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Abstract. Brane tilings are infinite, bipartite, periodic, planar graphs that are dual to
quivers. In this paper, we examine the del Pezzo 2 (dP2) quiver and its brane tiling, which
arise from the physics literature, in terms of toric mutations on its corresponding cluster.
Specifically, we give explicit formulas for all cluster variables generated by toric mutation
sequences. Moreover, for each such variable, we associate a subgraph of the dP2 brane tiling
to it such that its weight matches the variable.

1. Introduction

Cluster algebras are a class of commutative rings generated by cluster variables, which
are partitioned into sets called clusters. Given an initial seed, an operation known as seed
mutation can be applied iteratively to generate all cluster variables. The concept of clus-
ter algebras was first introduced by Fomin and Zelevinsky [FZ02] as a tool to study total
positivity and dual canonical bases in Lie theory. They have rich applications in different
branches of mathematics, including algebraic combinatorics, tropical geometry, Teichmuller
theory, and representation theory.

It is common to picture a cluster as a quiver with a cluster variable on each vertex.
Some special quivers have planar duals, known as brane tilings, which are doubly-periodic,
bipartite, planar graphs. The notion of brane tilings is first introduced in theoretical physics
[FHV+06]. For such quivers, combinatorial interpretations of the cluster variables have been
obtained by associating a subgraph of the brane tiling to each cluster variable such that the
Laurent polynomial of the cluster variable is recoverable from a weighting scheme applied to
the subgraph. See [MS10], [Mus11], and [LS13]. In particular, the quiver and brane tiling
of the third del Pezzo (dP3) surface [HS12] has been studied widely by [Zha], [LMNT14],
and [LM15]. In this paper, we will generalize the techniques utilized in these papers and
focus on the second del Pezzo (dP2) surface. Specifically, we will classify all cluster variables
generated by toric mutations and give combinatorial interpretations for them.

2. Preliminaries

2.1. Quiver and Cluster Mutations.

Definition 2.1 (Quiver and Cluster). A quiver is a finite directed graph Q with a set of
vertices V and a set of edges E. We can associate a cluster variable xi to the vertex labeled
i. The cluster is the ordered set of cluster variables {x1, . . . , xn} at each vertex, assuming
|V | = n. For a cluster S = {x1, . . . , xn}, let S[i] refer to the ith cluster variable.
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In this paper, we allow quivers to have multiple edges connecting two vertices but there
can be no 2-cycles or 1-cycles (loops).

Definition 2.2 (Quiver Mutation). Mutating at a vertex i in Q is denoted by µi and
corresponds to the following actions on the quiver:

• For every 2-path through i (e.g. j → i→ k), add an edge from j to k.
• Reverse the directions of the arrows incident to i.
• Delete any 2-cycles created from the previous two steps.

Correspondingly, the cluster variable at vertex i is updated and all other cluster variables
stay the same. The update follows this binomial exchange relation:

x′ixi =
∏

i→j in Q

x
ai→j

j +
∏

j→i in Q

x
bj→i

j ,

where x′i is the new cluster variable at vertex i and ai→j is the number of edges from i to j.

The binomial exchange relation replaces S[i] by the new cluster variable x′i. We denote
this replacement by

S[i]←

∏
i→j in Q

x
ai→j

j +
∏

j→i in Q
x
bj→i

j

xi
.

2.2. The Del Pezzo 2 Quiver and its Brane Tiling. In this paper, we will study a
special quiver associated to the second del Pezzo surface (dP2) [BP01] and its brane tiling,
as seen in Figure 1.
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Figure 1. dP2 quiver Q and its associated brane tiling T (Figure 30 of [HS12])

To get from a brane tiling to the corresponding quiver, we look at each edge e up to
translation, noticing that any brane tiling is periodic, bipartite and planar. Assume that e
borders block i and j such that as we go across from block i to block j, the black end point
of e is on the left and the white end point of e is on the right. For this edge e, we add an
edge in the quiver that goes from i to j. The red arrows in Figure 1 show this process.

We use Q to denote the dP2 quiver and T to denote its associated brane tiling .

2.3. Toric Mutation and Two Models of Quivers.

Definition 2.3 (Toric Vertex and Toric Mutation). We say that a vertex in a quiver is toric
if it has in-degree 2 and out-degree 2. A toric mutation is a cluster mutation at a toric
vertex.
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Definition 2.4 (Model). We say that two quivers Q1 and Q2 are of the same model if
they are isomorphic as directed graphs (there exists a bijection between their vertices that
preserves edges), or if Q1 is isomorphic as graph to Q2 with all edges in Q2 reversed.

It is easy to check that the dP2 quiver Q has two models that can be reached from the
original quiver by toric mutations. Use Model 1 to denote the original quiver Q and Model
2 to denote the quiver obtained from Q by mutating at vertex 2. Figure 2 shows these two
models. As a side note, the word “model” is also seen as “phase” in the literature [HS12].
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Figure 2. model 1 and model 2 of the dP2 quiver (Figure 30 and 31 of [HS12])

Transitions between these two models are shown in Figure 3.
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Figure 3. Adjacency between different models (Figure 18 of [EF12])

3. Classification of Toric Mutation Sequences

Definition 3.1 (ρ-mutation sequences). We define the following operation sequences con-
sisting of mutations and permutations, where concatenation of operations is done from left to
right. A permutation permutes the vertices and their associated cluster variables accordingly.

ρ1 = µ1 ◦ (54321), ρ2 = µ5 ◦ (12345), ρ3 = µ2 ◦ µ4 ◦ (24),

ρ4 = µ2 ◦ µ1 ◦ µ4 ◦ (531), ρ5 = µ4 ◦ µ5 ◦ µ2 ◦ (351),

ρ6 = µ2 ◦ µ1 ◦ µ2 ◦ (531)(24), ρ7 = µ4 ◦ µ5 ◦ µ4 ◦ (135)(24).

We call each ρi a ρ−mutation and any concatenation of ρi’s a ρ−mutation sequence.

As a side note, it is technically more correct to name “ρ-mutation” as “ρ-operation”.
However, we follow conventions set in [LMNT14] and [LM15] and thus choose the name
“ρ-mutation”.

These ρ-mutations all fix the quiver (but not the cluster variables), that is, ρi(Q) = Q,
for i = 1, . . . , 7. Notice that in the original quiver Q, there are no edges connecting vertex 2
and 4. This means mutation at 2 and mutation at 4 commute, so ρ3 can also be written as
ρ3 = µ4 ◦ µ2 ◦ (24).
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It is easy to construct Figure 4, which shows all possible toric mutation sequences that
start from the original dP2 quiver and return to model 1 the first time, from Figure 3. In
this way, it is clear that combinations of these seven ρ−mutations give us all possible toric
mutation sequences that start in model 1 and end in model 1 up to a permutation of vertices.
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Figure 4. All possible toric mutation sequences that start from model 1 and
return to model 1 the first time. The red circle represents the initial quiver Q.
Numbers on edges represent the vertices mutated.

Proposition 3.2 (Relations of ρ-mutations).

ρ4{x1, x2, x3, x4, x5} = ρ21ρ3{x1, x2, x3, x4, x5},
ρ5{x1, x2, x3, x4, x5} = ρ22ρ3{x1, x2, x3, x4, x5},
ρ6{x1, x2, x3, x4, x5} = ρ21{x1, x2, x3, x4, x5},
ρ7{x1, x2, x3, x4, x5} = ρ22{x1, x2, x3, x4, x5}.

ρ1ρ2{x1, . . . , x5} = ρ2ρ1{x1, . . . , x5} = ρ23{x1, . . . , x5} = {x1, x2, x3, x4, x5},
ρ21ρ3{x1, . . . , x5} = ρ3ρ

2
1{x1, . . . , x5}, ρ22ρ3{x1, . . . , x5} = ρ3ρ

2
2{x1, . . . , x5},

ρ1ρ3ρ2{x1, . . . , x5} = ρ2ρ3ρ1{x1, . . . , x5}.

Note that it suffices to define ρ1, ρ2, ρ3 because ρ4, ρ5, ρ6, ρ7 can be written in terms of
the previous three.

Theorem 3.3. Any toric mutation sequence in dP2 quiver that starts and ends at model 1
can be written, up to a permutation of cluster variables, as ρkt (ρ3ρ1)

mρw3 , where k,m ∈ Z≥0,
t ∈ {1, 2} and w ∈ {0, 1}.

Proof. This theorem is essentially saying that all ρ-mutation sequences can be written in a
certain form. Fix a generic ρ-mutation sequence.

