector is nonnegative when the extended
nestohedron is flag.

5.1 Formulas for the f- and h-vectors
In [Pos09, Theorem 7.11], Postnikov provides, without proof, a recursive formula for the f -polynomial
of the nestohedron P(B), which is the dual of the nested complex N (B). In this subsection, we first
provide a short proof for the formula for the f -polynomial of N (B), and then show how to get the
original result by Postnikov for the dual P(B).

Theorem 5.1. Let B be a building set on [n]. Recall that Bmax denotes the set of maximal elements,
and let S(B) = {S ( [n] | S ∩M ( M ∀M ∈ Bmax}. The f -polynomials of the nested complex N (B)
satisfy the following recursive formula:

fN (∅)(t) = 1 and fN (B)(t) =
∑

S∈S(B)

t|(B|S)max|fN (B|S)(t).

Proof. For any nested collection N = {I1, . . . , Ik} of N (B), let S = SuppN = I1 ∪ · · · ∪ Ik. Then S ∈
S(B), and {Ij} contains all maximal elements of B|S by Lemma 4.41. We then obtain a (k−|(B|S)max|)-
face of N (B|S) by removing the maximal elements of B|S from N . Conversely, for any S ∈ S(B) and
a `-face NS of N (B|S), one obtain a (` + |(B|S)max|)-face of N (B) by adding the maximal elements
of B|S . One can verify that these two maps are inverse of to each other each other, so we obtain the
recursive formula for the f -polynomial of N (B).
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Corollary 5.2. [Pos09, Theorem 7.11] The f -polynomial of P(B) satisfy the following recurrence
relation:

(a) fP(∅)(t) = 1.

(b) If B1, . . . ,Bk are the connected components of B, then

fP(B)(t) = fP(B1)(t) · · · fP(Bk)(t).

(c) If B is a connected building set, then

fP(B) =
∑
S([n]

tn−|S|−1fP(B|S)(t).

Proof. The first condition is true, and the second condition follows from Lemma 2.18. For the last
condition, recall that the f -polynomial of a polytope P and its dual P∗ are related by the formula
fP(t) = tdimPfP∗(t

−1). By [Zel06, Proposition 4.1], we know that dimN (B) = |S| − |Bmax| if B is a
building set on S. Hence, we have

fN (B|S)(t) = t|S|−|(B|S)max|fP(B|S)(t
−1).

Replacing the above in the f -polynomial equation of Theorem 5.1 gives the desired conclusion.

Using a similar argument we get

Proposition 5.3. Let B be a building set on [n]. Recall that Bmax denotes the set of maximal elements.
The f -polynomials of the nested complex N (B) satisfy the following recursive formula:

fN (B)(t) · (t+ 1)|Bmax| =
∑
S⊆B

t|(B|S)max|fN (B|S)(t),

and its dual satisfies
fP(B)(t) · (t+ 1)|Bmax| =

∑
S⊆B

fP(B|S)(t) · tn−|S|.

Proof. The second equation follows from the first so we will prove the first. Consider the set of faces in
the extended nestohedron which do not contain a design vertex. Every such face is a nested collection
of B combined with a subset of the maximal elements of B; thus its f -vector equals the LHS of our
equation. Each such face is also a set of maximal elements combined with a nested collection contained
in those maximal elements which is the RHS.

We now state several results about the f - and h-polynomials of an extended nestohedron P�(B). It
turns out that one can relate the f -polynomial of P�(B) in terms of the f -polynomial of the nestohedron
P(B|S) for S ⊆ [n].

Theorem 5.4. For a building set B on [n], the f -polynomial of the extended nestohedron P�(B)
satisfies the following formulas:

fP�(B)(t) =
∑
S⊆[n]

(t+ 1)n−|S|fP(B|S)(t),

fP�(B)(t) =
∑
S⊆[n]

(t+ 1)|(B|S)max|fP(B|S)(t).
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Proof. For the first formula, note that an extended nested collection N� = {I1, . . . , Ik} ∪ {xj1 , . . . , xj`}
corresponds to a nested collection {I1, . . . , Ik} on its support S = I1 ∪ · · · ∪ Ik, and a subset {j1, . . . , j`}
of [n] \ S. Conversely, for any face N in N (B|S) and any subset T of [n] \ S, we obtain an extended
nested collection N ∪ {xj | j ∈ T} of B. Summing over all S ⊆ [n] with this choice procedure, we have

fP�(B)(t) =
∑
S⊆[n]

∏
i 6∈S

(t+ 1)

 fP(B|S)(t)

=
∑
S⊆[n]

(t+ 1)n−|S|fP(B|S)(t).

Notice that we are not over-counting since every face of N (B|S) must contain the maximal elements of
B|S .

For the second formula, note that any extended nested collection N� = {I1, . . . , Ik}∪ {xj1 , . . . , xj`}
with maximal building set elements {Ia1 , . . . , Iar} corresponds to a set of S = {j1, . . . , j`} combined
with a nested collection {I1, I2, . . . , Ik} \ {Ia1 , . . . , Iar} in B|[n]\S , as well as a subset of the maximal
elements {Ia1 , . . . , Iar} of B|[n]\S . Conversely for any face subset S ∈ [n], any nested collection N in
B|[n]\S , and any subset of maximal elements M of B|[n]\S , we may obtain an extended nested collection
N ∪M ∪ {xj | j ∈ S}. Summing over all S ⊆ [n] with this choice procedure, we have that

fN�(B)(t) =
∑
S⊆[n]

tn−|S|(t+ 1)|(B|S)max|fN (B|S)(t).

One can manipulate this expression to obtain the final result.

Since the h-polynomial is given by fP (t) = hP (t+ 1), we can also formulate the h-polynomial of the
extended nestohedron in terms of the h-polynomial of nestohedra P(B|S) for S ⊆ [n].

Corollary 5.5. For a building set B on [n], the h-polynomial of the extended nestohedron P�(B) is

hP�(B)(t) =
∑
S⊆[n]

tn−|S|hP(B|S)(t).

The following corollary of Theorem 5.4 comes from the special case of Möbius inversion, where the
poset is the Boolean lattice, known as the “inclusion-exclusion principle,” i.e.

f(A) =
∑
B⊆A

g(B) ⇔ g(A) =
∑
B⊆A

(−1)|A|−|B|f(B).

Corollary 5.6. There is a reverse relation between f - and h-polynomials of P(B) and those of P�(B|S)
for S ⊆ [n] as follows:

fP(B)(t) =
∑
S⊆[n]

(−t− 1)n−|S|fP�(B|S)(t),

(t+ 1)|Bmax|fP(B)(t) =
∑
S⊆[n]

(−1)n−|S|fP�(B|S)(t).

Similar to Corollary 5.2, we have a formula for the f -polynomial of P�(B) based on the f -polynomials
of strictly smaller building sets {BS | S ( [n]}.

Corollary 5.7. Let B be a building set on [n]. Then the h-polynomials of P(B) and P�(B) satisfy the
recursions: ∑

S⊆[n]

(
tn−|S| − t|(B|S)max|

)
hP(B)(t) = 0,

∑
S⊆[n]

(−1)n−|S|
(
tn−|S|+|(B|S)max| − 1

)
hP�(B)(t) = 0.
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5.2 a- and b-rational functions
We now introduce a pair of interesting invariants for building sets, called the a- and b-numbers, that
first appeared in [CP15] and [PPP17] for graphical building sets. However, their definition have natural
generalizations to arbitrary building sets, which we state here. A building set B is even if all connected
components of B have even cardinality, and is odd if all connected components of B have odd cardinality.

Definition 5.8. For a building set B on [n], define the a-number of B to be

a(B) :=


1, if B = ∅,
0, if B is not even,
−
∑
S([n] a(B|S), otherwise.

(5.8.1)

Define the b-number of B to be

b(B) :=


1, if B = ∅,
0, if B is not odd,
−
∑
S([n] b(B|S), otherwise.

(5.8.2)

In [PPP17], the a- and b-numbers of a graphical building set are shown to be related to the h-vector
of the corresponding (extended) nestohedron. In particular, they proved the following result, which we
will show in Proposition 5.10 to hold for a general building set.

Proposition 5.9. [PPP17, Corollary 4.8] For any undirected graph G with n vertices, let B = BG be
the corresponding building set. We then have

a(B) = hP�(B)(−1) and b(B) = (−1)nhP(B)(−1).

Proposition 5.10. For an arbitrary building set B,

a(B) = hP�(B)(−1), (5.10.1)

b(B) = (−1)nhP(B)(−1). (5.10.2)

Before proving this, we will prove the following lemma.

Lemma 5.11. For an odd connected building set B,

b(B) = (−1)n
∑
S([n]

a(B|S)

Proof. We proceed by strong induction on the number of elements in the building set. Our base case is
when B is empty or consists of a exactly one singleton. For our inductive step, assume for all m < n,
any odd connected building set B′ on m elements satisfies

b(B′) = (−1)n
∑
S([m]

a(B′|S).

Let B be an odd connected building set on n elements; in particular, n is odd. By Corollary 5.2,

b(B) = −
∑
S([n]

2n−|S|−1b(B|S).
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From our inductive hypothesis

−
∑
S([n]

2n−|S|−1b(B|S) = −
∑
S([n]

2n−|S|−1(−1)|S|
∑
L⊆S

a(B|L)

= −
∑
L⊆B

a(B|L)(−1)|L| · 1

2
·
n−|L|−1∑
i=0

(
n− |L|

i

)
(−1)i2n−|L|−i

= −
∑
L(B

a(B|L) ·

{
(−1)|L|, if n− |L| is odd,
0, if n− |L| is even.

Since n is odd and the a-number of building sets with an odd number of singletons is 0, we have

−
∑
L(B

a(B|L) = −
∑
L(B

a(B|L)(−1)|L| = −
∑
L(B

a(B|L) ·

{
(−1)|L|, if n− |L| is odd,
0, if n− |L| is even.

Proof of Proposition 5.10. We first prove Equation 5.10.1 via induction on the number of elements in
the building set. For the base case, if B is empty, then hP�(B)(−1) = 1. If B is a singleton then
hP�(B)(−1) = 0. For the inductive step, consider an arbitrary building set B on n elements, and
suppose that for any building set B′ with m < n elements,

a(B′) = hP�(B′)(−1).

From the second recursion in Corollary 5.7,

hP�(B)(−1) =
∑
S([n]

hP�(B|S)(−1) ·

{
−1, if n− |S| is even,
0, if n− |S| is odd.

When B is not even, there exists a connected component B|S of B with |S| odd. Then,

hP�(B) = hP�(B|S)hP�(B|[n]\S),

and by induction,
hP�(B)(−1) =

∑
R(S,
|R| is odd

hP�(B|S)(−1) = 0.

