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1. Introduction

In algebraic geometry, the study of geometric objects usually occurs through
studying the vanishing set of a certain collection of polynomials, called a
variety. Hilbert’s Nullstellensatz establishes a correspondence between ideals
and varieties. One of the most important problems in relation to a variety
X is the dimension of vector spaces of homogeneous polynomials vanishing
on X, which is described by the Hilbert function. In the same vein, the
syzygies of a module and, consequently, its free resolutions encode similar
geometric information on the Hilbert function and Hilbert polynomial. An
important class of free resolutions, called Koszul complexes, corresponds to
the property of being a complete intersection.

For the product of projective spaces, minimal free resolutions are usually
long and contain information that is geometrically irrelevant. We hence
turn to virtual resolutions that are much shorter and better expresses the
geometry. Like in the case of free resolutions, we define the notion of virtual
complete intersections using virtual resolutions and offer a combinatorial
classification of whether a set of points in P1 × P1 form a transverse virtual
complete intersection.

2. Preliminaries

2.1. Background

A projective space Pn over C is the set of one-dimensional subspaces of the
vector space Cn+1 that passes through the origin. A point in Pn is written
as a non-zero homogeneous vector [x0, x1, . . . , xn]. A projective variety X ⊂
Pn is the zero locus of a collection of homomgenous polynomials f(~x) ∈
C[x0, x1, . . . , xn].

This research was carried out as part of the 2018 Combinatorics REU at the School of
Mathematics at the University of Minnesota, Twin Cities. We are grateful for the support
of NSF RTG grant DMS-1745638. We would also like to thank Christine Berkesch and
Michael Loper for their guidance and feedback on the project.
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In our work, we study the generalization of a projective space Pn and its
varieties to a multiprojective setting. In particular, we study the biprojective
space P1 × P1[GV15].

Definition 2.1. The biprojective space P1 × P1 is the set of equivalence
classes:

P1×P1 := {((a0, a1), (b0, b1)) ∈ C2×C2 | (a0, a1) 6= (0, 0) and (b0, b1) 6= (0, 0)}/∼,
where the equivalence relation is defined by x ∼ y ⇐⇒ x = λy for
x, y ∈ P1, λ ∈ C×.

Let S be the polynomial ring C[x0, x1, y0, y1]. The geometrical irrelevant
ideal of this ring is B = (x0, x1) ∩ (y0, y1). Then the projective strong
Nullstellensatz implies the correspondance between ideals in S and varieties
in P1 × P1.

Theorem 2.2. (Bivariate Projective Nullstellensatz) There exists an order-
reversing one-to-one correspondence between proper homogeneous B-saturated
radical ideals

√
I and subsets of P1 × P1 of the form V (I).

Here, the B-saturated ideal of I is

(I : B∞) = {s ∈ S|sBl ⊆ I for some l > 0}.
Geometrically, ideal I is equivalent to its B-saturation (or V (I) = V ((I :
B∞))).

For any ideal I, we can compute the free resolution of the module M = S/I.

Definition 2.3. Let M be an S-module. A graded free resolution of M is
an exact sequence of the form:

0←−M ϕ0←− F0
ϕ1←− F1

ϕ2←− F2 ←− · · ·
where for all i, Fi

∼= Sri is a free module and each ϕi has a degree 0.

The free resolution encodes information about the connection between a
module, its first syzygies, its second syzygies, and so forth. If R is a poly-
nomial ring, we have the following result from Hilbert:

Theorem 2.4. (Hilbert Syzygy Theorem) Let S = C[x0, . . . , xn]. Then every
finitely generated S-module has a finite free resolution of length at most n.

Hilbert’s Syzygy Theorem asserts the existence of a free resolution that is
short enough when working in lower-dimensional projective spaces. As we
shall see in Section 2.2, an analogous result holds in the context of virtual
resolutions. In the case of free resolutions, one can focus on the minimal
free resolution:

Definition 2.5. A free resolution is minimal if for every ` ≥ 1, the nonzero
entries of the graded matrix of ϕ` have positive degree.
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The minimal free resolution is unique up to isomorphism. In particular, it
is closely related to the Hilbert function:

Definition 2.6. If M = S/I is a finitely generated graded module over S,
then the Hilbert function HM (d) : Z→ N is defined by:

HM (d) = dimCMd,

where dimC is the dimension of the degree d piece of M as a vector space
over C.