Since ρ1ρ2 = ρ2ρ1 = ρ23 = 1, we can assume that this sequence does not contain consecutive
ρ3’s and does not contain adjacent ρ1 and ρ2. Therefore, we can write it as ρα1

j1
ρ3ρ

α2
j2
ρ3 · · · ραN

jN

with possibly a ρ3 at the beginning and a ρ3 at the end, where ji ∈ {1, 2} and αi ∈ Z>0.
Notice that by Proposition 3.2, ρ21 and ρ22 will commute with everything. So whenever we

see two consecutive ρ1’s or consecutive ρ2’s, we can pull them to the front. As a result, we
can further simplify this sequence as ρnt ρ3ρ`1ρ3ρ`2 · · · ρ`s with possibly a ρ3 at the end, where
t, `1, . . . , `s ∈ {1, 2} and n ∈ Z≥0.

Proposition 3.2 gives ρ1ρ3ρ2 = ρ2ρ3ρ1, which means ρ1 and ρ2 “commute” with a ρ3 in
between. Therefore, in ρ3ρ`1ρ3ρ`2 · · · ρ`s (with possibly a ρ3 in the end), we are able to put
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all ρ1’s in front of ρ2’s. The sequence now has the form ρnt (ρ3ρ1)
r(ρ3ρ2)

s, with possibly a ρ3
in the end.

Take a sufficiently large M and write the sequence as ρnt ρ
M
2 ρ

M
1 (ρ3ρ1)

r(ρ3ρ2)
s. Since ρ21

commute with everything, we will take ρ21 in the term ρM1 to cancel all the ρ2’s in (ρ3ρ2)
s,

since M is sufficiently large. Finally, we naturally merge the remaining ρ1’s in the previous
ρM1 with ρnt , ρM2 and get ρkt (ρ3ρ1)

m with possibly a ρ3 in the end, with t ∈ {1, 2} and
m, k ∈ Z≥0, as desired. �

Remark 3.4. Figure 5 gives a way to visualize the ρ−mutation sequences as an analog
of alcove walk discussed in the dP3 case [LM15]. In Figure 5, each vertex corresponds to
a cluster with a model 1 quiver. We can arbitrarily select one as the initial cluster. A
horizontal step to the right is ρ1; a horizontal step to the left is ρ2; and a vertical step is ρ3.

Figure 5. Visualization of ρ−mutation sequences

4. Explicit Formulas for Cluster Variables

In this section, we will give explicit formulas for all cluster variables that can be generated
by toric mutations for the dP2 quiver.

Suppose that the cluster variables are initialized as {x1, x2, x3, x4, x5}.

Definition 4.1 (Laurent Polynomial for Somos-5 Sequence).
For n ≥ 6, define recursively

xn :=
xn−1xn−4 + xn−2xn−3

xn−5
.

For n ≤ 0, define recursively

xn :=
xn+1xn+4 + xn+2xn+3

xn+5

.

Remark 4.2. For each n ∈ Z, Definition 4.1 gives us a way to define xn as a rational
function in x1, x2, x3, x4, x5. Moreover, the equation

(1) xnxn+5 = xn+1xn+4 + xn+2xn+3

is satisfied for each n ∈ Z. Therefore, it is clear that if we assign 1 to x1, . . . , x5, then both
{xn}n=1,2,... and {x6−n}n=1,2,... give us the Somos-5 sequence.

Definition 4.3. Define the following constants

A :=
x1x5 + x23
x2x4

, B :=
x2x6 + x24
x3x5

(
=
x1x

2
4 + x2x3x4 + x22x5

x1x3x5

)
.
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Lemma 4.4. For each n ∈ Z,

A =
x2n−1x2n+3 + x22n+1

x2nx2n+2

, B =
x2nx2n+4 + x22n+2

x2n+1x2n+3

.

Proof. The lemma is correct when n = 1 by definition. By an inductive argument, it suffices
to show that, for each m ∈ Z,

xmxm+4 + x2m+2

xm+1xm+3

=
xm+2xm+6 + x2m+4

xm+3xm+5

.

According to Equation (1), we have

xm+2xm+6 + x2m+4

xm+3xm+5

=

xm+2
xm+2xm+5 + xm+3xm+4

xm+1

+ x2m+4

xm+3xm+5

=
x2m+2

xm+1xm+3

+
xm+4(xm+2xm+3 + xm+1xm+4)

xm+1xm+3xm+5

=
x2m+2

xm+1xm+3

+
xm+4xmxm+5

xm+1xm+3xm+5

=
xmxm+4 + x2m+2

xm+1xm+3

as desired. �

Theorem 4.5. Define ρk1 := ρ−k2 for k < 0. Define g(s, k) :=
⌊
s
2

⌋ ⌊
s+1
2

⌋
if k is even and

g(s, k) :=
⌊
s−1
2

⌋ ⌊
s
2

⌋
if k is odd. Then we have, for k ∈ Z and s ∈ Z≥0,

ρk1(ρ3ρ1)
s{x1, x2, x3, x4, x5} = {Ag(s+1,k)Bg(s+1,k+1)xk+s+1,

Ag(s,k)Bg(s,k+1)xk+s+2,

Ag(s+1,k)Bg(s+1,k+1)xk+s+3,

Ag(s,k)Bg(s,k+1)xk+s+4,

Ag(s+1,k)Bg(s+1,k+1)xk+s+5}.

Proof. We will divide our toric mutation sequence into two steps: ρk1 and (ρ3ρ1)
s. Then we

will use straightforward induction.

Step 1: ρk1{x1, x2, x3, x4, x5} = {xk+1, xk+2, xk+3, xk+4, xk+5} for k ∈ Z.
This is true for k = 0. Let us suppose that this holds for some k ≥ 0. Then

ρk+1
1 {x1, x2, x3, x4, x5} =ρ1{xk+1, xk+2, xk+3, xk+4, xk+5}

=(54321)
(
µ1{xk+1, xk+2, xk+3, xk+4, xk+5}

)
=(54321){xk+2xk+5 + xk+3xk+4

xk+1

, xk+2, xk+3, xk+4, xk+5}

=(54321){xk+6, xk+2, xk+3, xk+4, xk+5}
={xk+2, xk+3, xk+4, xk+5, xk+6}.
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By induction, this proves the claim for k ≥ 0. The proof for k ≤ 0 can be done the same
way.

Before doing the next step, we first show that if k + s is odd, then

g(s+ 1, k) =2g(s, k)− g(s− 1, k) + 1

g(s+ 1, k + 1) =2g(s, k + 1)− g(s− 1, k + 1).
(2)

If k is even, then s is odd and these two equations become⌊
s+ 1

2

⌋⌊
s+ 2

2

⌋
= 2

⌊s
2

⌋⌊s+ 1

2

⌋
−
⌊
s− 1

2

⌋ ⌊s
2

⌋
+ 1

⇔
(s+ 1

2

)2
= 2
(s− 1

2

)(s+ 1

2

)
−
(s− 1

2

)2
+ 1

and ⌊s
2

⌋⌊s+ 1

2

⌋
= 2

⌊
s− 1

2

⌋ ⌊s
2

⌋
−
⌊
s− 2

2

⌋⌊
s− 1

2

⌋
⇔
(s− 1

2

)(s+ 1

2

)
= 2
(s− 1

2

)2
−
(s− 3

2

)(s− 1

2

)
which are clearly correct.

If k is odd, then s is even and these two equations become⌊s
2

⌋⌊s+ 1

2

⌋
= 2

⌊
s− 1

2

⌋⌊s
2

⌋
−
⌊
s− 1

2

⌋⌊
s− 2

2

⌋
+ 1

⇔
(s

2

)2
= 2
(s

2

)(s− 2

2

)
−
(s− 2

2

)2
+ 1

and ⌊
s+ 1

2

⌋⌊
s+ 2

2

⌋
= 2

⌊s
2

⌋ ⌊s+ 1

2

⌋
−
⌊
s− 1

2

⌋⌊s
2

⌋
⇔
(s

2

)(s+ 2

2

)
= 2
(s

2

)2
−
(s− 2

2

)(s
2

)
which are clearly correct.

With the same argument, we can show that if k + s is even, then

g(s+ 1, k) =2g(s, k)− g(s− 1, k)

g(s+ 1, k + 1) =2g(s, k + 1)− g(s− 1, k + 1) + 1.
(3)

Step 2: Calculate ρk1(ρ3ρ1)
s{x1, x2, x3, x4, x5}.

From step 1, ρk1(ρ3ρ1)
s{x1, x2, x3, x4, x5} = (ρ3ρ1)

s{xk+1, xk+2, xk+3, xk+4, xk+5}.
Since g(0, k) = g(1, k) = 0, no matter the parity of k, when s = 0, the theorem holds.