When B is even,

hP�(B)(−1) =
∑
S([n],
|S| is even

hP�(B|S)(−1) =
∑
S([n]

hP�(B|S)(−1),

with the second inequality coming from our inductive hypothesis.
We now prove Equation 5.10.2. First we show if B is not odd then, hP(B)(−1) = 0. If B is not odd,

there exists a connected component B|S of B such that |S| is even. By Corollary 5.6 and Equation 5.10.1,

hP(B)(−1) =
∑
S⊆[n]

a(B|S) = 0,

with the last inequality coming from the recursive definition of a-numbers.
Now we show the case when B is odd by strong induction on n, the number of elements of a connected

building set. Note that since the h-polynomials and b-numbers of building sets are multiplicative on
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connected components, our inductive step only needs to consider connected components. The base
cases of when the building set is either empty or consists of exactly one singleton clearly holds. For the
inductive step, assume that for all m < n, any building set B′ on m elements satisfies Equation 5.10.2.
Since B is connected, then by Lemma 5.11 and Equation 5.10.1,

b(B) = (−1)n
∑
S⊆[n]

hP�(B|S)(−1).

Notice by Corollary 5.6,
(−1)nhP(B)(−1) = (−1)n

∑
S⊆[n]

hP�(B|S)(−1).

Thus, b(B) = (−1)nhP(B)(−1).

Using the definitions of a- and b-numbers, the authors of [PPP17] compute the Betti numbers of
the real toric manifold corresponding to the polytopes P(B) and P�(B) when B = BG is a graphical
building set. Note that if we consider the complex toric manifold corresponding to a simple polytope
P, then its Betti numbers are known to the coefficients of the h-polynomial of P.

Theorem 5.12 ([PPP17, Theorem 1.1 and Theorem 1.2]). Let G be an undirected graph with V (G) =
[n] and B = BG. Then the i-th Betti number of the real toric manifold associated to P(B) is given by

βi(XR(P(B))) =
∑
S⊆[n],
|S|=2i

|a (B|S)|.

Similarly, the i-th Betti number of the real toric manifold associated to P�(B) is given by

βi(XR(P(B))) =
∑
S⊆[n],

|S|+κ(B|S)=2i

|b (B|S)|,

where κ(B|S) is the number of connected components of B|S .

They use this theorem to prove the following result.

Theorem 5.13. [PPP17, Theorem 1.3] Let G be a forest, and let L(G) be the line graph of G. Then
we have:

βi(XR(P(BG))) = βi(XR(P�(BL(G)))).

Here, for a graph G, the line graph of G, denoted L(G) is the graph constructed by associating a vertex
with each edge of G and connecting two vertices with an edge if the corresponding edges of G have a
vertex in common.

We observe a similar phenomenon for the h-polynomial of the corresponding simple polytopes,
leading us to the following theorem.

Theorem 5.14. Let G be a forest and L(G) be the line graph of G. Then

hP(BG)(t) = hP�(BL(G))
(t).

To prove Theorem 5.14 in the same flavor as the proof of Theorem 5.13, we generalize the a and
b-number to their t-analogues of a and b-rational functions, i.e., rational polynomials in t that evaluate
at t = −1 to the a- and b-numbers.

Definition 5.15. Let B be a building set on [n]. We define the a- and b-rational functions to be

a(B, t) =
hP�(B)(t)

(−t)n
and b(B, t) =

hP(B)(t)

tn
.
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These rational functions satisfies the following identities, which are t-analogues of the recurrence
formulas of the a- and b-numbers and [PPP17, Theorem 4.4]. These all follow from Theorem 5.4,
Corollary 5.6, and Corollary 5.7.

Proposition 5.16. For any building set B on [n], we have:∑
S⊆[n]

(
tn+|(B|S)max| − t|S|

)
a(B|S , t) = 0 and

∑
S⊆[n]

(
tn − t|S|+|(B|S)max|

)
b(B|S , t) = 0.

In addition, we have

a(B, t) = (−1)n
∑
S⊆[n]

b(B, t) and b(B, t) = (−1)n
∑
S⊆[n]

a(B, t).

Notice that when B = BG for a connected graph G, we recover the recurrence formulas for the a-
and b-numbers from evaluating the above recurrences at t = −1. As an abuse of notation, from now on
for a graph G we write b(G, t) and a(G, t) to refer to b(BG, t) and a(BG, t) respectively. The b−rational
function satisfies the following extension of Proposition 5.3:

Lemma 5.17. For a forest graph G,

b(G, t)t|G|−|L(G)|t|G|

(t− 1)|G|
=
∑
S⊆G

b(S, t)t|S|

(t− 1)|S|
.

Proof. Let G′ be G\{isolated vertices of G}. Then by Proposition 5.3 and noting |G′|−|L(G′)| = κ(G′),

b(G′, t)t|G
′|−|L(G′)|t|G

′|

(t− 1)|G′|
=
∑
S⊆G′

b(S, t)t|S|

(t− 1)|S|
.

Since adding isolated vertices to a graph H multiplies b(H, t) by 1/t and does not change its line graph,
we have

b(G, t)t|G|−|L(G)|t|G|

(t− 1)|G|
=
b(G′, t)t|G

′|−|L(G′)|t|G
′|

(t− 1)|G′|
·
(

t

t− 1

)|G|−|G′|
=
∑
S⊆G′

b(S, t)t|S|

(t− 1)|S|

(
1 +

1

t− 1

)|G|−|G′|
=
∑
S⊆G

b(S, t)t|S|

(t− 1)|S|
.

The last equality comes from the bijection between subgraphs of G and subgraphs of G′ union a subset
of isolated vertices of G, and each isolated vertex included multiplies b(S,t)t|S|

(t−1)|S|
by (t− 1)−1.

Proof of Theorem 5.14. For a graph H, let S(H) denote the set of spanning subgraphs of H without
isolated vertices. Importantly, the set of induced subgraphs of L(G) are in bijection with the line graphs
of spanning subgraphs of induced subgraphs of G without isolated vertices. We want to show b(G, t)t|G|

is equal to

a(L(G), t)(−t)|L(G)| = t|L(G)|
∑

L⊆L(G)

b(L, t) = t|L(G)|
∑
H⊆G

∑
T∈S(H)

b(L(T ), t).

With the first equality coming from Proposition 5.16. By inclusion-exclusion, it is enough to show that∑
T∈S(G)

b(L(T ), t) =
∑
H⊆G

(−1)|G|−|H|b(H, t)t|H|−|L(H)|. (5.17.1)
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We will use induction to prove that Equation 5.17.1 holds. First, notice that it holds for the empty build-
ing set, since both sides are 0. Now, assume that for all S ( G the equation holds. By Proposition 5.16
and our inductive assumption,(
t|L(G)| − t|G|

) ∑
T∈S(G)

b(L(T ), t) = −
∑
H(G

(
t|L(G)| − t|H|

) ∑
T∈S(H)

b(L(T ), t)

= −
∑
H(G

(
t|L(G)| − t|H|

) ∑
S⊆H

(−1)|H|−|S|b(S, t)t|S|−|L(S)|

= −
∑
S⊆G

b(S, t)t|S|−|L(S)|
|G|−|S|−1∑

i=0

(
|G| − |S|

i

)
(−1)i(t|L(G)| − t|S|ti)

=
∑
S(G

b(S, t)t|S|−|L(S)|(−1)|G|−|S|
(
t|L(G)| + t|S|(t− 1)|G|−|S| − t|G|

)
.

Thus, it is enough to show

b(G, t)t|G|−|L(G)|
(
t|L(G)| − t|G|

)
=
∑
S(G

b(S, t)t|S|−|L(S)|(−1)|G|−|S|t|S|(t− 1)|G|−|S|,

which is equivalent to

b(G, t)t|G| =
∑
S⊆G

b(S, t)t|S|−|L(S)|(−1)|G|−|S|t|S|(t− 1)|G|−|S|.

This holds by applying Möbius inversion to the equation of Lemma 5.17.

5.3 Gal’s conjecture for flag extended nestohedra
Recall that for a d-dimensional simple polytope P , the γ-vector (γ0, γ1, . . . , γbd/2c) is defined by the
h-polynomial:

hP (t) =

bd/2c∑
i=0

γit
i(1 + t)d−2i.

The γ-polynomial is then γ(t) =
∑
γit

i. Gal conjectured that the γ-vector is nonnegative for flag simple
polytopes (Conjecture 2.3), and Volodin showed that this conjectures holds for flag nestohedra [Vol10].
In this subsection, we show the analagous result for flag extended nestohedra.

Theorem 5.18 (Gal’s Conjecture for Flag Extended Nestohedra). Let P�(B) be a flag extended
nestrodron. Then the γ-vector of P�(B) is nonnegative.

This implies that Gal’s conjecture holds for this large class of flag simple polytopes. To prove this
result, we use a similar technique as the one used by Volodin. The general outline of the technique is
as follows. For a building set B with a flag extended nestohedron, there exists a minimal building set
D ⊆ B such that D also gives a flag extended nestohedron P�(D); this is our starting polytope, and
one can show that the γ-vector of P�(D) is nonnegative. One can add back in elements of B \ D, with
each added element corresponding to shaving a face of the starting polytope. We show that each time
a face is shaved, the γ-vector remains nonnegative.

First, we provide some preliminary definitions and lemmas. A building set B is flag if P(B) is a
flag simple polytope. By Lemma 2.21, this means that P�(B) is a flag simple polytope as well. A
connected building set D on S is a minimal flag building set if it is flag and there does not exist a
flag connected building set C ( D that is also on S. Such building sets are characterized in [PRW08,
Section 7.2]. In particular, if I is a non-singleton element of a minimal flag building set D, then there
exist two elements I1, I2 ∈ D such that I1 t I2 = I.
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Definition 5.19 ([Ais14]). Let B be a building set. A binary decomposition or decomposition of
a non-singleton element I ∈ B is a set D ⊆ B such that D forms a minimal flag building set on I.

If I ∈ B has binary decomposition D, then the two inclusion-maximal elements I1, I2 ∈ D \ {I} are
the maximal components of I in D.

Recall Lemma 2.18, which says that if B is a building set with connected components B1, . . . ,Bk,
then

N�(B) ' N�(B1) ∗ · · · ∗ N�(Bk).

This implies that the γ-polynomial for P�(B) is given by

γP�(B)(t) = γP�(B1)(t) · · · γP�(Bk)(t),

so it is enough to consider connected building sets for the remainder of this section in order to prove
Theorem 5.18.

The following lemmas show that given a flag building set B and a minimal flag building set D ⊆ B,
we can add elements of B \ D to D and remain a flag building set with each addition.

Lemma 5.20 ([Ais12], Lemma 7.2). A building set B is flag if and only if every non-singleton element
I ∈ B has a binary decomposition.

Lemma 5.21 ([Ais12], Corollary 2.6). A building set B is flag if and only if for every non-singleton
element I ∈ B, there exist two elements I1, I2 ∈ B such that I1 ∩ I2 = ∅ and I1 ∪ I2 = I.