The Hilbert function eventually becomes a polynomial. For an ideal of
points, the Hilbert polynomial is equal to the number of points in V (I).
Given a graded minimal free resolution, we can take the degree d part of
the resolution and use the alternating sum formulation to get the Hilbert
function:

Theorem 2.7.
HM (d) =

∑
i

(−1)iHFi(d)

Next we move on to the notion of complete intersections, which is formally
defined by the existence of a regular sequence:

Definition 2.8. If I ⊆ S is a bihomogeneous ideal and M = S/I. Then, a
sequence of elements f1, f2, . . . , fd of I is a M -regular sequence modulo S if
an only if the following conditions hold:

(i) (f1, . . . , fd)M 6= M

(ii) f1 is not a zero-divisor in S/I.

(iii) fi is not a zero-divisor in S/(I, f1, . . . , fi−1) for 1 < i ≤ d.

For a projective variety V , the property of being a complete intersection is
determined by its associated ideal I(V ).

Definition 2.9. An ideal I ⊆ S is a complete intersection if it is generated
by a regular sequence. A set of points X ⊆ P1×P1 is a complete intersection
if I(X) is a complete intersection.

In the next section, we present an alternative characterization of complete
intersections and use the result as a basis for our definition of virtual com-
plete intersections.

2.2. Virtual Complete Intersection

Analogous to free resolutions in a projective space, we introduce virtual
resolutions in a biprojective space, up to the irrelevant ideal B = (x0, x1) ∩
(y0, y1).
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Definition 2.10. A virtual resolution for an ideal I in the biprojective space
P1 × P1 is a free complex

0←− S ϕ1←− F1
ϕ2←− F2

ϕ3←− · · ·
such that Fi are free modules for i ≥ 0, ann

( ker(ϕi)
im(ϕi+1)

)
⊇ Bl for some l > 0,

and im(ϕ1) : BN = I : BN ′
for N,N ′ � 0, where I : J = {s ∈ S|sJ ⊆ I}.

Theorem 2.11. (Virtual Hilbert Syzygy Theorem [BES17]) Let Y ⊂ Pn

be a zero-dimensional scheme and I be its associated B-saturated S-ideal.
Then, S/I has a virtual resolution of length at most |n| = n1 +n2 + · · ·+nr.

As a consequence of Theorem 2.11, for any graded module M of SP1×P1 , the
shortest virtual resolution of M has length less than or equal to 2.

To use this result as a basis for the geometric notion of virtual complete
intersection, first observe the following:

Lemma 2.12. In P1 × P1, the minimal free resolution of an ideal I is a
Koszul complex if and only if I is a complete intersection, i.e. I is generated
by a regular sequence.

A proof of this result can be found in [Pee11]. In P1×P1 which has dimension
2, a Koszul complex has the form

0← S1

[
f g

]
←− S2

[
−f
g

]
←− S1 ← 0

for some bihomogeneous polynomials f and g. Thus, for the product of
projective spaces, we can define the notion of a virtual complete intersection:

Definition 2.13. Let I be an ideal of points in P1 × P1. We say I is a
virtual complete intersection (VCI) if I has a virtual resolution that is a
Koszul complex. In particular, V (I) = V (f) ∩ V (g).

With this definition in hand, we have an analogous connection between
virtual reolution and its geometry.

Theorem 2.14 (Don’t know how to prove this). In P1 × P1, assume I is
a B-saturated radical ideal of a set of points. Then, I will have a virtual
Koszul resolution 0 ←− I ←− S ←− S2 ←− S if and only if I is a virtual
complete intersection V (I) = V (f) ∩ V (g) with multiplicity 1.

3. Non-Combinatorial Determinants of the Minimal Free
Resolution

Before giving a combinatorial classification of virtual complete intersections,
we answer the question of to what extent configurations determine the mini-
mal free resolution and virtual resolutions of a variety. We first investigated
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the minimal free resolution of an ideal of a set of points. We consider two
sets of points X,Y equivalent up to configuration if they are the same under
permutation and relabeling of the rulings. In other words, there exists two
bijections φ : P1 → P1 and ψ : P1 → P1 such that

Y = {(φ(a), ψ(b))|(a, b) ∈ X} or Y = {(φ(b), ψ(a))|(a, b) ∈ X}.