Now assume that the theorem holds for some s− 1 ≥ 0. It suffices to show

(ρ3ρ1){Ag(s,k)Bg(s,k+1)xk+s, A
g(s−1,k)Bg(s−1,k+1)xk+s+1, A

g(s,k)Bg(s,k+1)xk+s+2,

Ag(s−1,k)Bg(s−1,k+1)xk+s+3, A
g(s,k)Bg(s,k+1)xk+s+4}

= {Ag(s+1,k)Bg(s+1,k+1)xk+s+1, A
g(s,k)Bg(s,k+1)xk+s+2, A

g(s+1,k)Bg(s+1,k+1)xk+s+3,

Ag(s,k)Bg(s,k+1)xk+s+4, A
g(s+1,k)Bg(s+1,k+1)xk+s+5}.
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Denote ρk1(ρ3ρ1)
s−1{x1, . . . , x5} as S, and let S[i] be the ith element of S. Recall that to

apply ρ3ρ1 to S, we will first do ρ3 = µ2 ◦ µ4 ◦ (24). As we mutate vertex 2, the new cluster
variable at vertex 2 is updated as

S[2]←S[1]S[5] + S[3]2

S[2]

=
A2g(s,k)B2g(s,k+1)(xk+sxk+s+4 + x2k+s+2)

Ag(s−1,k)Bg(s−1,k+1)xk+s+1

According to Lemma 4.4 and Equation (2), if k + s is odd, the above expression becomes

A2g(s,k)B2g(s,k+1)Axk+s+3

Ag(s−1,k)Bg(s−1,k+1)
= Ag(s+1,k)Bg(s+1,k+1)xk+s+3.

Similarly by Lemma 4.4 and Equation (3), if k + s is even, we have

A2g(s,k)B2g(s,k+1)Bxk+s+3

Ag(s−1,k)Bg(s−1,k+1)
= Ag(s+1,k)Bg(s+1,k+1)xk+s+3.

Then as we mutate vertex 4, with the same argument, we can show that

S[4]← Ag(s+1,k)Bg(s+1,k+1)xk+s+1.

So if we let S ′ = ρ3S, then S ′ and S differ only in the 2nd and the 4th coordinate.
Specifically,

S ′[2] = Ag(s+1,k)Bg(s+1,k+1)xk+s+1, S ′[4] = Ag(s+1,k)Bg(s+1,k+1)xk+s+3.

Finally, we mutate at vertex 1 in S ′ and get

S ′[1]←S ′[2]S ′[5] + S ′[3]S ′[4]

S ′[1]

=
Ag(s+1,k)+g(s,k)Bg(s+1,k+1)+g(s,k+1)(xk+s+1xk+s+4 + xk+s+2xk+s+3)

Ag(s,k)Bg(s,k+1)xk+s

=Ag(s+1,k)Bg(s+1,k+1)xk+s+5.

After applying a permutation (54321), we obtain the desired identity, which completes the
induction step. �

Corollary 4.6. All cluster variables that may appear through toric mutation sequences can
be written in the forms

An
2

Bn(n−1)x2m, An(n−1)Bn2

x2m−1 where m,n ∈ Z.

Proof. We will first explain that all cluster variables that appear from toric mutations can be
achieved by ρ−mutation sequences in the form of ρk1(ρ3ρ1)

s, for some k ∈ Z and s ∈ Z≥ 0.
According to Theorem 3.3, every toric mutation sequence from model 1 to model 1 can be
written as ρk1(ρ3ρ1)

s or ρk1(ρ3ρ1)
sρ3 for some k ∈ Z and s ∈ Z≥0. The proof for Theorem 4.5

shows that cluster variables of ρk1(ρ3ρ1)
sρ3{x1, . . . , x5} are included in ρk1(ρ3ρ1)

s{x1, . . . , x5}
and ρk1(ρ3ρ1)

s+1{x1, . . . , x5}. Now we consider any toric mutation sequence that takes the
original model 1 quiver to some model 2 quiver. According to Figure 4, this model 2 quiver
can reach two different model 1 quivers in one step of toric mutation. So the cluster variables
corresponding to this specific toric mutation sequence that ends on a model 2 quiver are
included in the cluster variables that are generated by these two model 1 quivers.

8



Then we can take a closer look at the cluster variables shown in Theorem 4.5. Since g(s, k)
depends on the value of s and the parity, but not the actual value, of k, it is easy to see that
all cluster variables that appear can be written as Ag(s,k)Bg(s,k+1)xk+s for some k ∈ Z and
s ∈ Z≥0. Conversely, for any k ∈ Z and s ∈ Z≥0, Ag(s,k)Bg(s,k+1)xk+s can be generated by a
toric mutation sequence according to Theorem 4.5. To look at this term closely, we consider
the following four cases according to the parity of s and k.

Case 1: s is even and k is even. Let s = 2n and k + s = 2m. We have n ≥ 0. Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s
2cb s+1

2 cBb
s−1
2 cb s2cx2m = An

2

Bn(n−1)x2m.

Case 2: s is odd and k is odd. Let s = 2n+ 1 and k + s = 2m. We have n ≥ 0. Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s−1
2 cb s2cBb

s
2cb s+1

2 cx2m = An
2

Bn(n+1)x2m.

Case 3: s is even and k is odd. Let s = 2n and k + s = 2m− 1. We have n ≥ 0. Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s−1
2 cb s2cBb

s
2cb s+1

2 cx2m−1 = An(n−1)Bn2

x2m−1.

Case 4: s is odd and k is even. let s = 2n+ 1 and k+ s = 2m− 1. We have n ≥ 0. Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s
2cb s+1

2 cBb
s−1
2 cb s2cx2m−1 = An(n+1)Bn2

x2m−1.

Cases 1 and 2 can be merged by letting n ∈ Z instead of just n ∈ Z≥0. Similarly cases
3 and 4 can be merged. Finally, we conclude that all cluster variables generated by toric
mutations can be written as either

An
2

Bn(n−1)x2m, An(n−1)Bn2

x2m−1 where m,n ∈ Z.

�

5. Subgraphs of the Brane Tiling

For our purpose, every graph we consider will be a subgraph of the dP2 brane tiling so it
is bipartite, planar and weighted. For such a graph G, which is bipartite, let V1 and V2 be
its corresponding vertex sets. For any vertex set V0 ⊂ V1 ∪V2, define G−V0 to be the graph
obtained by removing each vertex in V0, as well as the edges that are incident to it, from G.
These notations will be used for the rest of the paper.

We want to find a subgraph for each cluster variable that appears through toric mutations,
such that the subgraph’s weight equals the cluster variable. We will use the weighting scheme
utilized in [LM15], [LMNT14], [Spe07], [Zha], and etc.

Definition 5.1 (Weight of Subgraphs). We associate a weight 1
xixj

to each edge bordering

block labeled i and j. For a set of edges M , define its weight w(M) to be the product of
the weights of the edges. For a subgraph G of the brane tiling, let M(G) be the collection
of its perfect matchings where each perfect matching is represented as a set of edges. Then,
we define the weight of G as

w(G) =
∑

M∈M(G)

w(M).

In order to get recursive relations on the variables which correspond to subgraphs, we will
need lemmas that help us represent the weight of a large graph in terms of the weights of
smaller graphs. Below we state Kuo’s condensation theorems [Kuo06], [Kuo04].

9



Lemma 5.2 (Balanced Kuo Condensation; Theorem 5.1 in [Kuo04]). Let G be a weighted
planar bipartite graph discussed above with |V1| = |V2|. Assume that p1, p2, p3, p4 are four
vertices appearing in a cyclic order on a face of G with p1, p3 ∈ V1 and p2, p4 ∈ V2. Then

w(G)w(G− {p1, p2, p3, p4}) =w(G− {p1, p2})w(G− {p3, p4})
+ w(G− {p1, p4})w(G− {p2, p3}).

Lemma 5.3 (Unbalanced Kuo Condensation; Theorem 5.2 in [Kuo04]). Let G be a weighted
planar bipartite graph discussed above with |V1| = |V2|+ 1. Assume that p1, p2, p3, p4 are four
vertices appearing in a cyclic order on a face of G with p1, p2, p3 ∈ V1 and p4 ∈ V2. Then

w(G− {p2})w(G− {p1, p3, p4}) =w(G− {p1})w(G− {p2, p3, p4})
+ w(G− {p3})w(G− {p1, p2, p4}).

Lemma 5.4 (Non-alternating Kuo Condensation; Theorem 5.3 in [Kuo04]). Let G be a
weighted planar bipartite graph discussed above with |V1| = |V2|. Assume that p1, p2, p3, p4
are four vertices appearing in a cyclic order on a face of G with p1, p2 ∈ V1 and p3, p4 ∈ V2.
Then

w(G− {p1, p4})w(G− {p2, p3}) =w(G)w(G− {p1, p2, p3, p4})
+ w(G− {p1, p3})w(G− {p2, p4}).

6. Contours for Cluster Variables

In this section, we describe a method to get the subgraph corresponding to any cluster
variable obtained by toric mutations for the dP2 quiver. Specifically, we use 5-sided contours
to cut our brane tiling. We will define the rules to cut the subgraphs, and the formula of
the contours.

6.1. Graphs from Contours. Given a 5-tuple (a, b, c, d, e) ∈ Z5 with a+b = d and a+e = c
(see Figure 6 right for those relations), we consider a 5-sided contour whose side-lengths are
a, b, c, d, e in clockwise order, starting from the upper right corner. Figure 6 (left) shows the
fundamental shape of the contour, with each length being positive. In the case of negative
side-lengths, we will draw the corresponding side in the opposite direction.