Lemma 5.22 ([Ais12], Theorem 3.1, [Vol10], Lemma 6). Let B and B′ be connected flag building sets
on [n] such that B ⊆ B′. Then B′ can be obtained from B by successively adding elements so that at
each step, the set is a flag building set.

Given a connected flag building set B on [n] with decomposition D of [n], there exists an ordering
I1, I2, . . . , Ik of the elements of B \ D, such that Bj = D ∪ {I1, . . . , Ij} is a flag building set for all
1 ≤ j ≤ k. Such an ordering exists by Lemma 5.22, and is called a flag ordering in [Ais14].

Next, we show that each time we add an element to obtain B from D, this corresponds to the
geometric action of shaving (see Remark 3.5) a face of the extended nestohedron.

Lemma 5.23. Suppose that a connected flag building set B′ on [n] is obtained from the flag building
set B on [n] by adding an element I ⊆ [n]. Then P�(B′) can be obtained from P�(B) by shaving a
codimension 2 face.

Proof. We show the dual version of this statement, i.e., that N�(B′) can be obtained from N�(B) by
stellarly subdividing a face of dimension 2. Since B′ is flag, by Lemma 5.21 there exist two elements
I1, I2 ∈ B such that I1∩I2 = ∅ and I1∪I2 = I. Notice that {I1, I2} forms an extended nested collection
of B, since they are disjoint but I1 ∪ I2 = I /∈ B, so there exists a dimension 2 face, or an edge, between
the two vertices of N�(B) corresponding to I1 and I2. Stellarly subdivide this edge, adding in a vertex
corresponding to the element I, and call this new simplicial complexM. We’ll show thatM' N�(B′).

First notice that any facet of N�(B) corresponding to a maximal extended nested collection N
that does not contain both I1 and I2 remains in M. Such maximal collections are still maximal
nested collections of B′. However, for any facet of N�(B) corresponding to a maximal extended nested
collection N such that I1, I2 ∈ N , stellar subdivision replaces N with two new facets,

N1 = (N \ I2) ∪ I and N2 = (N \ I1) ∪ I.

Since I ∈ B′, an extended nested collection cannot have both I1 and I2. However, a collection can have
either I1 or I2, as well as I, since I1, I2 ⊆ I. Thus, N1 and N2 correspond exactly to the new facets of
N�(B′).

Let ∆d denote the d-dimensional simplex. The following lemma provides a recursive formula for the
γ-polynomial of a polytope that was obtained by shaving the face of another polytope.
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Lemma 5.24 ([Vol10], Corollary 1). Let Q be the simple polytope obtained from the n-dimensional
simple polytope P by shaving the face G of dimension k. Then

γQ(t) = γP (t) + γG(t) · γ∆n−k−1(t).

By the above lemma, when we shave a codimension 2 face F0 from an extended nestohedra, then
we add γG(t) · γ∆n−k−1(t) = t · γF0

(t) to the γ-polynomial. By Lemma 5.23 and Proposition 2.26, we
conclude the following.

Proposition 5.25. Let P�(B),P�(B′) be flag extended nestohedra such that B′ is the result of adding
I to B, and both B′ and B are on [n]. Then,

γP�(B′)(t) = γP�(B)(t) + tγP(B′|I)(t)γP�(B′/I)(t)

= γP�(B)(t) + tγP(B|I)(t)γP�(B/I)(t).

We are now able to prove our main result of this subsection.

Proof of Theorem 5.18. Let B be a connected building set on [n]. We strongly induct on n, the number
of singletons in the building set, as well as induct on the number of elements k of B \D, where D is the
decomposition of [n] in B.

Our base case of n = 1 and k = 0 is easily covered with B = {{1}}. We now cover the other base
cases of n > 1 and k = 0. By [PRW08] Proposition 7.3, the minimal flag building sets are binary trees.
For any binary tree B, there exists a plane binary tree B′ constructed by relabeling the singletons in B
such that N�(B) ' N�(B′) and each element of B′ is an interval. By Theorem 4.10, there exists a C
such that N�(B′) ' N (C). Since N�(B) is flag, we have that N (C) is also flag. Thus by [Vol10], we
have that the polynomials γN (C)(t) = γN�(B)(t) have nonnegative coefficients.

Suppose B ( B′ are connected flag building sets on [n], with B′ = B∪{I}. Assume for our inductive
hypothesis that γP�(B)(t) has nonnegative coefficients, and for any flag building set C on [m] with
m < n, that γP�(C)(t) also has nonnegative coefficients.

By Proposition 5.25, it is enough to show that the polynomials γP(B|I)(t) and γP�(B/I)(t) have
nonnegative coefficients. Notice that since B′ is a flag building set on [n] and I ∈ B′, then the building
sets B′|I = B|I and B′/I = B/I are also flag. By [Vol10], the polynomial γP(B|I) has nonnegative
coefficients, as it is the γ-polynomial of a non-extended flag nestohedron. The building set B/I is
isomorphic to a flag building set C on [m], with m < n. In addition, the polynomial γP�(B/I) has
nonnegative coefficients by our inductive hypothesis on n, the number of singletons. Thus, we have that
the polynomial γP�(B′) has nonnegative coefficients, as desired.

6 Chordal Building Sets and the γ-Vector
Although the previous section shows that the γ-vector is nonnegative for flag extended nestohedra, our
proof for the result does not provide a combinatorial interpretation for the γ-vector. Before Volodin’s
result on the nonnegativity of the γ-vector for arbitrary flag nestohedra, Postnikov, Reiner, and Williams
[PRW08] proved Gal’s conjecture for flag nestohedra P(B) when B is a chordal building set. They do
this by providing a combinatorial interpretation for the γ-vector for these polytopes.

In this section, we give a combinatorial interpretation of the h- and γ-vectors of the extended
nestohedra for chordal building sets by following the method used in [PRW08]. Along the way, we will
define some combinatorial objects related to building sets that share some nice properties with extended
nested complexes and extended nestohedra.

Most of our definitions, results, and proofs are analogous to ones given in [PRW08] for the non-
extended case. We will indicate the correspondences accordingly.
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6.1 Extended B-Forests
We first discuss extended B-forests, which are combinatorial objects associated with extended nested set
complexes. These are extensions of B-forests and B-trees, which were originally defined by Postnikov
in [Pos09]. Our goal of this subsection is to define these forests and then show the following result.

Proposition 6.1. For a connected building set B on [n], the h-polynomial of the extended nestohedron
P�(B) is given by

hP�(B)(t) =
∑
S⊆[n]

tn−|S|
∑
F

tdes(F ),

where the second sum is over B|S-forests.

We now begin to define extended B-forests. A rooted tree is a tree with a root, or a distinguished
node. We can view a rooted tree T as a partial order on the tree’s nodes, with i <T j if node j lies on
the unique path from node i to the root. We can also view a rooted tree as a directed graph, with all
edges directed towards the root.

Let F be a forest of rooted trees {T (1), . . . , T (k)} on S ⊆ [n], meaning that

S =

k⊔
i=1

{nodes of T (i)}.

Then F is called a rooted forest, and its roots are the roots of each tree T (i).
If i is a node of F and i ∈ T (j), then let

F≤i := {` | ` is a descendant of i in T (j)}.

Note that i ∈ F≤i. We can think of F as the Hasse diagram for a poset, where nodes i and j are
incomparable in the forest F if either

1. i and j are in two separate trees of F , or

2. i and j are in the same tree of F , but neither is a descendant of the other.

Definition 6.2 (cf. [Pos09], Definition 7.7). Let B be a connected building set on [n] and S ⊆ [n].
Define a B|S-forest as a rooted forest F on vertex set S such that

(F1) For any i ∈ S, the node set F≤i ∈ B|S .

(F2) For k ≥ 2 incomparable nodes i1, . . . , ik ∈ S, we have that
⋃k
j=1 F≤ij /∈ B.

(F3) The sets F≤i, for all roots i of F , are exactly the maximal elements of the building set B.

The union of B|S-forests over all S ⊆ [n] is the set of extended B-forests.

Example 6.3. Consider BΓ with Γ = P4. Let S = {1, 2, 4}. Then an example of an B|S-forest is
the forest with two trees, T1, T2, shown in Figure 9, with the nodes 4 and 2 the roots of each tree
respectively.

4 2

1

T1 T2

Figure 9: Extended B-forest on S, consisting of two rooted trees T1 and T2.
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This is an extended B-forest on S because there are two trees, one for each connected component of
B|S , and the node set F≤2 = {1, 2} is an element of B. In addition, for any pair of incomparable nodes,
such as 2 and 4, we have that

F≤2 ∪ F≤4 = {1, 2, 4} /∈ B.
By condition (F3), the number of connected components (i.e., the number of trees) of a B|S-forest

equals the number of connected components of the building set B|S . When S = [n], a B|S forest consists
of a single rooted tree. In this case, the tree is actually a B-tree. In [PRW08], the authors provide the
following result about the h-polynomial of non-extended nestohedra in terms of B-trees.
Proposition 6.4. [PRW08, Corollary 8.4] For a connected building set B on [n], the h-polynomial of
the non-extended nestohedron P(B) is given by

hP(B)(t) =
∑
T

tdes(T ),

where the sum is over B-trees T .
Comparing the definitions of an extended maximal nested collection and an extended B-forest, it is

not hard to see that we have the following bijection.

Proposition 6.5. For a connected building set B on [n], the map sending a forest of rooted trees F on
node set S ⊆ [n] to the collection of elements

{F≤i | i ∈ S} ∪ {xi | i /∈ S}

gives a bijection between extended B-forests and maximal extended nested sets.

Example 6.6. The extended B-forest of Example 6.3 corresponds to the maximal extended nested set

N = {{1}, {4}, {1, 2}, x4}.

We now define a statistic on posets that is used in the formula for the h-polynomial in terms of
extended B-forests.
Definition 6.7. Given a poset F on [n], define the descent set Des(F ) to be the set of ordered pairs
(i, j) for which ilF j is a covering relation in F but i >Z j, where >Z is the standard partial order on
the integers. Define the descent number to be des(F ) := |Des(F )|.
Example 6.8. Consider the poset F on [8] shown in Figure 10. The descent set of F is

Des(F ) = {(7, 1), (6, 1), (8, 3)},

and the descent number is des(F ) = 3.

1

6

45

7 2 8

3

Figure 10: Poset F .

Recall from Corollary 5.5 that the recursive formula for the h-polynomial of extended nestohedra is
given by

hP�(B)(t) =
∑
S⊆[n]

tn−|S|hP(B|S)(t).

We are now ready to prove our result about h-polynomials of extended nestohedra in terms of extended
B-forests.
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Proof of Proposition 6.1. Let {FS} denote the set of B|S-forests for S ⊆ [n]. We first show that

hP(B|S)(t) =
∑

F∈{FS}

tdes(F ).