It turns out that the size of a minimal free resolution was not solely depen-
dent on the configuration of points, but in some cases also depended on the
actual values of the coordinates. Our data is presented below:

Example 3.1. For the following four-point configuration, the minimal free
resolution as well as virtual resolution vary depending on the specific set of
values of the coordinates:

Figure 1. A four-point configuration whose minimal free
resolution depends on the cross ratio. Each ruling correspond
to one copy of P1.

When the points are assigned coordinates such that the cross ratio is the
same on both copies of P1 (e.g. ([1 : 1], [1 : 1]), ([1 : 2], [1 : 2]), ([1 : 3], [1 :
3]), ([1 : 4], [1 : 4])), Macaulay2 [M2] shows that the minimal free resolution
of S/I has the form:

(1) S1 ← S6 ← S8 ← S3 ← 0.

Accordingly, a virtual resolution has the simpler form:

(2) S(1, 5)1 ←
S(−1,−1)1

⊕
S(0,−4)1

← S(0, 0)1 ← 0

When given the set of points has different cross ratios on the two copies of
P1 (e.g. ([1 : 1], [1 : 1]), ([1 : −1], [1 : 2]), ([1 : 3], [1 : 3]), ([1 : 4], [1 : 4])), the
minimal free resolution will have the form:

(3) S1 ← S6 ← S7 ← S2 ← 0,

and the corresponding virtual resolution has the form:

(4) S(2, 4)1 ← S(−1,−2)2 ← S(0, 0)1 ← 0
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Further, the minimal free resolution of bigger collections of points will vary
depending on the value of the coordinates if the configuration contains four
points that don’t share any coordinates.

Definition 3.2. If the four points have homogeneous coordinates [a : a′], [b :
b′], [c : c′], [d : d′], their cross ratio is:

(ca′ − ac′)(db′ − bd′)
(da′ − ad′)(cb′ − bc′)

.

If a point is in the form of λ[1 : 0], then the terms involving this point are
dropped from both the numerator and the denominator.

The cross ratio of a set of four points in P1 is an invariant under projective
change of coordinates [Har95].

Lemma 3.3. If coordinates are changed so that three of the points have
homogeneous coordinates [0 : 1], [1 : 1], [1 : 0], the cross ratio is the ratio of
the homogeneous coordinates of the fourth point.

Note that the cross ratio is dependent on the order of the points, so the
same set of points can have six different cross ratios.

Lemma 3.4. Given a configuration of four points with distinct coordinates
in P1 × P1, consider the two cross ratios of the projection of the points into
each copy of P1 (preserving the order of the points). The minimal resolution
of these points depends on whether or not these two cross ratios are the
same.

Proof. Consider the form x0y1−x1y0. This will vanish if and only if the two
cross ratios are the same. Therefore, the degree of the (1, 1) graded piece of
the ideals differs in the two cases. Since the Hilbert Function is recoverable
from the minimal resolution, the resolution must also differ. [this proof
needs work] �

The fact that free resolutions depend not just on configurations but also
on coordinates suggests that they are limited in their geometric applicabil-
ity. Although virtual resolutions are not a complete solution, they are an
improvement in this regard.

However, it is worth noting that virtual resolutions is not a combinatorial
invariant, despite that they convey more condensed geometric structure and
appears to be a better indicator of the combinatorics. For in-depth discus-
sion, see Remark 5.11.
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4. Reduced Points and the Set-Theoretic Approach

First, we consider sets of points which are the intersection of two polynomial
forms without consideration of the multiplicities of the intersection. This is
the ”reduced” case, and corresponds to taking the radical of the ideal of the
points before taking the virtual resolution.

Remark 4.1. In the reduced case, all configurations of points are virtual
complete intersections.

Proof. Choose f to be the product of the smallest set of (1, 0)-forms needed
to cover the set of points (i.e. vertical lines in every ruling containing points).
Let k be the degree of f , and let n be the maximum number of points in a
single vertical ruling. Assign multiplicities to each point, such that the sum
of the multiplicities of points in each vertical ruling is n (for example, in the
ruling with n points, each point will have multiplicity 1). Now, construct n
k-tuples each containing one point from each vertical ruling, such that each
point appears as many times as its multiplicity. For each k-tuple, we can use
Lagrangian interpolation to find a polynomial that will pass through those k
points, and will therefore intersect f exactly at points of the configuration.
The product of all such polynomials will give a valid g. �

Next, we will consider the ”non-reduced” case, and account for the multi-
plicity of the intersection points. Given a configuration X, we assume that
all points are simple intersections. Considering multiplicity corresponds to a
scheme-theoretic view of intersections, which requires that the homogeneous
ideal generated by the two intersecting forms equal the defining ideal of X,
instead of just having the same radical. As we will see, this transversal-
ity condition will lead to a richer classification of configurations into VCIs,
non-VCIs, and coordinate dependent cases.