See Figure 7 (left) for an example of a 5-tuple and its contour. We will abuse notation
and denote a geometric contour by its corresponding 5-tuple.

e

a

b

c

d

e

a

b

c

d

a

a

Figure 6. Left: 5-sided fundamental shape; Right: relations between side lengths.

Now we define the rule to get a subgraph from a contour.
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a=6
b=-4

c=2

d=2
e=-4
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2 3
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2

1

2 3

4
1

2 3

45

2

1

2 3

4
1

2

45

1

2 3

4
1

2 3

5

1 1 1

5

5

5

5

4

2

1

2 3

4

2

1

2 3

4
1

2 3

45

2

1

2 3

4
1

2

45

1

2 3

4
1

2 3

5

1 1 1

Figure 7. Example of a contour C = (6,−4, 2, 2,−4) and its subgraphs G(C)

(shaded region and darkened edges) and Ĝ(C) (shaded region).

Definition 6.1 (Rules to Get Subgraph).
The white vertex between edges c and d is called the special vertex.
Step 1: Given a 5-sided contour C = (a, b, c, d, e) ∈ Z5, we superimpose the contour on

the brane tiling T such that the vertex between side a and e sits on any white vertex of
degree 5, while each side follows.

Step 2: On each side of positive length, we keep the black points while removing the
white points; on each side of negative length, we keep the white points while removing the
black points; on each side of zero length, we remove the single white point if it is not the
special vertex.

Step 3: Each corner vertex will be white. If the two adjacent sides of a corner vertex are
both non-positive, we keep the vertex; otherwise, we remove it. As for the special vertex,
if a is even, we keep the special vertex; if a is odd, we remove the special vertex. Call the
graph that remains inside the contour G(C).

Step 4: In the resulting graph, we connect any vertex of valence 1 to its adjacent vertex.
Call the edge of this connection a forced matching. Then delete these two vertices from
the graph. Repeat this step until every vertex in the subgraph has valence at least 2.

Step 5: Call the resulting graph Ĝ(C) the subgraph of contour C. Often we may refer

to Ĝ(C) as either Ĝ(a, b, c, d, e) or simply Ĝ.

Definition 6.2. For any graph G, let Ĝ denote the graph obtained by removing all forced
matchings.

Remark 6.3. Note that our notation of graphs G and Ĝ for a contour is the opposite of the
notation in [LM15].

We have already defined the weighting w(G) of a graph G in Definition 5.1. To fully recover
the cluster variables from graphs, we define covering monomials for this specific brane tiling.
The covering monomial has a more general definition in [JMZ00] and [Jeo11].

Definition 6.4 (Covering Monomial). For this definition, we think of every block labeled
3 as two separate blocks labeled 3. Given a contour C, let aj be the number of blocks
labeled j enclosed in C. Let bj be the number of blocks labeled j adjacent to a forced
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matching in C. If the special vertex is kept (i.e. if a is even) and the contour passes
through the middle of a 3-block near the special vertex (see Figure 8), let c3 = 1. Otherwise,
let c3 = 0. The covering monomial of graph G(C), denoted as m(G(C)), is the product

xa11 x
a2
2 x

a3+c3
3 xa44 x

a5
5 . The covering monomial of graph Ĝ(C), denoted as m(Ĝ(C)), is the

product xa1−b11 xa2−b22 xa3−b3+c33 xa4−b44 xa5−b55 = m(G(C))

x
b1
1 x

b2
2 x

b3
3 x

b4
4 x

b5
5

.

2
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3

4

2

1

2
3

4
1

2
3

45

2
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2
3

4
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2
3

45

1 1 1

3

3 3

3 3

3

4
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5

3

4
1

2
3

45

2

5

3

4
1

2
3

45
1

2
3

45

2

5

3

4
1

2
3

45
1

2
3

45
1

2

45 5

4
1
45

1
45

1
45 5

3

3 3

3 3 3

3 3 3
3

3

3

3

3

Figure 8. Example of a subgraph Ĝ(5,−4, 1, 1,−4) and its covering mono-

mial m(Ĝ(5,−4, 1, 1,−4)). The gray and purple blocks are included in the
covering monomial.

Remark 6.5. Our definitions of weight and covering monomial remain unchanged if we
think of each six sided 3-block as two separate four sided blocks without an edge between
them. Each 3-block will be drawn as two separate 3-blocks if they appear on the boundary
of our contour for sake of visualizing weight and covering monomial.

For any graph G with an associated contour, denote the product of its weight and its
covering monomial as

c(G) := w(G)m(G).

6.2. Contours of Cluster Variables. By Corollary 4.5, we have that all the cluster vari-
ables are of the form An

2
Bn2−nx2k or An

2+nBn2
x2k−1 where n, k ∈ Z. Now we state the main

result of this section that gives a formula of the contours of these two families.

Theorem 6.6. For k ≥ 2, we associate the following contours to the cluster variables such

that if C is the contour associated with a cluster variable, then c(Ĝ(C)) equals the Laurent
polynomial of that cluster variable.

An
2

Bn2−nx2k = c

(
Ĝ
(
k − 2 + n,−

⌈
k − 4 + 5n

2

⌉
, 2n− 1,

⌊
k − 3n

2

⌋
, 1 + n− k

))
,

An
2+nBn2

x2k−1 = c

(
Ĝ
(
k − 2 + n,−

⌈
k − 2 + 5n

2

⌉
, 2n,

⌊
k − 2− 3n

2

⌋
, 2 + n− k

))
.

Notice that when k ≤ 1, we can reflect the subgraph of ApBqx6−2k (p, q ∈ Z) along x3,
which means we replace x2 with x4 and x1 with x5 to get the subgraph of ApBqx2k since
block 2 and block 4, and block 1 and block 5 are symmetric with respect to x3 in the brane
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tiling and A, B are also fixed if we interchange x2 with x4 or/and x1 with x5. Therefore we
only need to consider the situation where k ≥ 2.

Before proving this result, we first look at the six possible shapes of the contours based
on the relationship between n and k, as is shown in Figure 9.

k=-5n+4

k=-n+2

k=2

k=n+1

k=3n
n=1/2

(+,-,+,+,-)(+,-,+,+,-)
(+,+,-,+,-)

(+,-,-,+,-)

(+,-,+,-,+)

(+,-,+,-,-)

(-,+,-,+,-)

Figure 9. Possible shapes of 5-sided contour

We will use the entire next section to prove the main theorem.

7. Proof of Main Theorem (Theorem 6.6)

7.1. Overview of induction procedure. We use Kuo’s condensation to inductively prove
that multiplying the weight and covering monomial of these contours yields the Laurent
polynomials of our cluster variables. First we show that the weights satisfy the desired
recurrences. Then we show that for any form of recurrence, the covering monomials will be
correct in the sense that multiplying the weight and covering monomials of our subgraphs
gives the Laurent polynomial. We abuse notation by saying a graph G equals a cluster
variable when we mean the weight of G, w(G), will give us the cluster variable’s Laurent
polynomial with the appropriate covering monomial.

The base case is n = 0, which is proved in Section 7.3. Notice that when n = 0, our
formula for the contour in the main theorem contains two families: {x2k−1}k≥2 and {x2k}k≥2.
So essentially, there are two different cases here.

After proving the base case when n = 0, we split our way to consider the families of
variables with n > 0 and families of variables with n < 0 separately.

For n ≥ 1, by induction hypothesis, assume that we already have the contours for variables
Am

2
Bm(m−1)x2k and Am(m+1)Bm2

x2k−1 for all k ≥ 2 and 0 ≤ m ≤ n−1. Then for each k ≥ 2,
13



consider the following identity (recurrence):

(An
2

Bn(n−1)x2k)(A
(n−1)2B(n−1)(n−2)x2k+2)

=(A(n−1)nB(n−1)2x2k−1)(A
(n−1)nB(n−1)2x2k+3) + (A(n−1)nB(n−1)2x2k+1)

2.

It is clear that among all the five terms appeared above, An
2
Bn(n−1)x2k is the only term that

we do not have already. Therefore, it suffices to find some graph G and points p1, p2, p3, p4
and use some version of Kuo’s condensation theorem on it to prove that this term actually
equals the weight of the subgraph that we described in the main theorem, correspondingly.
Note that the graph G we use and the points p1, p2, p3, p4 we choose depend on some relations
between n and k. Now that we have the terms {An2

Bn(n−1)x2k−1} for k ≥ 2, consider the
following identity (recurrence) for each k ≥ 3:

(An(n+1)Bn2

x2k−1)(A
(n−1)2+(n−1)B(n−1)2x2k+1)

=(An
2

Bn(n−1)x2k−2)(A
n2

Bn(n−1)x2k+2) + (An
2

Bn(n−1)x2k)
2.