Suppose B|S consists of connected components B1, . . . ,Bk. Then, by Lemma 2.18, we have that

P(B|S) = P(B1) ∗ · · · ∗ P(Bk),

implying that the h-polynomial of P(B|S) can be given by

hP(B|S)(t) = hP(B1)(t) · · ·hP(Bk)(t).

By Proposition 6.4, we can rewrite the polynomial using Bi-trees:

hP(B|S)(t) =
∑

T∈{B1-trees}

tdes(T ) · · ·
∑

T∈{Bk-trees}

tdes(T ).

Notice that each extended B-forest on S consists of exactly one Bi-tree for every i. In addition, F is an
extended B-forest on S consisting of trees T1, . . . , Tk, with Ti a Bi-tree, then

des(F ) = des(T1) + · · ·+ des(Tk) =⇒ tdes(F ) = tdes(T1) · · · tdes(Tk).

This shows that

hP(B|S)(t) =
∑

T∈{B1-trees}

tdes(T ) · · ·
∑

T∈{Bk-trees}

tdes(T ) =
∑

F∈{FS}

tdes(F ).

Plugging into our recursive formula for the h-polynomial of the extended nestohedron gives us our
result:

hP�(B)(t) =
∑
S⊆[n]

tn−|S|hP(B|S)(t) =
∑
S⊆[n]

tn−|S|
∑

F∈{FS}

tdes(F ).

Before continuing with our study of the h-polynomial, we use extended B-forests to describe the
vertices of the polytope defined in the construction of the extended nestohedron in Theorem 3.6. By
following the maps of facets defined in Theorem 3.6, one can show through direct computation that the
coordinates of the extended nested collection can be written as follows.

Proposition 6.9. The coordinates v = (v1, . . . , vn) of a vertex corresponding to a maximal extended
nested collection N in the extended nestohedron P�(B) are given by the following:

vk =

{
0, if xk ∈ N,
|{I ∈ B | k ∈ I}| − |F≤k|+ 1, otherwise,

where F is the extended B-forest corresponding to N .

Example 6.10. Consider the building set B = BK3 = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, and
the maximal extended nested collections

N1 = {{2}, {2, 3}, x1}, N2 = {{3}, {1, 3}, {1, 2, 3}}.

The extended B-forests corresponding to N1 and N2 are F1 and F2 respectively, shown in Figure 11. We
will show how to determine the coordinates of their corresponding vertices in the extended nestohedron
P�(B).
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First consider N1 and corresponding vertex v = (v1, v2, v3). Since x1 ∈ N1, we have that v1 = 0.
For the remaining coordinates, we have that

v2 = |{{2}, {1, 2}, {2, 3}, {1, 2, 3}}| − |{{2}}|+ 1 = 4,

v3 = |{{3}, {1, 3}, {2, 3}, {1, 2, 3}}| − |{{2}, {3}}|+ 1 = 3,

so v = (0, 4, 3). Now consider N2 and corresponding vertex u = (u1, u2, u3). Then,

u1 = |{{1}, {1, 2}, {1, 3}, {1, 2, 3}}| − |{{1}, {3}}|+ 1 = 3,

u2 = |{{2}, {1, 2}, {2, 3}, {1, 2, 3}}| − |{{1}, {2}, {3}}|+ 1 = 2,

u3 = |{{3}, {1, 3}, {2, 3}, {1, 2, 3}}| − |{{3}}|+ 1 = 4.

Thus, u = (3, 2, 4).

3

1

23

2

F1 F2

Figure 11: Extended B-forests corresponding to N1 and N2.

6.2 B-Partial Permutations and Extended B-Permutations
Next, we study permutations called B-partial permutations and extended B-permutations, which are
analogous to B-permutations defined in [PRW08]. We will show the following result, which is that
when considering a special class of building sets, we can formulate the h-polynomial of the extended
nestohedron in terms of extended B-permutations.

Theorem 6.11. For a chordal building set B, the h-polynomial of the extended nestohedron P�(B) is

hP�(B)(t) =
∑

w∈S�
n+1(B)

tdes(w).

To show this result, we will introduce B-partial permutations and extended B-permutations, and
then show how these two sets relate to extended B-forests.

A partial permutation of [n] is a permutation w ∈ SS , for some S ⊆ [n], where SS denotes the
symmetric group acting on S. If S = ∅, then we denote the unique partial permutation with S as its
entry set by (). Let Pn denote the set of partial permutations on [n]. Notice that

Pn =
⋃
S⊆[n]

SS .

Example 6.12. The set of partial permutations of [2], P2, consists of the following permutations:

(1, 2), (2, 1), (1), (2), ().

We now begin to show how partial permutations relate to extended B-forests. Like [PRW08], who
define a surjective map ΨB : Sn → {B-trees}, we recursively define a surjective map Ψ�

B from all partial
permutations to the extended B-forests.
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Definition 6.13. Let B be a connected building set on [n], and S ⊆ [n] with S = {s1 < · · · < sk}.
Given a permutation w = (w(s1), w(s2), . . . , w(sk)) ∈ SS ⊆ Pn, one recursively constructs a B|S-forest
F = F (w) as follows.

Let B(1), . . . ,B(r) be the connected components of the building set B|S . Restricting w to each of
the sets B(i) gives a subword of w, say wi = (w(si1), . . . , w(sik)). For each i = 1, . . . , r, we construct a
rooted tree T (i) using wi.

Let the root of T (i) be the node w(sik). Let B(i)
1 , . . . ,B(i)

ir
be the connected components of the

restriction B(i)
{w(si1 ),...,w(sik−1

))}. Restricting wi to each of the sets B(i)
ij

again gives a subword of wi,
to which one recursively applies the construction, attaching each of these subsequent trees to the root
node w(sik).

Example 6.14. Consider the building set B = BΓ, where Γ = P8, and let S = {1, 2, 3, 5, 7}. We will
show how to find the extended B-forest F = Ψ�

B(w), where w = (3, 7, 1, 5, 2).
The three restricted components of the building set B|S are

B(1) = B|{1,2,3}, B(2) = B|{5}, B(3) = B|{7}.

Thus, F will consist of 3 rooted trees, T (1), T (2), and T (3). Since B(2) and B(3) each only consist of
one singleton element, we know that each of these trees will just be a single node labelled 5 and 7
respectively. To construct T (1), consider the subword w1 = (3, 1, 2), which is obtained from w by
restricting to {1, 2, 3}. The last entry of w1 is 2, so the root of T (1) is the node labelled 2. Restricting
B(1) to {1, 3}, we have two connected components, B|{1} and B|{3}. The two subsequent trees obtained
from these connected components are just single nodes, labelled 1 and 3. We connect these two trees
to the root node, 2, to obtain T (1). Thus, we obtain the forest F , shown in Figure 12.

2 5 7

1 3

T (1) T (2) T (3)

Figure 12: Extended B-forest F = Ψ�
B(w).

This brings us to the definition of B-partial permutations. Such permutations provide a nice section
of the surjection Ψ�

B.

Definition 6.15 (cf. [PRW08], Definition 8.7). Let B be a building set on [n] and S = {s1, . . . , sk} ⊆
[n]. Define the set Pn(B|S) of partial B-permutations on S as the set of partial permutations
w ∈ SS such that for any i ∈ [k], the elements w(si) and max{w(s1), w(s2), . . . , w(si)} lie in the same
connected component of the restricted building set B|{w(s1),...,w(si)}.

Let Pn(B) :=
⋃
S⊆[n] Pn(B|S) be the set of B-partial permutations.

Note that when S = [n], the set of partial B-permutations on S is exactly the set of non-extended B-
permutations (see [PRW08, Definition 8.7]. Next, we provide the following lemma which characterizes
when a partial permutation is a B-partial permutation.

Lemma 6.16 (cf. [PRW08], Lemma 8.8). Suppose S = {s1 < · · · < sk} ⊆ [n] and B is a connected
building set on [n]. A permutation w ∈ SS is a B-partial permutation on S if and only if it can be
constructed via Algorithm 1.

Example 6.17. Again consider BΓ with Γ = P4 and S = {1, 2, 4}. We will construct w, a B-partial
permutation on S.
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Algorithm 1: B-partial permutation procedure.
Data: Connected building set B on [n] and S = {s1 < · · · < sk} ⊂ [n]
Result: B-partial permutation w = (w(s1), w(s2), . . . , w(sk)) ∈ SS

1 m := sk;
2 C := connected component of B|S containing m;
3 Pick w(sk) from C;
4 for i=k-1,k-2,. . . ,1 do
5 m = max{S \ {w(sk), w(sk−1), . . . , w(si+1)}};
6 C = connected component of B|S\{w(sk),w(sk−1),...,w(si+1)} containing m;
7 Pick w(si) from C;
8 end
9 return w;

The restricted building set B|S consists of two connected components, B|{1,2} and B|{4}. Here,
sk = 4, so we must have that w(4) = 4. We then have two options for w(sk−1) = w(2), since there
is only one connected component of B|S\{w(4)} = B|{1,2}, and it contains two elements (including the
maximal element of S \ {w(4)}. Let w(2) = 2. Then we must have that w(1) = 1. Thus, the partial
permutation w = (1, 2, 4) is a B-partial permutation on S.

Let F be a collection of rooted trees on S ⊆ [n], with S = {s1 < · · · < sk}. Recall that one can view
F itself as a poset. Then, the lexicographically minimal linear extension of F is the permutation
w ∈ SS such that w(s1) is a leaf of a tree of F and minimal in the usual order of Z, w(s2) is the
minimal leaf of F \ {w(s1)} (the forest F with the vertex w(s1) removed), w(s3) is the minimal leaf of
F \ {w(s1), w(s2)}, etc.

One can also construct the lexicographically minimal linear extension of F in the following way.

Lemma 6.18 (cf. [PRW08], Lemma 8.9). Let w be the lexicographically minimal linear extension of
a rooted forest F on node set S = {s1 < · · · < sk} ⊆ [n]. Then the permutation w can be constructed
from F , as follows: w(sk) is the root of the connected component of F that contains the maximal vertex
of this forest in the usual order on Z; w(sk−1) is the root of the connected component of F \ {w(sk)}
that contains the maximal vertex of this new forest, etc.

In general, w(si) is the root of the connected component of the forest

F \ {w(sk), . . . , w(si+1)}

that contains the vertex max(w(s1), . . . , w(si)).

Proof. We induct on the number of vertices of the forest F . The base case, when F consists of a
single vertex, is clear. Assume for the induction hypothesis that for any forest F ′ on k − 1 nodes, its
lexicographically minimal linear extension w′ can be constructed as by the procedure above.