5. Determination of VCIs

Theorem 5.1. (Generalized Bézout’s Theorem [Šaf13]) Let f, g ∈ S =
C[x0, x1, y0, y1] be two bihomogeneous forms in P1 × P1. If f and g are in
generic position of multidegree (a, b) and (c, d) respectively, then |V (f) ∩
V (g)| = ad+ bc counting multiplicities.

The bigraded Bézout theorem will be used extensively as a tool to combina-
torially determine virtual complete intersections. For brevity, we will refer
to Theorem 5.1 as “Bézout’s Theorem” from this point onward.

Lemma 5.2. Let f and g be two projective curves in generic position of
multidegree (a, b) and (c, d), respectively. Given a configuration of finitely
many points in P1 × P1, let m be the maximum number of points on the
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same horizontal ruling, and n be the maximum number of points on the same
vertical ruling. If X = V (f)∩V (g), then max(a, c) ≥ m and max(b, d) ≥ n.

Proof. Assume, for the sake of contradiction, that a, c < m. Without loss
of generality, we can change coordinates to assume that the m points are on
the ruling with coordinates [1 : 0]. We can restrict f to the ruling [1 : 0] by
substituting x0 = 1, x1 = 0, yielding a single variable polynomial of degree a
with m roots. By our assumption that a < m, this restriction of m must be
identically 0, and so V (f) contains the entire ruling [1 : 0]. By an identical
argument on g using c < m, we have V (g) also containing the entire ruling
[1 : 0]. Therefore, V (f)∩V (g) contains that entire ruling, and so cannot be
the original set of points. Thus, our assumption that a, c < m was false, and
so max(a, c) ≥ m. The proof that max(b, d) ≥ n is exactly analogous. �

Lemma 5.3. Let X be a set of points in P1 × P1. Let m be the maximum
number of points on a single horizontal ruling, and let n be the maximum
number of points on a single vertical ruling. If X is a VCI of polynomials f
and g with multidegrees (a, b) and (c, d) respectively, and |X| < mn, then:

• Either (i) a ≥ m and b ≥ n, or (ii) c ≥ m and d ≥ n.

• In the first case, g has horizontal components on the lines containing
the m points, and vertical components on the lines containing the n
points. In the second case, the same is true of f .

Proof. By Lemma 5.2, we have

max(a, c) ≥ m,max(b, d) ≥ n.

Without loss generality, suppose a ≥ c, d ≥ b. Then, a ≥ m, d ≥ n. How-
ever, in this case ad ≥ mn, so ad + bc ≥ mn, contradicting |X| < mn.
Therefore, we must have a ≥ c, b ≥ d. Then, we must have a ≥ m, b ≥ n.
This proves 5.3. If g does not contain the entire line of the m collinear
points, then g restricted to that line is a nonzero polynomial with m roots,
and so has degree at least m. This means that c ≥ m, which gives the
contradiction |X| = ad+ bc ≥ bc ≥ mn. Similarly, if g does not contain the
ruling with n points, then its restriction to that line must have degree at
least n giving the contradiction |X| = ad + bc ≥ ad ≥ mn. This completes
the proof. �

Based on Lemma 5.2 and 5.3, our main result is the following:

Theorem 5.4. Let X be a set of points in P1×P1. Let m be the maximum
number of points of X on a single horizontal ruling, and let n be the maxi-
mum number of points on a single vertical ruling. If |X| < mn, and there
is at least one point in X that is on a horizontal ruling with m points and a
vertical ruling with n points, then X is not a VCI.
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Proof. Assume X = V (f)∩V (g), where f is a curve of multidegree (a, b) and
g is a curve of multidegree (c, d). By Lemma 5.3, we must have a ≥ m, b ≥ n.