Similarly, there is only one term An(n+1)Bn2
x2k−1 that we do not currently have. And by some

Kuo’s condensation theorem, we will get the desired result. One thing to notice here is that
the above recurrence cannot be applied to k = 2 since we do not have the term An

2
Bn(n−1)x2

in our theorem. To solve this problem and get the contour formula for An(n+1)Bn2
x3, we use

the following recurrence:

(An(n+1)Bn2

x3)(A
n2

Bn(n−1)x8)

=(An(n+1)Bn2

x5)(A
n2

Bn(n−1)x6) + (An(n+1)Bn2

x7)(A
n2

Bn(n−1)x4).

Once this step is done, our inductive step is finished.
For n ≤ −1, the argument is very similar. By induction hypothesis, assume that we already

have the contours for variables Am
2
Bm(m−1)x2k and Am(m+1)Bm2

x2k−1 for all n+ 1 ≤ m ≤ 0.
The recurrence

(An
2

Bn(n−1)x2k)(A
(n+1)2Bn(n+1)x2k+2)

=(An(n+1)Bn2

x2k−1)(A
n(n+1)Bn2

x2k+3) + (An(n+1)Bn2

x2k+1)
2

will give us contours for all variables An
2
Bn(n−1)x2k for all k ≥ 2. After that, the recurrence

(An(n+1)Bn2

x2k−1)(A
(n+1)2+(n+1)B(n+1)2x2k+1)

=(A(n+1)2B(n+1)nx2k−2)(A
(n+1)2B(n+1)nx2k+2) + (A(n+1)2B(n+1)nx2k)

2

will give us contours for all variables An(n+1)Bn2
x2k−1 for all k ≥ 3. For the missing variables

in the form of An(n+1)Bn2
x3, we use the recurrence

(An(n+1)Bn2

x3)(A
(n+1)2Bn(n+1)x8)

=(An(n+1)Bn2

x5)(A
(n+1)2Bn(n+1)x6) + (An(n+1)Bn2

x7)(A
(n+1)2Bn(n+1)x4).

This completes the inductive step.
Section 7.3 will prove the base case (n = 0) and Section 7.4 will prove one case of the

inductive step. Notice that for the inductive step, we have 28 cases in total and we will not
present explicit proofs for all cases. The cases are divided, generally speaking, by whether
side lengths of the contour are greater or smaller than 0 and by some parity conditions on n
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and k. Section 7.2 will give a summary of the techniques used to prove the remaining cases.
All of them can be proved in exactly the same format, and in Appendix 9, we provide the
necessary data for readers to verify the correctness of these remaining cases.

7.2. Overview of Proof Techniques. We have different cases to prove depending on the
relations between n and k since different relations will lead to different shapes of our contour.
In this section, we will introduce the general format while the details are given in Appendix 9.

Step 1. Consider a contour C = (a, b, c, d, e) with the special vertex kept or removed, and 4
points p1, p2, p3, p4 inside the contour. Depending on the whether the graph G(C) is balanced
or not and depending on the colors and positions of p1, p2, p3, p4, we will use a particular
version of Kuo’s condensation theorems which will always be of the form:

w (G(C)− S1)w(G(C)− S2) = w (G(C)− S3)w(G(C)− S4) + w (G(C)− S5)w(G(C)− S6),

where each Si is a subset of {p1, p2, p3, p4}. Notice that in this step, G(C)− Si may include
many forced matchings. Now we multiply both sides of the equation by m(G(C))2, the square
of the covering monomial of the graph G. Each term in the equation is then of the form
m(G(C))w(G(C)− Si).

Step 2. For each i = 1, . . . , 6, we find a contour Ci inside C such that ̂G(C)− Si = Ĝ(Ci).

Recall that Ĝ is graph G with all forced matchings removed. We find Ci by first describing
points p1, p2, p3, p4 and how removing each point separately will change the contour C. Then
we can add these effects together to get the total effect of removing Si. Notice that the
additivity of such effects is not trivial in general, but it is easy to verify for each of our cases.

This is the core step of our proof. The effects of removing each point pi from Ĝ(C) will
be stated and justified through diagrams.

Step 3. Now we want to relate m(G(C))w(G(C) − Si) to c(Ĝ(Ci)). Consider G(Ci). By
definition, we know that G(Ci) and G(C) − Si only differ by a set of forced matchings of
G(C) − Si inside contour C and outside contour Ci. Meanwhile, m(G(C)) and m(G(Ci))
differ by a factor of the product of all the blocks (the product of variables corresponding
to the blocks) inside C but outside Ci. As each block can be in only one forced matching
(otherwise the matching would not be forced), the quotient

m(G(C))w(G(C)− Si)
m(G(Ci))w(G(Ci))

is the product of all the blocks inside C and outside Ci that are not adjacent to any forced
matchings inside C and outside Ci. Let these blocks form set Ti. We are also using the
notation T (Si) with Ti interchangeably. For each case, we will explicitly provide T1, . . . , T6
for a choice of points p1, p2, p3, p4 and check that

(4)

(∏
j∈T1

xj

)(∏
j∈T2

xj

)
=

(∏
j∈T3

xj

)(∏
j∈T4

xj

)
=

(∏
j∈T5

xj

)(∏
j∈T6

xj

)
.

Also, notice that

m(G(Ci))w(G(Ci)) = m(Ĝ(Ci))w(Ĝ(Ci)) =: c(Ĝ(Ci))
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since by definition, both m(G(Ci))/m(Ĝ(Ci)) and w(Ĝ(Ci))/w(G(Ci)) equals the product of
blocks adjacent to the forced matchings of G(Ci). Combining these arguments, we conclude
that

c(G1)c(G2) = c(G3)c(G4) + c(G5)c(G6)

where Gi = G(Ci).
In this step, we are essentially checking that the covering monomials match up with the

weights used in Kuo’s condensation theorems to give the correct Laurent polynomials.

Step 4. Using the induction hypothesis, we can identify five of the expressions c(Gi) as
the Laurent polynomials of cluster variables. Therefore, the sixth expression is the Laurent
polynomial of the next cluster variable in the sequence.

We provide the details of these steps in Section 7.3 and Section 7.4.

Definition 7.1 (Notation). We establish the following notations before presenting the proof.
Let (a, b, c, d, e)−K be the contour of side lengths a, b, c, d, e with the special vertex kept

and (a, b, c, d, e)−R be the contour of side lengths a, b, c, d, e with the special vertex removed.
We will write G(a, b, c, d, e, )−K (resp. −R) to denote the subgraph obtained from contour

(a, b, c, d, e)−K (resp. −R). Similarly for Ĝ.
We say that point pi is a white (or black) point on edge a (or b, c, d, e) if it is one of the

white (or black) points on the boundary of Ĝ(C) facing edge a, where C is some contour.
This notation follows from [LM15] and it does not necessarily mean that pi is on edge a (or
b, c, d, e) of the contour.

7.3. Base case (n = 0). When n = 0, the cluster variables An
2
Bn2−nx2k and An

2+nBn2
x2k−1

where n ∈ Z, k ∈ Z≥0 become the terms {xm}m∈Z of the Somos-5 sequence.
For 1 ≤ i ≤ 5, let Ci be the contour defined in Theorem 6.6 for the initial cluster variable

xi. We verify the weights and covering monomials of these contours. As shown in Figure 10,
the subgraphs for these cluster variables are empty so they have weight 1. Recall that by
definition, the covering monomials for C3 and C4 have an additional x3 term. We can see

that c(Ĝ(Ci)) = xi for 1 ≤ i ≤ 5.

3 2

1

3 2

1

3 3 2
3

1
4 5

3 3

4 5

Figure 10. For 1 ≤ i ≤ 5, we give contours Ci for terms xi of the Somos-5
sequence. The purple blocks are what remain after multiplying the weights
and covering monomials of these graphs.

Now assume the contours for xi for all i ≤ m− 1 give the correct Laurent polynomials for
our cluster variables. We show the contour defined in Theorem 6.6 for xm is correct.

Case 1: m = 2k − 1. We take the following contour

C = (a, b, c, d, e) =

(
k − 2,−

⌈
k − 2

2

⌉
, 0,

⌊
k − 2

2

⌋
, 2− k

)
.
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Since k > 3, we will have a > 0, b < 0, d ≥ 0 and e < 0.

Let G = Ĝ(C). We will then follow the steps shown in Section 7.2.

Step 1. We apply balanced Kuo’s condensation theorem (Lemma 5.2) and write down

w(G(C))w(G(C)− {p1, p2, p3, p4}) =w(G(C)− {p1, p2})w(G(C)− {p3, p4})
+ w(G(C)− {p1, p4})w(G(C)− {p2, p3}).

where we let S1 = ∅, S2 = {p1, p2, p3, p4}, S3 = {p1, p2}, S4 = {p3, p4}, S5 = {p1, p4},
S6 = {p2, p3}. Then we multiply both sides by m(G(C))2.

Step 2. We define the black points p1, p3 and white points p2, p4 as follows.