Let F ′ be the forest obtained from F by removing the minimal (in the usual order of Z) leaf `. If w is
the lexicographically minimal linear extension of F , then w = (`, w′), where w′ is the lexicographically
minimal linear extension of F ′ (where w and w′ are written as lists). By the induction hypothesis,
w′ was constructed by the procedure from F ′. Notice that when constructing F , for all i > 1, the
vertex ` cannot be the root of the connected component of F \ {w(sk), . . . , w(si+1)} that contains the
maximal vertex. Thus, the backward procedure described above to obtain w from F produces the same
permutation as w = (`, w′).

We can now now show a correspondence between extended B-forests and B-partial permutations.

Proposition 6.19. [cf. [PRW08], Proposition 8.10] Let B be a connected building set on [n]. The
set Pn(B) of B-partial permutations is exactly the set of lexicographically minimal linear extensions
of the extended B-forests. This implies that the set of B-partial permutations and the set of extended
B-forests are in bijection.
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Proof. Let w ∈ SS ⊆ Pn with S = {s1 < · · · < sk} ⊆ [n], and let F = F (w) be the corresponding
extended B-forest constructed, using Definition 6.13. Notice that for all i = k, k−1, . . . , 1, the connected
components of the forest F |{w(s1),...,w(si)} correspond to the connected components of the building set
B|w(s1),...,w(si)}, where corresponding components between the forest and the building set have the same
vertex sets. By Lemma 6.18, the partial permutation w is the lexicographically minimal linear extension
of F if and only if w is a B-partial permutation constructred via Algorithm 1.

We now describe the special class of building sets B for which the extended B-forests and correspond-
ing B-partial permutations agree on their descent numbers. This will allow us to write the h-polynomial
of the extended nestohedron P�(B) as the descent generating function of the B-partial permutations.

Definition 6.20. [PRW08, Definition 9.2] A building set B on [n] is chordal if it satisfies the following
condition: for any I = {i1 < · · · < ir} ∈ B and s = 1, . . . , r, the subset {is, is+1, . . . , ir} also belongs to
B.

Note that if B is a chordal building set on [n] and S ⊆ [n], then B|S is also chordal. The name for
these building sets is justified by the fact that a graphical building set BΓ is chordal if and only if Γ
is chordal and is labelled in a particular way (see [PRW08], Proposition 9.4 for details). Thus, many
nice families of building sets are chordal, such as the building sets BΓ when Γ is a path graph, complete
graph, or star graph.

It turns out that the extended nestohedron P�(B) is a flag simple polytope for B chordal, by the
following lemma.

Lemma 6.21. If B is a chordal building set, then the extended nestohedron P�(B) is a flag simple
polytope.

Proof. By [PRW08, Proposition 9.7], the non-extended nestohedron P(B) is a flag simple polytope. By
Lemma 2.21, P�(B) is flag as well.

By Theorem 5.18, we know that the γ-vector for this polytope is nonnegative, so it is plausible to
give its γ-vector a combinatorial interpretation. In order to do so, we first have to find a combinatorial
interpretation of the h-vector. We now give some definitions and technical results to relate extended
B-forests and B-partial permutations for chordal building sets. This will allow us to prove our result
about the h-polynomial in terms of B-partial permutations.

Definition 6.22. Let S = {s1 < · · · < sk}. A descent of a permutation w ∈ SS is a pair
(w(si), w(si+1)) such that w(si) > w(si+1). Let Des(w) be the set of all descents in w, and des(w) :=
|Des(w)|.

Proposition 6.23 (cf. [PRW08], Proposition 9.5). Let B be a connected chordal building set on [n].
Then, for any extended B-forest F and the corresponding B-partial permutation w, one has Des(w) =
Des(T ).

Proof. Let F be an extended B-forest with node set S = {s1 < · · · < sk}, and let w the corresponding
B-partial permutation, which was constructed from F using the procedure given in Lemma 6.18. Fix
i ∈ {1, 2, . . . , k − 1}, and consider the forest

F \ {w(sk), w(sk−1), . . . , w(si+1)}.

This forest consists of the subtrees T1, . . . , Tr, T
′
1, . . . , T

′
s, where the trees T1, . . . , Tr have roots that were

children of the node w(si+1) in the original forest F , while the trees T ′1, . . . , T ′s are the remaining trees.
We will show that there is exactly one descent edge between w(si+1) and one of the roots of T1, . . . , Tr
if and only if w(si) > w(si+1).

Let m = max{w(s1), . . . , w(si)}, and first suppose that m ∈ Tj for some 1 ≤ j ≤ r; without loss of
generality, suppose m ∈ T1. By Lemma 6.18, it must be that w(si) is the root of T1. We show that
all of the vertices of the trees T2, . . . , Tr are less than w(si+1). If I = F≤w(si+1) ⊆ S, then notice that
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I ∈ B, by the definition of an extended B-forest. Then, if w(si+1) is the maximum element of I, it is
definitely true that the vertices of T2, . . . , Tr are all less than w(si+1), since the node sets of T2, . . . , Tr
are contained within I.

If w(si+1) is not the maximal element of I, then the set I ′ = I ∩{w(si+1) + 1, w(si+1) + 2, . . . , n} is
an element of B, since B is chordal, and I ′ is nonempty since m ∈ I ′. Notice that the vertex set of T1,
denote it by J , must be an element of the building set by the definition of the extended B-forest, and
since m ∈ I ′ as well as J , it follows that I ′ ⊆ J . Thus, all of the nodes of the trees T2, . . . , Tr are less
than w(si+1). This implies that the only possible descent edge between w(si+1) and a child would have
to be between w(si+1) and w(si), the root of T1. Notice that this edge is a descent edge if and only if
w(si) > w(si+1) which is exactly when a descent occurs in permutation w at indices i and i+ 1.

Now suppose that m is in one of the subtrees that is not a descendant of w(si+1), say T ′1. This would
imply that w(si+1) is greater than all w(s1), . . . , w(si). If not, this would imply that m > w(si+1),
and that w(si+1) would not have been chosen to be the (i + 1)-st index of the permutation w, as per
the algorithm of Lemma 6.18. Since w(si+1) > w(sj) for all j = 1, . . . , i, none of the edges connecting
w(si+1) with the roots of T1, . . . , Tr could be descent edges and w(si) < w(si+1).

Proposition 6.23 and Proposition 6.1 imply the following corollary.

Corollary 6.24. For a chordal building set B on [n], the h-polynomial of P�(B) equals

hP�(B)(t) =
∑
S⊆[n]

∑
w∈Pn(B|S)

tdes(w)+n−|S|,

where des(w) is the number of descents of w.

In order to simplify the formula for the h-polynomial given in Corollary 6.24 and not have a double
sum, we define the following map from partial permutations to permutations.

Define the map ϕn : Pn → Sn+1 as follows. For a permutation w ∈ SS ⊆ Pn with S ⊆ [n], let
ϕn(w) be the permutation formed by appending [n+1]\S to the end of w in descending order. The map
ϕn is an injection into Sn+1. Let S�

n+1(B) := ϕn(Pn(B)) be the set of extended B-permutations.
Notice that for w ∈ Pn(BS),

des(w) + n− |S| = des(ϕn(w)),

since the number of descents occurring in the subword of ϕn(w) beginning with the entry n+1 is exactly
equal to n− |S|.

This allows us to rewrite the h-polynomial of P�(B) as the descent-generating function over the set
of extended B-permutations when B is chordal:

hP�(B)(t) =
∑

w∈S�
n+1(B)

tdes(w),

thus proving Theorem 6.11

6.3 γ-Vector of Chordal Extended Nestohedra
Recall that the γ-vector of a d-dimensional simple polytope is given by the h-polynomial: h(t) =∑
hit

i =
∑
γit

i(1 + t)d−2i. If B is a chordal building set, then the extended nestohedron P�(B) is flag
by Lemma 6.21. We showed in the previous section that flag extended nestohedra have nonnegative
γ-vectors. It is therefore possible to give γ-vectors combinatorial interpretations for such polytopes. In
this section, we find such an interpretation for the γ-vector of chordal extended nestohedra. To do so,
we use the technique used in [PRW08], in which the analogous result for chordal nestohedra is shown.
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The general outline of the technique is as follows. Suppose P is a d-dimensional simple polytope
that has a h-polynomial that has a combinatorial interpretation of the form hP (t) =

∑
a∈A t

f(a), where
f(a) is some statistic on the set A. Then, we show that A can be partitioned into classes such that∑

a∈C
tf(a) = tr(1 + t)d−2r,

for each class C ⊆ A and for some r ∈ N. If Â ⊆ A denotes the set of representatives of each class
where f(a) takes its minimal value, then

γP (t) =
∑
a∈Â

tf(a).

For us, A is the set of extended B-permutations, and f(a) is the descent number for permutations.
Like [PRW08] who define operations on B-permutations, we will define a series of operations on extended
B-permutations that will allow us to partition such permutations, and then we will able to give the
γ-polynomial as the descent-generating function over a subset of extended B-permutations.

First, we give several preliminary definitions related to the “topography” of permutations. For
w ∈ Sn+1, a final descent is when w(n) > w(n + 1); a double descent is pair of consecutive
descents, i.e., a triple w(i) > w(i+ 1) > w(i+ 2). A peak of w is an entry w(i) for 1 ≤ i ≤ n+ 1 such
that w(i− 1) < w(i) > w(i+ 1), where here and for the rest of this section (unless otherwise specified),
we set w(0) = w(n+ 2) = 0, so peaks can occur at indices 1 and n+ 1. A valley of w is an entry w(i)
for 1 < i < n such that w(i−1) > w(i) < w(i+1). The peak-valley sequence of w is the subsequence
in w formed by all peaks and valleys. An entry w(i) is an intermediary entry if w(i) is neither a
peak nor a valley. We say that w(i) is an ascent-intermediary entry if w(i− 1) < w(i) < w(i+ 1),
and it is a descent-intermediary entry if w(i− 1) > w(i) > w(i+ 1).

One can graphically represent a permutation w ∈ Sn+1 as a “mountain range” Mw in the following
way. Plot the points (0, 0), (1, w(1)), (2, w(2)), . . . , (n+ 1, w(n+ 1)), (n+ 2, 0) on R2, and then connect
points by straight line intervals. Now, peaks in w correspond to local maxima ofMw, valleys correspond
to local minima, and ascent-intermediary (resp. descent-intermediary) entries correspond to points that
are on increasing (resp. decreasing) slopes of Mw.

Example 6.25. Consider the permutation w = (2, 4, 1, 6, 5, 3) ∈ S6. The mountain rangeMw is shown
in Figure 13. Notice that w has a final descent (3, 0) and two double descents, (6, 5, 3) and (5, 3, 0). It
has peaks at 4 and 6, and a valley at 1. The descent-intermediary entries are 5 and 3, while the only
ascent intermediary entry is 2.
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Figure 13: Mountain range Mw.