Suppose V (g) includes s horizontal lines and t vertical lines. By the previous
lemma, s, t ≥ 1, and by the condition of the theorem, the intersection of
these s + t lines contains at least one point of X. Factoring g, we get:
g = (x1 − α1x0)(x1 − α2x0) · · · (x1 − αsx0)(y1 − β1y0) · · · (y1 − βty0) · g0.
Denote the degree of g0 by (p, q). Let Y ⊆ X be points covered by the s+ t
components of g. We have |Y | ≤ ms+ nt− 1, since we are certainly double
counting the point on the vertical and horizontal rulings containing most
points. The remaining set of points X \Y must be precisely the intersection
of f and g0, whose cardinality is aq + bp according to Bézout’s Theorem.

Applying Bézout’s Theorem again to f and g, it follows that

a(s+ q) + b(t+ p) = |X| ≤ ms+ nt+ aq + bp− 1.

Simplifying the inequality above yields:

as+ bt ≤ ms+ nt− 1

Since a ≥ m, b ≥ n, and s, t ≥ 1, we have a contradiction. Thus, X cannot
be a virtual complete intersection. �

Corollary 5.5. If X is a set of points in P1×P1 forming a Ferrers diagram,
then X is a virtual complete intersection if and only if it is a rectangle.

Proof. Defining m and n as before, if a Ferrers diagram is not a rectangle, the
number of points is strictly lower than mn, and the corner of the diagram is
one of m points on its horizontal ruling and n points on its vertical ruling, so
the Theorem 5.4 applies. If the configuration is a rectangle, then deg(f) =
(m, 0),deg(g) = (0, n) and (f, g) forms a regular sequence, indicating a
complete intersection. �

Lemma 5.6. Let X be a VCI, m, and n be defined as above, and |X| < mn.
Assume, without loss of generality, that a ≥ m, b ≥ n. Then:

• a = m, b = n

• V (g) has vertical components exactly on rulings with n points of X,
and has horizontal components exactly on rulings with m points of
X.

Proof. As above, let s be the number of horizontal lines and t be the number
of vertical lines of V (g); let Y be the number of points of g covered by those
lines; let (p, q) be the multidegree of the remaining components of g. From
our earlier work, we have s, t ≥ 1 and:

as+ bt = |Y | ≤ ms+ nt
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We have a ≥ m, b ≥ n, and either of these being strict would contradict the
above, so a = m, b = n. This tells us

ms+ nt = |Y |
Thus, each vertical component of V (g) must contain n points of X and each
horizontal component must contain m points of X (by the previous theorem,
these points cannot overlap). �

Note that when |X| < mn, the values of s and t are intrinsically determined
by the configuration of X: they are equal to the maximum number of points
on any horizontal and vertical ruling respectively.

Theorem 5.7. If |X| < mn and gcd(m,n) does not divide |X|, then X is
not a VCI.

Proof. Suppose X = V (f)∩V (g). From the previous lemma, we can assume
f has multidegree (m,n). Letting g have multidegree (c, d). By Bézout’s
theorem, |X| = dm + cn. This is divisible by gcd(m,n), which is a contra-
diction. �

Lemma 5.8. If X is a VCI with X = V (f)∩V (g), |X| < mn, gcd(m,n) =
1, and the multidegree of f is (m,n), then the multidegree of g is (c, d) with:

c = n−1|X| mod m

d = m−1|X| mod n

(where 0 ≤ c < m and 0 ≤ d < n).

Proof. By Bézout’s theorem,

dm+ cn = |X|
Considering modulo m and n, we have:

c ≡ n−1|X| mod m

d ≡ m−1|X| mod n

Since cn, dm < mn we must have c < m, d < n, and so c and d must have
the desired values. �

Lemma 5.9. If X is a configuration with |X| < mn, gcd(m,n) = 1, let

c = n−1|X| mod m

d = m−1|X| mod n

Let s and t be defined as before, and let p = d − s and q = c − t. If any of
the following are true, X will not be a VCI:

• dm+ cn > |X|

• d < s or c < t
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• There is a horizontal ruling with strictly between q and m points of
X, or a vertical ruling with strictly between p and n points of X.

Proof. By our previous lemma, we know that c and d are uniquely deter-
mined if a VCI exists, and by the Chinese Remainder Theorem, we have:

|X| ≡ dm+ cn mod mn

If dm + cn > |X|, it is impossible to obtain |X| by adding positive integer
multiples of m and n (see the Chicken McNugget Theorem and related anal-
ysis).