• Let p1 be any black point on edge e.
• Let p2 be any white point on edge a.
• Let p3 be any black point on edge b.
• Let p4 be a white point near edge c defined as follows:

– If k ≡ 0 (mod 2), then a ≡ 0 (mod 2) so the special vertex is kept. Let p4 be
the kept special white point between edges c and d.

– If k ≡ 1 (mod 2), then a 6≡ 0 (mod 2) so the special vertex is removed. Let p4
be the other white point on the 5-block which contains the removed white point
between edges c and d.

We also give the effects of removing each point separately:

• The effect of removing p1 is (a, b, c, d, e) → (a − 1, b, c, d − 1, e + 1). We may also
write this succinctly as −{p1} = (−1, 0, 0,−1, 1). This effect is equivalent to deleting
a trapezoid along edge e of the original contour.
• The effect of removing p2 is (a, b, c, d, e) → (a − 1, b + 1, c, d, e + 1). It is equivalent

to deleting a trapezoid along edge a.
• The effect of removing p3 is (a, b, c, d, e)→ (a− 1, b+ 1, c− 1, d, e).
• The effect of removing p4 is (a, b, c, d, e)−K → (a, b, c, d, e)−R and (a, b, c, d, e)−R→

(a, b+ 1, c, d+ 1, e) = K depending on the parity of k.

The position of each point and the effect of removing each point can be seen in Figure 11
(special point kept) and Figure 12 (special point removed). In the figures, we use big red
dots to indicate point pi and red edges to indicate forced matchings. The shadowed region
is what’s removed from the original contour after deleting the corresponding point. We also
use black letters K/R to indicate whether the special point is kept or removed in the original
contour and use blue letters for the new contour.
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3 2 3 2 3 2 3 2

4
1
45

1
45

1
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1
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1

5

4
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2
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p
3

2

K→

p4

R

Figure 11. Effects of removing points for x2k−1, k even.
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4 p4 R
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Figure 12. Effects of removing points for x2k−1, k odd.

Below, we explicitly write down the contour Ci satisfying ̂G(C)− Si = Ĝ(Ci) for each Si,
with the corresponding cluster variable, followed from induction hypothesis. Here, we omit
the details of doing explicit calculation of adding and subtracting 1’s.
Subcase 1: k is even, i.e. m ≡ 3 (mod 4). We have C = (a, b, c, d, e)−K.

̂G− {p1, p2, p3, p4} −K = Ĝ(a− 3, b+ 2, 0− 1, d− 1, e+ 2)−R

= Ĝ(C2), graph of x2k−6

̂G− {p1, p2} −K = Ĝ(a− 2, b+ 1, 0, d− 1, e+ 2)−K

= Ĝ(C3), graph of x2k−5

̂G− {p3, p4} −K = Ĝ(a− 1, b+ 1, c− 1, d, e)−R

= Ĝ(C4), graph of x2k−2

̂G− {p1, p4} −K = Ĝ(a− 1, b, c, d− 1, e+ 1)−R

= Ĝ(C5), graph of x2k−3

̂G− {p2, p3} −K = Ĝ(a− 2, b+ 2, 0− 1, d, e+ 1)−K

= Ĝ(C6), graph of x2k−4

Subcase 2: k is odd, i.e. m ≡ 1 (mod 4). We have C = (a, b, c, d, e)−R.

̂G− {p1, p2, p3, p4} −R = Ĝ(a− 3, b+ 3, c− 1, d, e+ 2)−K

= Ĝ(C2), graph of x2k−6

̂G− {p1, p2} −R = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−R

= Ĝ(C3), graph of x2k−5

̂G− {p3, p4} −R = Ĝ(a− 1, b+ 2, c− 1, d+ 1, e)−K

= Ĝ(C4), graph of x2k−2

̂G− {p1, p4} −R = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K

= Ĝ(C5), graph of x2k−3

̂G− {p2, p3} −R = Ĝ(a− 2, b+ 2, c− 1, d, e+ 1)−R

= Ĝ(C6), graph of x2k−4
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By the Somos-5 recurrence x2k−1x2k−6 = x2k−5x2k−2 + x2k−3x2k−4 we conclude that G =

Ĝ(C1) is the graph of x2k−1 (after verifying step 3).

Step 3. Now that we have all of the contours Ci, we specify the sets Ti (defined in Section 7.2)
for a specific choice of p1, p2, p3, p4.
G−K (Special vertex kept): let p1 be the rightmost (B) point on edge e (not in a forced

matching), p2 be the topmost (W) point on edge a (not in a forced matching), p3 be the
bottommost (B) point on edge b (in a forced matching), p4 be the special vertex. See
Figure 13.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x3x3x4, T ({p1, p2}) = x3x4,

T ({p3, p4}) = x3x3, T ({p2, p3}) = x3x3, T ({p1, p4}) = x3x4.
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Figure 13. Covering monomial for x2k−1, k even. Left: T (∅) and
T ({p1, p2, p3, p4}). Middle: T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3})
and T ({p1, p4}).

G − R (Special vertex removed): let p1 be the rightmost (B) point on edge e (not in a
forced matching), p2 be the topmost (W) point on edge a (not in a forced matching), p3 be
the bottommost (B) point on edge b (in a forced matching), p4 be the other white vertex on
the 5-block below the special vertex. See Figure 14.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x3x3x4, T ({p1, p2}) = x3x4,

T ({p3, p4}) = x3x5, T ({p2, p3}) = x3x3, T ({p1, p4}) = x4x4.

We see that equation 4 is satisfied:(∏
j∈T1

xj

)(∏
j∈T2

xj

)
=

(∏
j∈T3

xj

)(∏
j∈T4

xj

)
=

(∏
j∈T5

xj

)(∏
j∈T6

xj

)
.

Finally, we conclude that c(Ĝ(C1)) is the Laurent polynomial of x2k−1, as desired.

Case 2: m = 2k. Consider the following contour

C = (a, b, c, d, e) =

(
k − 2,−

⌈
k − 4

2

⌉
,−1,

⌊
k

2

⌋
, 1− k

)
.
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Figure 14. Covering monomial for x2k−1, k even. Left: T (∅) and
T ({p1, p2, p3, p4}). Middle: T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3})
and T ({p1, p4}).

Since k ≥ 3, we have a > 0, b ≥ 0, d > 0 and e < 0. The proof is similar to the first case.
In Step 1 we again use balanced Kuo’s condensation on G(C) and use the same notation for
each Si. In Step 2 we define the four points as follows.

• Let p1 be any white point on edge a.
• Let p2 be any black point on edge e.
• Let p3 be any white point on edge d.
• Let p4 be a black point near edge c on edge d defined as follows:

– If k ≡ 0 (mod 2), then a ≡ 0 (mod 2) so the special point is kept. Let p4 be
the black point on the edge between the 4-block and 5-block above the special
point.

– If k ≡ 1 (mod 2), then a 6≡ 0 (mod 2) so the special point is removed. Let p4 be
the lowest black point on edge d.

We also give the effects of removing each point separately:

• The effect of removing p1 is (a, b, c, d, e)→ (a− 1, b+ 1, c, d, e+ 1).
• The effect of removing p2 is (a, b, c, d, e)→ (a− 1, b, c, d− 1, e+ 1).
• The effect of removing p3 is (a, b, c, d, e)−K → (a, b− 1, c+ 1, d− 1, e+ 1)−R and

(a, b, c, d, e)−R→ (a, b, c+ 1, d, e+ 1)−K depending on the parity of k.
• The effect of removing p4 is (a, b, c, d, e) − K → (a, b − 1, c, d − 1, e) − R and

(a, b, c, d, e)−R→ (a, b, c, d, e)−K depending on the parity of k.

The position of each point and the effect of removing each point is shown in Figure 15
(special point kept) and Figure 16 (special point removed).
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Figure 15. Effects of removing points for x2k, k even.

Below, we explicitly write down the contour Ci satisfying ̂G(C)− Si = Ĝ(Ci) for each Si,
with the corresponding cluster variable (after verifying step 3).
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Figure 16. Effects of removing points for x2k, k odd.

Subcase 1: k is even, i.e. m ≡ 0 (mod 4). We have C = (a, b, c, d, e)−K.

̂G− {p1, p2, p3, p4} −K = Ĝ(a− 2, b, c+ 1, d− 2, e+ 3)−K

= Ĝ(C2), graph of x2k−5

̂G− {p1, p2} −K = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−K

= Ĝ(C3), graph of x2k−4

̂G− {p3, p4} −K = Ĝ(a, b− 1, c+ 1, d− 1, e+ 1)−K

= Ĝ(C4), graph of x2k−1

̂G− {p1, p4} −K = Ĝ(a− 1, b− 1, c+ 1, d− 2, e+ 2)−R

= Ĝ(C5), graph of x2k−3

̂G− {p2, p3} −K = Ĝ(a− 1, b, c, d− 1, e+ 1)−R

= Ĝ(C6), graph of x2k−2

Subcase 2: k is odd, i.e. m ≡ 2 (mod 4). We have C = (a, b, c, d, e)−R.