We now begin to define some operations on permutations. The leap operations La and L−a , as
well as powers of leap operations, were first introduced [PRW08, Section 11.2], and they allow us to
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define operations on extended B-permutations later on. The leap operations are defined as follows. The
permutation La(w) is obtained from permutation w by removing an intermediary node a from the i-th
position in w and inserting a in the position between w(j) and w(j + 1) where j is the minimal index
such that j > i and a is between w(j) and w(j+ 1). Similarly, the permutation L−a (w) is obtained from
removing a from the i-th position and inserting a between w(k) and w(k+ 1) where k is the maximum
index such that k < i and a be between w(k) and w(k + 1).

Informally, if w ∈ Sn+1 and a is an intermediary entry, then the permutation La(w) is obtained
from w by moving an intermediary point a on the mountain range Mw directly to the right until it hits
the next slope of Mw. Likewise, the permutation L−a (w) is obtained from w by moving a directly to
the left until it hits the next slope of Mw.

Example 6.26. Again consider the permutation w = (2, 4, 1, 6, 5, 3) ∈ S6 from Example 6.25. The
permutation L2(w) is obtained by moving node 2 to the right until hitting the next slope, so the
resulting permutation is L2(w) = (4, 2, 1, 6, 5, 3). The mountain range for the this permutation is shown
in Figure 14(a). The permutation L−3 (w) is obtained by moving node 3 to the left until hitting the next
slope, so the resulting permutation is L−3 (w) = (2, 4, 1, 3, 6, 5). The mountain range for this permutation
is shown in Figure 14(b).
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Figure 14: Examples of leaps on w.

Next, we define powers of the leap operations:

Lra :=

{
(La)r, for r ∈ Z≥0,
(L−a )−r, for r ∈ Z≤0.

In words, if r is positive, then for a permutation w and intermediary entry a, the permutation Lra(w)
is obtained from w by moving a to the right until it hits the rth slope from its original slope; if r is
negative, then the permutation Lra(w) is obtained from w by moving a to the left until it hits the −rth
slope from its original slope.

Notice that Lra(w) is only defined whenever r is in a certain integer interval, since there are finitely
many slopes to the left and to the right of a’s current slope. Let [rmin, rmax] denote this interval. In
addition, if a is an ascent-intermediary entry in w, then a is still ascent-intermediary in Lra(w) for even
r, but it is descent-intermediary for odd r. Similarly, if a is a descent-intermediary entry in w, then a
is still descent intermediary in Lra(w) for even r, but it is ascent-intermediary for odd r.

We now want to ensure that if w ∈ S�
n+1(B) is an extended B-permutation, then there exists some

r such that Lra(w) is an extended B-permutation as well. To do so, we give the following reformulation
of extended B-permutations for chordal building sets.

For a permutation w ∈ Sn+1 and a ∈ [n+ 1] with w(i) = a, let

{w ↖ a} := {w(j) | j ≤ i, w(j) ≥ a}
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be the set of entries in w that occur before a but are greater than or equal to a; this set includes a
itself. In the graph Mw, the set {w ↖ a} is the set of entries of w that are located above and to the
left of the point corresponding to a. In addition, if n + 1 = w(k), then let w� denote the subword
(w(1), . . . , w(k − 1)).

By Definition 6.15 and our definition for S�
n+1(B), the set S�

n+1(B) is the set of permutations w
such that for all i = 1, . . . , |w�|, there exists I ∈ B such that both w(i) and max{w(1), . . . , w(i)} are
elements of I, and I ⊆ {w(1), . . . , w(i)}. If B is chordal, then I ′ := I ∩ [w(i),∞] is an element of
B. This implies that w(i) and max{w(1), . . . , w(i)} ∈ I ′ and I ′ ⊆ {w(1), . . . , w(i)}. Also notice that
max{w(1), . . . , w(i)} = max{w ↖ w(i)}. Thus, we can reformulate our definition for S�

n+1(B) if B is
a chordal building set. A similar reformulation for non-extended B-permutations is given in [PRW08,
Lemma 11.8].

Definition 6.27. Let B be a chordal building set on [n]. Then the set of extended B-permutations
S�
n+1(B) is the set of permutations w ∈ Sn+1 such that for any a ∈ w�, the elements a and max{w ↖ a}

are in the same connected component of B|{w↖a}. In other words, there exists I ∈ B such that for all
a ∈ I, we have that max{w ↖ a} ∈ I and I ⊆ {w ↖ a}.

If w ∈ S�
n+1(B) and a is an intermediary entry of w, then there are 2 possible reasons why the

permutation u = Lra(w) may no longer be an element of S�
n+1(B):

A) if a ∈ u�, and the entries a and max{u ↖ a} are in different connected components of B|{u↖a},
i.e., there does not exist an element I ∈ B|{u↖a} such that a,max{u↖ a} ∈ I, or

B) if another entry b 6= a is in u� and max{u↖ b} are in different connected components of B|{u↖b}.

We call these two types of failuresA-failure andB-failure. Note that these terms have slightly different
definitions given in [PRW08], as they are using them in the context of non-extended B-permutations.

Next, we have the following technical lemma on when A- and B-failures can and cannot occur.

Lemma 6.28 (cf. [PRW08], Lemma 11.9). Suppose w ∈ S�
n+1(B) and a is an intermediary entry of w.

(i) For left leaps u = Lra(w), r < 0, one can never have a B-failure.

(ii) For the maximal left leap u = Lrmin
a (w), one cannot have an A-failure.

(iii) For the maximal right leap u = Lrmax
a (w), one cannot have an A-failure.

(iv) Let u = Lra(w) and u′ = Lr+1
a (w) be two adjacent leaps such that a is descent-intermediary in u

(implying that a is ascent-intermediary in u′). Then there is an A-failure in u if and only if there
is an A-failure in u′.

Proof. (i) Let b 6= a be an entry of w�. Then, since w ∈ S�
n+1(B), there exists a subset I ∈ B such that

b,max{w ↖ b} ∈ I and I ⊆ {w ↖ b}. The same subset I works for u since {u ↖ b} = {w ↖ b}
or {u ↖ b} = {w ↖ b} ∪ {a}, and a 6= max{u ↖ b}, since this would imply a became a peak
under the operation, which is impossible.

(ii) In this case, a is greater than all preceding entries in u, so a = max{u↖ a}. Thus, the singleton
element {a} satisfies the necessary conditions for an element of B.

(iii) Notice that a becomes an element after n + 1, i.e., a /∈ u�, so it is impossible to consider an
A-failure for a.

(iv) All of the entries between a in u and a in u′ are less than a, so {u↖ a} = {u′ ↖ a}. Thus, u has
an A-failure if and only if u′ has an A-failure.

This next lemma guarantees that for an extended B-permutation w and intermediary entry a, there
exists at least some r ∈ [rmin, rmax] such that Lra(w) is still an extended B-permutation.
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Lemma 6.29 (cf. [PRW08], Lemma 11.7). Let B be a chordal building set on [n]. Suppose that
w ∈ S�

n+1(B).

(i) If a is an ascent-intermediary entry in w, then there exists an odd positive integer r > 0 such that
Lra(w) ∈ S�

n+1(B) and Lsa(w) /∈ S�
n+1(B) for all 0 < s < r.

(ii) If a is an descent-intermediary entry in w, then there exists an odd negative integer r < 0 such
that Lra(w) ∈ S�

n+1(B) and Lsa(w) /∈ S�
n+1(B) for all r < s < 0.

Proof. (i) We will show that there exists a permutation u without a B-failure, and then that among
permutations without B-failures, there exists one without an A-failure. First suppose that there
exists an entry b 6= a in the permutation w such that b ∈ w�, and that b and m = max{w ↖ b}
are in different connected components of B|{w↖b}\{a}. It cannot be that a /∈ {w ↖ b}, since this
would imply that b and m are in different connected components of B|{w↖b}, contradicting the
fact that w is an extended B-permutation. Thus, we have that a ∈ {w ↖ b}, implying that b < a
and that a is to the left of b in w. Let b be the leftmost entry of w that satisfies the hypothesis
for this case. Consider the permutation u = Lta(w) for some t > 0. If entry a is to the right of b
in permutation u, then u would have a B-failure; if entry a stays to the left of b in u, then there
would not be a B-failure. Since a is ascent-intermediary and b < a, we have that a stays to the
left of b in L1

a(w), so a permutation u without a B-failure exists in this case.

Let u = Lta(w) be the maximal right leap such that entry a stays to the left of b, so t > 0 is
maximized; we have that a, b ∈ u�. Notice that all entries in u that are between the indices of a
and b are less than a; otherwise, t would not be maximal. Then,m = max{u↖ a} = max{w ↖ b}.
Since w ∈ S�

n+1(B), there exists an I ∈ B such that b,m ∈ I and I ⊆ {w ↖ b}. Notice that we
chose b to not be in the same connected component as m in B|{w↖b}\{a}, so we necessarily have
that a ∈ I as well. Then, I ′ := I ∩ [a,∞] is an element of B, with a,m ∈ I ′ and I ′ ⊆ {u ↖ a},
implying that there is no A-failure in u and so u ∈ S�

n+1(B).

If no such entry b in w as above exists, then none of the permutations Lra(w) have B-failures. By
(iii) of Lemma 6.28, the permutation Lrmax

a (w) does not have an A-failure, so it is an extended
B-permutation.

In both cases, there exists a positive integer r such that Lra(w) ∈ S�
n+1(B) and for all 0 < s < r,

only A-failures are possible for Lsa(w). Pick r to be minimal. Then, r must be such that a is
descent-intermediary in Lra(w); otherwise, we could have chosen r−1 by 4) of Lemma 6.28. Thus,
r must be odd.

(ii) By parts (i) and (ii) of Lemma 6.28, there necessarily exists a negative r such that Lra(w) ∈
S�
n+1(B), namely r = rmin. Choose r with minimal possible absolute value such that Lra(w) ∈

S�
n+1(B). Notice that r must necessarily be odd. If not, then a would be descent intermediary in

Lra(w) and there would be no A-failure; by (iv) of Lemma 6.28, this would imply that Lr+1
a (w)

would also have no A-failure, so Lr+1
a (w) ∈ S�

n+1(B) with |r+1| < |r|, contradicting the minimality
of |r|.

We are now able to define an operation that turns one extended B-operation into another.

Definition 6.30 (cf. [PRW08] Definition 11.10). An extended B−hop operations BH�
a is defined

as follows. For w ∈ S�
n+1(B) with an ascent-intermediary (resp., descent-intermediary) entry a, the

permutation BH�
a (w) is the right leap u = Lra(w), with r > 0 (resp., the left leap u = Lra(w) with

r < 0) with minimal possible |r| such that u ∈ S�
n+1(B).

Informally, the permutation BH�
a (w) is obtained from w by moving the point a on the graph Mw to

the right if a is ascent-intermediary in w, or to the left if a is descent-intermediary, until a hits a slope
such that the new permutation is an extended B-permutation. It is possible that the point a passes
through several slopes.
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Figure 15: Extended B-hop on entry 2 of w.