If X is a VCI of f and g, then g has s horizontal line components, so
we would have d ≥ s. Similarly since it has t vertical line components, we
would have c ≥ t.

By a previous lemma, any horizontal ruling with fewer than m points of
X cannot be contained in V (g). However, a polynomial of multidegree
(p, q) cannot vanish on more than p points of a horizontal ruling without
containing the entire ruling. Analogously, g cannot vanish on between q and
n points of a vertical ruling. �

Note that when X is a VCI of f and g with |X| < mn, we have determined
not only the multidegree of g but also the multidegree of components that
are not degree 1 lines - p and q are intrinsically determined.

Theorem 5.10. If X has the same number (n) of points in each vertical
(or each horizontal) ruling, it is a VCI.

Proof. We will prove the vertical case, and horizontal will follow analogously.
Let f be the polynomial such that V (f) is comprised of all the vertical
rulings that contain points of X. Using Lagrangian interpolation, there
exists a polynomial that intersects each of these rulings once at any given
point. By labeling the points in each vertical ruling from 1 to n, let gi be
the polynomial vanishing on all the points labeled i. Multiplying together
the gi yields a form whose variety intersects V (f) exactly at X. �

Remark 5.11. When |X| ≥ mn, VCIs are not always determined by con-
figuration. That is, the same configuration may be a VCI with some coor-
dinates, but not with others.
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Figure 2

Proof. Consider the configuration of six points above, and suppose it is the
VCI of f and g with multidegree (a, b) and (c, d) respectively. If any of the
degrees were 0, say a, then V (f) would be parallel lines, and since there are
five distinct coordinates, f would have degree (0, 5). There is no choice of c, d
such that ad+ bc = 6, so none of the degrees are 0. Furthermore, applying
our lemma, we find that the only possible multidegrees (up to permutation)
are (2, 1) for f and (2, 2) for g. Since there are two points sharing a ruling
(both vertically and horizontally), f must have a degree (0, 1) component
passing through the vertical one, and therefore must have a degree (2, 0)
component passing through the remaining four points. But since conics are
determined by three points, this is impossible in most cases, and the set of
points could not be a VCI. However, in the cases where the remaining four
points do lie on a conic, the points may be a VCI. For instance, if the points
have coordinates:

([1 : 1], [1 : 1]), ([2 : 1], [1 : 2]), ([3 : 1], [1 : 3]), ([4 : 1], [1 : 4]), ([1 : 0], [1 : 1]), ([1 : 0], [1 : 0])

then this set of points is the intersection of the varieties of

x0x1x2 − x21x3
and

24x21x
2
2 − x20x2x3 − 50x21x2x3 + x20x

2
3 − 9x0x1x

2
3 + 35x21x

2
3

�

6. Hilbert Function and Regularity

Berkesch Zamaere et al. [BES17] proved that for a B-saturated S-module
M , virtual resolutions can be constructed as a subcomplex of a minimal free



VIRTUAL COMPLETE INTERSECTIONS IN P1 × P1 13

resolution of M given an element d in the regularity of M . Furthermore,
taking the set of minimal elements r in the regularity of M and computing
the virtual resolution of the pairs (M, r), we have that the sum of twists
in the virtual resolutions is equal to the sum of twists in the minimal free
resolution.

To further investigate how minimal elements in the regularity interact with
the geometric aspect of a point set variety, we compare the minimum degrees
of and the multi-graded betti table of a virtual resolution that explicitly
indicates the existence of VCI.

Remark 6.1. The regularity of an ideal does not reflect whether a variety
is a VCI or not. For instance, the “hook” configuration and the four-point
“box” configuration in Example 6.2 have the same regularity (1, 1) + N2.
However, we know from Corollary 5.5 that the former is not VCI, whereas
the latter is indeed a complete intersection.

Example 6.2. Two configurations with the same regularity:

Figure 3. The
“hook” configuration

Figure 4. The “box”
configuration

Appendix A. Catalogue of Small Configurations

A.1. Three-Point Configurations

Figure 5 Figure 6 Figure 7

A.1.1. VCIs.
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Figure 8

A.1.2. Not VCI.

A.2. Four-Point Configurations

Figure 9 Figure 10 Figure 11

Figure 12 Figure 13 Figure 14

Figure 15 Figure 16
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A.2.1. VCIs.

Figure 17 Figure 18

A.2.2. Not VCI.
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