̂G− {p1, p2, p3, p4} −R = Ĝ(a− 2, b, c+ 1, d− 2, e+ 3)−R

= Ĝ(C2), graph of x2k−5

̂G− {p1, p2} −R = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−R

= Ĝ(C3), graph of x2k−4

̂G− {p3, p4} −R = Ĝ(a, b− 1, c+ 1, d− 1, e+ 1)−R

= Ĝ(C4), graph of x2k−1

̂G− {p1, p4} −R = Ĝ(a− 1, b, c+ 1, d− 1, e+ 2)−K

= Ĝ(C5), graph of x2k−3

̂G− {p2, p3} −R = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K

= Ĝ(C6), graph of x2k−2

By the Somos-5 recurrence x2kx2k−5 = x2k−4x2k−1 + x2k−2x2k−3 we conclude that Ĝ(C1) is
the graph of x2k.

In Step 3 we specify the sets Ti and verify equation 4.
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G − K (Special vertex kept): let p1 be the bottommost (W) point on edge a (not in a
forced matching), p2 be the leftmost (B) point on edge e (not in a forced matching), p3 be
the topmost (W) point on edge d, p4 be the (B) point on the edge between the 4-block and
5-block above the special vertex. See Figure 18.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x4x4x5, T ({p1, p2}) = x3x5,

T ({p3, p4}) = x4x4, T ({p2, p3}) = x4x5, T ({p1, p4}) = x3x4.
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Figure 17. Covering monomial for x2k, k even. Left: T (∅) and
T ({p1, p2, p3, p4}). Middle: T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3})
and T ({p1, p4}).

G−R (Special vertex removed): let p1 be the bottommost (W) point on edge a (not in a
forced matching), p2 be the leftmost (B) point on edge e (not in a forced matching), p3 be
the topmost (W) point on edge d, p4 be the (B) point on the edge between the 2-block and
3-block above the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x2x3x4x5, T ({p1, p2}) = x3x5,

T ({p3, p4}) = x2x4, T ({p2, p3}) = x4x5, T ({p1, p4}) = x2x3.
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Figure 18. Covering monomial for x2k, k odd. Left: T (∅) and
T ({p1, p2, p3, p4}). Middle: T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3})
and T ({p1, p4}).

22



7.4. Inductive Step for An
2
Bn(n−1)x2k, n ≥ 1, k ≥ 3n− 1.

As we have explained in Section 7.1, we will only show the inductive step for the case
An

2
Bn(n−1)x2k. All of the other cases will be proved in the same way and we provide the

data in Appendix 9 for doing so.
Assume the contours of Am

2
Bm(m−1)x2k and Am(m+1)Bm2

x2k+1, as defined in Theorem 6.6,
give the correct cluster variables for any m ≤ n− 1 and k ≥ 3n− 1. Now we want to show
that the contour of Am

2
Bm(m−1)x2k is correct for any k ≥ 3n− 1 and m = n.

The recurrence we will use is

(An
2

Bn(n−1)x2k)(A
(n−1)2B(n−1)(n−2)x2k+2)(5)

=(A(n−1)nB(n−1)2x2k−1)(A
(n−1)nB(n−1)2x2k+3) + (A(n−1)nB(n−1)2x2k+1)

2(6)

where by the induction hypothesis, we have the correctness of the contours for cluster vari-
ablesA(n−1)2B(n−1)(n−2)x2k+2, A

(n−1)nB(n−1)2x2k−1, A
(n−1)nB(n−1)2x2k+1 andA(n−1)nB(n−1)2x2k+3.

For this case, let contour C be the following:

C = (a, b, c, d, e) =

(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
, 2n− 2,

⌊
k − 3n+ 3

2

⌋
, n− k − 1

)
.

Since k ≥ 3n − 1, we have a > 0, b < 0, c ≥ 0, d > 0, e < 0. Again, we will use the steps

described in Section 7.2. Let G = Ĝ(C).

Step 1: We use non-alternating Kuo Condensation theorem (Lemma 5.4) and write down

w(G− {p1, p2})w(G− {p3, p4}) =w(G)w(G− {p1, p2, p3, p4})
+ w(G− {p1, p3})w(G− {p2, p4}).

where we let S1 = {p1, p2}, S2 = {p3, p4}, S3 = ∅, S4 = {p1, p2, p3, p4}, S5 = {p1, p3},
S6 = {p2, p4}. Then we multiply both sides by m(G(C))2.

Step 2. We define the four points p1, p2, p3, p4 on edge d, e, b, c respectively, where p1, p4 are
white, while p2, p3 are black. We list the effect of each removal as follows.

−{p1} =

{
(0,−1, 1,−1, 1)−R, if G = (a, b, c, d, e)−K
(0, 0, 1, 0, 1)−K, if G = (a, b, c, d, e)−R

−{p2} = (−1, 0, 0,−1, 1)

−{p3} = (−1, 1,−1, 0, 0)

−{p4} =

{
(0, 0, 0, 0, 0)−R, if G = (a, b, c, d, e)−K
(0, 1, 0, 1, 0)−K, if G = (a, b, c, d, e)−R

The position of these points and the effects of removing each point, when the special point
is kept, is shown in Figure 19 (p1) and Figure 20 (p2, p3, p4). Notice that after we remove
p1, as shown in Figure 19, some area gets deleted (grey) and some area gets added (pink).
The position of these points and effects of removing each point, when the special point ire
removed, is shown in Figure 21.

Below, we explicitly write down the contour Ci satisfying ̂G(C)− Si = Ĝ(Ci) for each Si,
with the corresponding cluster variable, followed from induction hypothesis.
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Figure 19. Effect of removing p1 for An
2
Bn(n−1) with n ≥ 1, k ≥ 3n− 1 and

the special point kept. Left: before removal. Right: after removal.
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Figure 20. Effects of removing p2, p3, p4 for An
2
Bn(n−1) with n ≥ 1, k ≥

3n− 1 and the special point kept.
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Figure 21. Effects of removing pi’s for An
2
Bn(n−1) with n ≥ 1, k ≥ 3n − 1

and the special point removed.

Case 1: n+ k is odd. Thus, the special vertex is kept, and C = (a, b, c, d, e)−K.

̂G− {p1, p2} = Ĝ(a− 1, b− 1, c+ 1, d− 2, e+ 2)−R

= Ĝ(C1)

̂G− {p3, p4} = Ĝ(a− 1, b+ 1, c− 1, d, e)−R

= Ĝ(C2), graph of A(n−1)2B(n−1)(n−2)x2k+2

Ĝ = Ĝ(a, b, c, d, e)−K

= Ĝ(C3), graph of An(n−1)B(n−1)2x2k+3

̂G− {p1, p2, p3, p4} = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−K

= Ĝ(C4), graph of An
2−nB(n−1)2x2k−1
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̂G− {p1, p3} = Ĝ(a− 1, b, c, d− 1, e+ 1)−R

= Ĝ(C5), graph of An
2−nB(n−1)2x2k+1

̂G− {p2, p4} = Ĝ(a− 1, b, c, d− 1, e+ 1)−R

= Ĝ(C6), graph of An
2−nB(n−1)2x2k+1

Case 2: n+ k is even. Thus, the special vertex is removed, and C = (a, b, c, d, e)−R.

̂G− {p1, p2} = Ĝ(a− 1, b, c+ 1, d− 1, e+ 2)−K

= Ĝ(C1)

̂G− {p3, p4} = Ĝ(a− 1, b+ 2, c− 1, d+ 1, e)−K

= Ĝ(C2), graph of A(n−1)2B(n−1)(n−2)x2k+2

Ĝ = Ĝ(a, b, c, d, e)−R

= Ĝ(C3), graph of An(n−1)B(n−1)2x2k+3

̂G− {p1, p2, p3, p4} = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−R

= Ĝ(C4), graph of An
2−nB(n−1)2x2k−1

̂G− {p1, p3} = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K

= Ĝ(C5), graph of An
2−nB(n−1)2x2k+1

̂G− {p2, p4} = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K

= Ĝ(C6), graph of An
2−nB(n−1)2x2k+1

By recurrence 5, we conclude that Ĝ(C1) is the graph corresponding to An
2
Bn2−nx2k.

Step 3. In this step we specify the sets Ti for a choice of p1, p2, p3, p4 and verify equation 4.
In each of the diagrams in Figures 22 and 23, p1, p2, p3, p4 are the red points. Each figure
shows the new contours Ci and Ci+1 in green and in blue.

There is a bijection between perfect matchings of G(Ci) and perfect matchings of G(C)−Si.
Let M be any perfect matching of G(Ci). Essentially, the weight of the blocks in Ti is
exactly what we need to multiply m(G(Ci))w(M) by so that it corresponds to a term of
m(G(C))w(G(C)− Si).