Example 6.31. Consider the building set

B = {{1}, {2}, {3}, {4}, {1, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

An example of an extended B-permutation is w = (4, 1, 3, 5, 2). The extended B-hop on w for the entry
2 is BH�

2 (w) = L−3
2 (w); we require three left leaps for this extended B-hop operation, since neither

L−1
2 (w) nor L−1

2 (w) are extended B-permutations. Thus, BH�
2 (w) corresponds to moving the node 2

to the left, passing through two slopes, as shown in Figure 15.

Lemma 6.32. For any extended B-permutation w and intermediary entry a of w, the extended B-
hop operation BH�

a (w) is well-defined. If a is an ascent-intermediary entry in w, then a is descent-
intermediary in BH�

a (w); if a is descent-intermediary in w, then a is ascent-intermediary in BH�
a (w).

In addition, (BH�
a )2(w) = w.

Proof. All follows from Lemma 6.29.

This next result shows that the extended B-hop operations pairwise commute with each other. A
similar statement for non-extended B-hop operations is given in [PRW08], and the proof for our extended
case follows in the same way as the non-extended case.

Lemma 6.33 (cf. [PRW08] Lemma 11.12). Let w be an extended B−permutation with two interme-
diary entries a and b. Then BH�

a (BH�
b (w)) = BH�

b (BH�
a (w)).

For a set of extended B-permutations with the same peak-valley sequence, the extended B-hop
operations BH�

a generate the action of the group (Z/2Z)m, where m is the number of intermediary
entries in any permutation of this set. We say that two extended B−permutations are extended B-
hop equivalent if they can be obtained from each other via a series of extended B-hop operations
BH�

a for various intermediary entries a. This allows us to partition the set of extended B-permutations
into extended B-hop equivalence classes. Notice that each class has exactly one permutation with no
descent-intermediary entries since, if w ∈ S�

n+1(B) had a descent-intermediary entry a, then one can
always apply the extended B-hop operation to make it an ascent-intermediary entry.

Let Ŝn+1 denote the set of permutations in Sn+1 that do not have any final descents or double
descents. Notice that this is equivalent to the set of permutations that have no descent-intermediary
entries. For B a chordal building set on [n], let Ŝ�

n+1(B) := Ŝn+1 ∩S�
n+1(B).

We are now able to give the combinatorial interpretation for the γ-vector for chordal building sets.

Theorem 6.34 (cf. [PRW08], Theorem 11.6). For a connected chordal building set B on [n], the
γ-polynomial of the extended nestohedron P�

B is the descent-generating function for the permutations
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in Ŝ�
n+1(B):

γP�(B)(t) =
∑

w∈Ŝ�
n+1(B)

tdes(w).

Proof. For an extended B-permutation w ∈ Ŝ�
n+1(B), the descent generating function of the extended

B-hop-equivalence class C of w is∑
u∈C

tdes(u) = tdes(w)(t− 1)n−2 des(w).

There is exactly one representative permutation from each extended B-hop equivalence class without
descent-intermediary entries in the set Ŝ�

n+1. Thus the h-polynomial of the extended nestohedron P�
B

is

hP�(B)(t) =
∑

w∈S�
n+1(B)

tdes(w) =
∑

w∈Ŝ�
n+1(B)

tdes(w)(t− 1)n−2 des(w).

By definition of the γ-polynomial, we are done.

Thus, we have a combinatorial interpretation of the γ-polynomial of extended chordal nestohedra
in terms of the descent number of our special class of extended B-permutations.

7 A Weak Order on Partial Permutations
In this section, we define a partial order on partial permutations, Pn, that is analogous to the weak
Bruhat order on the symmetric group. We show that this partial order is a lattice, and that any linear
extension of the partial order on Pn gives a shelling of the stellohedron. In addition, we define partial
orders on maximal non-extended and extended nested collections whose Hasse diagrams can be realized
by an acyclic directed graph on the 1-skeleta of nestohedra and extended nestohedra. When this poset
is a lattice, it has further nice properties that can applied to the partial order on partial permutations
Pn.

First, we give some preliminary definitions on partially ordered sets (posets). Let P be a poset. If
u ≤ v in P and u ≤ z ≤ v implies that u = z or z = v, then u l v is a cover relation. A poset P
is a lattice if for any pair of elements x, y ∈ P , there exist a unique least upper bound and a unique
greatest lower bound for x and y which is also contained in P . The former is called the join of x and
y, denoted x ∨ y, and the latter is called the meet of x and y, denoted x ∧ y. An interval [u, v] of
the poset P is a subposet of elements z ∈ P such that u ≤ z ≤ v. For any poset P , the dual poset,
denoted P ∗, is the poset with u ≤ v in P ∗ if and only if v ≤ u in P .

Next, we define the weak Bruhat order on the symmetric group Sn. For any permutation π ∈ Sn,
let

inv(π) := {(i, j) | 1 ≤ i < j ≤ n and π(i) > π(j)},

denote the inversion set of π. The weak Bruhat order on Sn is the partial order given by contain-
ment of inversion sets: π ≤ σ if and only if inv(π) ⊆ inv(σ). It is well-known that the weak Bruhat
order on Sn is a lattice.

Recall that a partial permutation π ∈ Pn is an ordered sequence π = (a1, . . . , ar) with ai ∈ [n]
for all i, and r = 0, . . . , n. If r = 0, then π is the empty permutation, which we denote by (). Recall
the injective map

ϕn : Pn → Sn+1.

Let π̃ := ϕn(π). We can use the weak Bruhat order on Sn+1 to induce a partial order on Pn as follows.

Definition 7.1. Let π, σ ∈ Pn be two partial permutations. We say that π ≤ σ in the partial weak
Bruhat order if and only if π̃ ≤ σ̃ in the weak Bruhat order on Sn+1.
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Figure 16: Partial weak Bruhat order on P2 and P3.

Remark 7.2. In [BM18], Barnard and McConville define a partial order LG on maximal nested col-
lections for the graphical building set BG that we extend later in this section. We note that the partial
weak Bruhat order on Pn is the dual poset of the poset LG, where G is the star graph K1,n. In particu-
lar, the partial permutation π corresponds to the maximal nested collection of BG with B-permutation
(a1, . . . , an+1), where π̃ = (an+1, . . . , a1).

Since the Hasse diagram of the weak Bruhat order on the symmetric group can be realized using
the 1-skeleton of the permutohedron, P(BKn

), one can think of the partial weak Bruhat order as the
partial order that can be realized using the analogous extended nestohedron, namely the stellohedron
P�(BKn

) = P(BK1,n
).

Barnard and McConville show that if a graph G is right-filled, i.e., if the building set BG is chordal,
then LG is isomorphic to a subposet of the weak Bruhat order that is a lattice and a meet semilattice
quotient of the weak Bruhat order ([BM18, Theorem 4.10]). Thus, since the building set for the star
graph is chordal and Pn is dual to LG by Remark 7.2, we have the following result.

Theorem 7.3. The partial weak Bruhat order on Pn is a lattice and a join semilattice quotient of the
weak Bruhat order on Sn+1.

We also note that although the weak Bruhat order is semi-distributive, congruence normal, and
congruence uniform, the partial weak Bruhat order on Pn does not have any of these properties, and
is not a lattice quotient of the weak Bruhat order.

7.1 Shellings of the Dual of the Stellohedron
The partial order defined on partial permutations provides us with shellings for the dual of the stellohe-
dron. Throughout this subsection, let ∆ be a pure d-dimensional finite simplicial complex. We will be
considering linear orderings F1, F2, . . . of its facets. Given such an ordering, we define ∆k :=

⋃k
i=1 Ci

for k ≥ 1 and let ∆0 = ∅.

Definition 7.4. An n-dimensional simplicial complex ∆ with r facets is shellable if its facets can be
arranged into a linear ordering F1, F2, . . . , Fr such that ∆k−1 ∩ Fk is pure of dimension n − 1 for all
2 ≤ k ≤ r. Such an ordering is called a shelling of ∆.

For shellings of the dual of the permutohedron, N (BKn
), Björner proved the following (in the more

general setting of a the weak order in an arbitrary Weyl group).
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Theorem 7.5 ([Bjö84, Theorem 2.1]). Let B = BKn
, and N (B) be nested complex for B, whose facets

Fπ are labeled by the permutations π ∈ Sn. If a total ordering π1 ≤ · · · ≤ πn! is a linear extension of
the weak Bruhat order on Sn, then Fπ1 , . . . , Fπn!

is a shelling for N (B).

We will prove this theorem for the extended case, where the analogues of N (BKn
), permutations

Sn, and weak Bruhat order are respectively N�(BKn
), partial permutations Pn, and the partial weak

order (see Definition 7.1). First, we describe how the faces of the dual of the stellohedron are indexed
by partial permutations.

Recall the surjective map Ψ�
B from all partial permutations to extended B-forests (Definition 6.13).

Using this map, we can construct a maximal extended nested set of B from a partial permutation
w = (w(s1), w(s2), . . . , w(sr)) ∈ Pn, where S = {s1 < · · · < sr} ⊆ [n]. For i = 1, . . . , r, let

Bi := B|{w(s1),...,w(sr−i+1)}.

Then the elements of the building set that make up the corresponding maximal extended nested collec-
tion are

Nw := {Cw,k ∈ Bk | w(sr−k+1) ∈ Cw,k and Cw,k maximal with respect to inclusion, for k = 1, . . . , r},

and the maximal extended nested collection itself is Fw := Nw ∪ {xj | j ∈ [n] \ S}.

Theorem 7.6. Let N�(BKn) be the extended nested set complex for BKn , whose facets Fπ are labeled
by the partial permutations π ∈ Pn. If a total ordering π1 ≤ · · · ≤ πm is a linear extension of the
partial weak Bruhat order on Pn, then Fπ1

, . . . , Fπm
is a shelling order for N�(BKn

).

In the proof, we will use the following equivalent condition for an ordering of facets to give a shelling.

Lemma 7.7 ([Bjö84], Proposition 1.2). An ordering F1, F2, . . . , Fr of the facets of an n-dimensional
simplicial complex ∆ is a shelling if and only if for all i ≤ j, there exists ` ≤ j such that Fi∩Fj ⊆ F`∩Fj
and |F` ∩ Fj | = n− 1.

Our next three lemmas are used in the proof of Theorem 7.6.

Lemma 7.8. Let B = BKn . For two partial permutations π, σ ∈ Pn, let Fπ and Fσ be the corresponding
maximal extended nested collections associated to π and σ. If π l σ in the partial weak Bruhat order,
then Fπ and Fσ differ by exactly one element.

Proof. Suppose π, σ ∈ Pn such that π l σ in the partial weak Bruhat order. Then either

1. π = (a1, a2, . . . , ar) and σ = (a1, . . . , ai−1, ai+1, ai, . . . , ar) with ai < ai+1 for some 1 ≤ i ≤ r − 1,
or

2. π = (a1, a2, . . . , ar−1, ar) and σ = (a1, a2, . . . , ar−1).

If we are in the first case, then there are only two pairs of elements Fπ and Fσ that could possibly differ:
the pair Cπ,r−i and Cσ,r−i, and the pair Cπ,r−i+1 and Cσ,r−i+1. For all other corresponding pairs, the
considered restricted building sets as well as the element needed to be included in the subset added the
extended nested collection are the exact same.

When k = r − i, the building set considered for finding Cπ,k and Cσ,k is

B|{a1,...,ai−1,ai,ai+1} = B|{a1,...,ai−1,ai+1,ai}.

Notice that Cπ,k must contain ai+1 and Cσ,k must contain ai. Since the original building set is BKn ,
every subset of [n] is an element of the building set. Thus, the maximal element of the restricted
building set containing ai+1 or ai is in fact the same element, so

Cπ,k = Cσ,k = {a1, . . . , ai, ai+1}.
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For k = r − i+ 1, the building set considered for Fπ is B|{a1,...,ai−1,ai}, and the element Cπ,k must
contain ai, so Cπ,k = {a1, . . . , ai−1, ai}. For Fσ, the considered building set is B|{a1,...,ai−1,ai+1}, we
have that Cσ,k = {a1, . . . , ai−1, ai+1}. Notice that Cπ,k 6= Cσ,k. Thus, the only difference between Fπ
and Fσ is that Cπ,r−i+1 ∈ Fπ, whereas Cσ,r−i+1 ∈ Fσ; all other elements of the maximal extended
nested collections are the same.

If we are in the latter case, then Fπ = Nπ ∪ {i | i ∈ [n] \ {a1, . . . , ar}. Notice that

Fσ = Nσ ∪ {i | i ∈ [n] \ {a1, . . . , ar−1}}
= (Nπ \ {Cπ,r}) ∪ {i | i ∈ [n] \ {a1, . . . , ar−1}},

since for each k = 1, . . . , r− 1, we have that Cπ,k = Cσ,k. Thus, the only difference between Fπ and Fσ
is that Cπ,r ∈ Fπ, whereas xar ∈ Fσ.

In addition, we make use of the following result, which was given in the more general context of any
graph associahedron in [BM18].

Lemma 7.9 ([BM18], Corollary 2.19). Let G = K1,n. For any (non-extended) nested collection N of
BG, the set of maximal nested collections that contain N is an interval in LG.

Recall Corollary 4.5, which states that N�(BKn
) ' N (BK1,n

). Thus, any non-extended nested
collection N of the star graph building set corresponds exactly to an extended nested collection N�

of the complete graph building set, and the maximal nested collections and maximal extended nested
collections that contain N and N� respectively are in bijection. In addition, by Remark 7.2, the partial
weak Bruhat order on Pn is dual to the poset LG when G = K1,n, so an interval [u, v] in LG is an
interval [v, u] in the partial weak Bruhat order on Pn. Thus, we have the following result.

Lemma 7.10. Consider B = BKn
, and suppose πi, πj ∈ Pn are partial permutations. Then the

subposet of elements σ ∈ Pn such that Fπi
∩ Fπj

⊆ Fσ forms an interval of the partial weak Bruhat
order. In particular, there exists a unique minimal partial permutation ρ such that Fπ ∩ Fσ ⊆ Fρ.

We are now able to prove our main shelling result.

Proof of Theorem 7.6. By Lemma 7.7, it suffices to show that for all partial permutations πi � πj ,
there exists a partial permutation π` ≤ πi such that Fπi

∩ Fπj
⊆ Fπ`

and |Fπ`
∩ Fπi

| = n − 1. Then
fix any two partial permutations πi � πj . By Lemma 7.10, there exists a minimal partial permutation
ρ such that Fπi

∩ Fπj
⊆ Fρ. Since πi � πj , we can conclude that πi 6= ρ. By Lemma 7.9, the set of

partial permutations whose corresponding facets contain Fπi ∩ Fπj is an interval. In addition, there
exists some partial permutation π` l πi such that Fπi ∩Fπj ⊆ Fπ`

. Since π` l πi is a cover relation, by
Lemma 7.8 we have |Fπ`

∩ Fπi
| = n− 1, as desired.

7.2 Partial Orders on Maximal (Extended) Nested Collections
Motivated by poset-theoretic results by Hersh related to generic cost vectors, we show in this subsection
that all nestohedra and extended nestohedra have the property that there exists a “generic” cost vector
that gives an acyclic directed graph isomorphic to the Hasse diagram of a poset. This will allow us to
use Hersh’s results in the case that this poset is a lattice to give nice properties of this lattice. We will
first provide some definitions related to such vectors.

For a simple polytope P ⊆ Rd, a generic cost vector c ∈ Rd is a vector such that c · u 6= c · v for
distinct vertices u, v of P . Given such a vector c, we obtain the acyclic directed graph, denoted G(P, c),
on the 1-skeleton of P by orienting each edge eu,v from u to v whenever c · u < c · v.

We now extend the poset LG defined by Barnard and McConville for graph associahedra to all
nestohedra and extended nestohedra. In the process, we will show that there exists a generic cost vector
c such that G(P, c) is the Hasse diagram of this poset. When extending the poset to all nestohedra, we
omit many details; they follow very naturally from [BM18].

First, we define the following function on maximal nested collections.
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Lemma 7.11 (cf. [BM18], Lemma 2.4). Let B be a building set on [n], and let N be a maximal nested
collection. For each I ∈ N ∪ {[n]}, there exists a unique element topN (I) ∈ [n] not contained in any
element of {J ∈ N | J ( I}. In particular, this function is a bijection between elements of N ∪ {[n]}
and [n].

Since maximal nested collections correspond to the vertices of the corresponding nestohedron, one
can describe the coordinates of the vertices of the nestohedron in terms of the maximal nested collection;
see [Pos09, Proposition 7.9]. Recall that B-trees are in bijection with maximal nested collections.

Lemma 7.12. Let B be a building set on [n]. If N is a maximal nested collection and T is the
corresponding B-tree, then the point vN = (v1, . . . , vn) is a vertex of the nestohedron P(B) where

vi := |{I ∈ B | i ∈ I ⊆ T≤i}|.

We now define a partial order on maximal nested collections. Let B be a building set on [n], with
maximal nested collection N . Suppose that I is a non-maximal element of N . There exists a unique
building set element J 6= I such thatM = N \{I}∪{J} is also a maximal nested collection of B. Define
a flip as the relation N →M if topN (I) < topM (J). We say that N ≤M if there exists a sequence of
flips of maximal nested collections of the form N → · · · →M .

Theorem 7.13 (cf. [BM18], Lemma 2.8). The set of maximal nested collections is partially ordered
by the relation ≤ defined above.

Proof. Let c = (n, n − 1, n − 2, . . . , 1). If N and M are maximal nested collections such that M =
N \ {I}∪{J} for building set elements I 6= J , then c · (vM −vN ) > 0, where vM ,vN are the vertices of
P(B) corresponding to M and N respectively. Thus, N →M on maximal nested collections is induced
by the vector c, so the relation is acyclic. Thus, the transitive closure of such relations is a partial
order.

Corollary 7.14. For any nestohedron P(B), there exists a generic cost vector c such that G(P(B), c)
is the Hasse diagram of a poset.

We now prove an analogous statement for extended nestohedra. For a building set B on [n] and
maximal extended nested collection N , let

Supp(N) := {i ∈ [n] | xi /∈ N}.

Lemma 7.15. Let B be a building set on [n], and let N be a maximal extended nested collection. For
each I ∈ N such that I ⊆ Supp(N), there exists a unique element topN (I) ∈ Supp(N) not contained
in any element of {J ∈ N | J ( I}. In particular, this function is a bijection between non-design vertex
elements of N and Supp(N).

Recall Proposition 6.9, which gives the coordinates of the vertex of extended nestohedron P�(B)
corresponding to a maximal extended nested collection.

We now define a partial order on maximal extended nested collections. Let B be a building set on
[n], with maximal nested collection N . Suppose that I ∈ B is a non-maximal element of N . There
exists a unique building set element J 6= I such that M = N \ {I} ∪ {J} is also a maximal extended
nested collection of B, with Supp(N) = Supp(M). Like in the non-extended case, a flip is the relation
N → M if topN (I) < topM (J) and Supp(N) = Supp(M) of if Supp(N) = Supp(M) ∪ {i} for some
i /∈ Supp(M). We say that N ≤ M if there exists a sequence of flips of maximal extended nested
collections of the form N → · · · →M .

Theorem 7.16. The set of maximal extended nested collection is partially ordered by the relation ≤
defined above.
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Proof. The edges of the extended nestohedron P�(B) are of one of two forms, depending on the maximal
extended nested collections N and M corresponding to the vertices that the edge connects: either
Supp(N) = Supp(M), or Supp(N) = Supp(M) ∪ {i} for some i /∈ Supp(M). If we are in the first case,
then M = N \ {I} ∪ {J} for some I, J ∈ B with I 6= J . Let i = topN (I) and j = topM (J). Then using
Proposition 6.9, we see that vN and vM , the vertices of P�(B) corresponding to N and M respectively,
agree on every coordinate except the i-th and j-th coordinates. In fact, vM − vN = k(−ei + ej), where
k is equal to the number of building set elements contained in I ∪ J and contain both i and j.

If we are in the second case, then notice that vN and vM differ in only the i-th coordinate, with
vM − vN = kei, where k < 0.

Let c = (−n,−n+ 1, · · · ,−1). If N and M are maximal extended nested collections such that there
is an edge connecting their corresponding vertices in P�(B), then c · (vM − vN ) > 0. Thus, N → M
on maximal extended nested collections is induced by the vector c, so the relation is acyclic. Thus, the
transitive closure of such relations is a partial order.

Corollary 7.17. For any extended nestohedron P�(B), there exists a generic cost vector c such that
G(P�(B), c) is the Hasse diagram of a poset.

Let L(B) and L�(B) denote the partial orders defined on maximal nested collections and maximal
extended nested collections, respectively. This last result follows from [Her18, Theorem 1.4].

Proposition 7.18. If L(B) or L�(B) is a lattice, then each open interval (u, v) in the lattice has order
complex which is homotopy equivalent to a ball or a sphere of some dimension. Therefore, the Möbius
function µ(u, v) only takes values 0, 1, and −1.

Recall that if B is the building set for the star graph, then by [BM18, Theorem 4.10], the poset
L(B) is a lattice. One can then apply this proposition to the partial weak Bruhat order that we defined,
which is dual to L(B), to obtain nice properties on this partial order.

Corollary 7.19. Each open interval (u, v) in the partial weak Bruhat order Pn has order complex
which is homotopy equivalent to a ball or a sphere of some dimension. Therefore, the Möbius function
µ(u, v) only takes values 0, 1, and −1.
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