We explain how Figure 22(Left) allows us to determine that the weight of T1 is x3x3x4x4.
Let us start with the green contour C1. A perfect matching of G(C1) corresponds to a perfect
matching of G − {p1, p2} if we remove the red matchings and add in the green matchings.
Algebraically, this corresponds to multiplying by the weight of these matchings. The covering
monomial of G(C1) must be multiplied by the weight of all blocks that are outside the green
contour C1 and within the largest contour C. Note that the weight of these blocks are
divided out by many of the green matchings and only the two 4-blocks (green) along edge e
and the single 3-block (cyan) near the special vertex remain.
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In this particular case, the contour C1 is not completely contained in C, so we must also
divide by the weight of all blocks within C1 and outside C. Again, note that these weight of
these blocks divide out all but one of the red matchings. So overall, the weight of T1 includes
x3x4x4 from the covering monomial of C, part of the weight 1

x3x4x5
of two green matchings

(shaded), and the weight x4x5 of the single red matching within C1 (green). So the weight
of T1 is x4x4. Similarly, we find the weight of T2 is x3x3 since we simply need to multiply
by the weight of blocks outside C2 within C and the only blocks that are not divided out
by forced matchings are the 3-block near the special vertex (cyan) and the 3-block near p3
(blue).

Case 1: Special vertex kept. See Figure 22.
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Figure 22. Covering monomial for the case of An
2
Bn(n−1) with n ≥ 1, k ≥

3n− 1 and the special point kept. Left: T ({p1, p2}) and T ({p3, p4}). Middle:
T ({p1, p2, p3, p4}) and T (∅). Right: T ({p1, p3}) and T ({p2, p4}).

For this choice of p1, p2, p3, p4, we have∏
j∈T1

xj = x3x4x4
1

x3x4x5
x4x5 = x4x4,

∏
j∈T2

xj = x3x3,∏
j∈T3

xj = 1,
∏
j∈T4

xj = x3x3x4x4,

∏
j∈T5

xj = x3x3x4
1

x3x4x5
x4x5 = x3x4,

∏
j∈T6

xj = x3x4.

Case 2: Special vertex removed. See Figure 23.
For this choice of p1, p2, p3, p4, we have∏

j∈T1

xj = x4x4,
∏
j∈T2

xj = x1x3,∏
j∈T3

xj = 1,
∏
j∈T4

xj = x3x3x4
x3 · x1x3x4x5
x3x3x4x5

= x1x3x3x4,
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Figure 23. Covering monomial for the case of An
2
Bn(n−1) with n ≥ 1, k ≥

3n − 1 and the special point removed. Left: T ({p1, p2}) and T ({p3, p4}).
Middle: T ({p1, p2, p3, p4}) and T (∅). Right: T ({p1, p3}) and T ({p2, p4}).∏

j∈T5

xj = x3x4,
∏
j∈T6

xj = x1x4.

We see that equation 4 holds in both cases.

Remark 7.2. As long as we fix the side and the color of a point pi, the effect of removing
pi will be the same regardless of the shape of the contour, i.e. regardless of the signs of the
other side lengths. For instance, as shown in Figure 24, the effects of removing p4 in shapes
(+,−,+,+,−) and (+,−,+,−,+) are the same.

R

K
2 3 2 3

1
4

1
45

2

1
45 5

p
4

2 3 2

1
4

1
45 5

p4
K

R

Figure 24. The effects of removing p4 in shape (+,−,+,−,+) and (+,−,+,+,−).

Remark 7.3. The subgraphs in dP2 quiver can look significantly different from those in
dP3 quiver. When side c is long, we will have a lot of forced edges, which results in different
shapes. See Figure 25.

8. Comparison with the Octahedron Recurrence

David Speyer has given another combinatorial interpretation for the Laurent polynomial
of the Somos-5 sequence in terms of the weight of some subgraphs of another brane tiling
[Spe07]. See Figure 26 for the brane tiling and its corresponding quiver.
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Figure 25. Graph for A6B4x17. Long edge c results many in forced edges.
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Figure 26. The quiver and the brane tiling studied in [Spe07]

Notice that if we add a 2-cycle between vertex 2 and vertex 4 in our dP2 quiver, we will
obtain the quiver shown in Figure 26. However, it is hard to describe the transformation of
these two brane tilings in a simple way.

1 1 2

1 2

1 2 3
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1 3
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1

Figure 27. subgraphs corresponding to terms x6, x7, x8, x9 in two different tilings

We provide a few terms of the Laurent polynomial of the Somos-5 sequence written as
subgraphs of these two different brane tilings in Figure 27 and Figure 28. As we can see,
the blocks in each pair of subgraphs are similar but not exactly the same. Moreover, the
subgraphs corresponding to xn in the dP2 brane tiling are growing in two different directions
(upper right and lower right) but subgraphs in the tiling considered by Speyer are growing
in only one direction (up), as n increases. Therefore, we believe that these two problems
regarding the two different tilings are sufficient different. There clearly exists some bijection
between these subgraphs as we know how to generate them given xn but as these two tilings
are very different despite the similarity in the corresponding quivers, we believe such bijection
is not worth considering in great details.
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Figure 28. subgraphs corresponding to terms x10, x11, x12 in two different tilings
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9. Appendix

Here are the data for other cases of Theorem 6.6. We group these cases by the form of cluster
variables. The way to use the appendix is shown in Section 7.1 and Section 7.2.

9.1. An
2
Bn(n−1)x2k, n ≥ 1, k ≥ 2. Recurrence we use:

(An
2

Bn(n−1)x2k)(A
(n−1)2B(n−1)(n−2)x2k+2)

=(A(n−1)nB(n−1)2x2k−1)(A
(n−1)nB(n−1)2x2k+3) + (A(n−1)nB(n−1)2x2k+1)

2

Kuo’s four points: p1, p2, p3, p4 are on edge d, e, b, c respectively.

9.1.1. Case 1. k ≥ 3n− 1. Non-alternating Kuo. Shape (+,−,+,+,−).

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
, 2n− 2,

⌊
k − 3n+ 3

2

⌋
, n− k − 1

)
−{p1}(W ) :K → (0,−1,+1,−1,+1)−R

R→ (0, 0,+1, 0,+1)−K
−{p2}(B) :→ (−1, 0, 0,−1,+1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

G =A(n−1)nB(n−1)2x2k+3

G− {p1, p2, p3, p4} =A(n−1)nB(n−1)2x2k−1

G− {p1, p3} =A(n−1)nB(n−1)2x2k+1

G− {p2, p4} =A(n−1)nB(n−1)2x2k+1

G− {p1, p2} =An
2

Bn2−nx2k

G− {p3, p4} =A(n−1)2B(n−1)(n−2)x2k+2

G−K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the leftmost
(B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x3x4x4, T ({p1, p3}) = x3x4,

T ({p2, p4}) = x3x4, T ({p1, p2}) = x4x4, T ({p3, p4}) = x3x3.

G − R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be the
leftmost (B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the (W)
vertex bordering the 1-block below the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x1x3x4x4, T ({p1, p3}) = x3x4,

T ({p2, p4}) = x1x4, T ({p1, p2}) = x4x4, T ({p3, p4}) = x1x3.
31



9.1.2. Case 2. n+ 1 ≤ k ≤ 3n− 2. Unbalanced Kuo. Shape (+,−,+,−,−).
When (k + 2) + (n− 1) is odd, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
, 2n− 2 + 1,

⌊
k − 3n+ 3

2

⌋
, n− k − 1 + 1

)
−K

When (k + 2) + (n− 1) is even, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
− 1, 2n− 2 + 1,

⌊
k − 3n+ 3

2

⌋
− 1, n− k − 1 + 1

)
−R

−{p1}(B) :K → (0, 0,−1, 0,−1)−R
R→ (0,+1,−1,+1,−1)−K

−{p2}(B) :→ (−1, 0, 0,−1,+1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

G− {p1} =A(n−1)nB(n−1)2x2k+3

G− {p2, p3, p4} =A(n−1)nB(n−1)2x2k−1

G− {p3} =A(n−1)nB(n−1)2x2k+1

G− {p1, p2, p4} =A(n−1)nB(n−1)2x2k+1

G− {p2} =An
2

Bn2−nx2k

G− {p1, p3, p4} =A(n−1)2B(n−1)(n−2)x2k+2

G − K (Special vertex kept): let p1 be the bottommost (B) point on edge d, p2 be the
leftmost (B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the special
vertex.

T ({p1}) = x3, T ({p2, p3, p4}) = x3x3x4, T ({p3}) = x3,

T ({p1, p2, p4}) = x3x3x4, T ({p2}) = x4, T ({p1, p3, p4}) = x3x3x3.

G − R (Special vertex removed): let p1 be the bottommost (B) point on edge d, p2 be the
leftmost (B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the (W)
vertex bordering the 1-block below the special vertex.

T ({p1}) = x4, T ({p2, p3, p4}) = x1x3x4, T ({p3}) = x3x3,

T ({p1, p2, p4}) = x3x3x3x4, T ({p2}) = x4, T ({p1, p3, p4}) = x1x3x3.

9.1.3. Case 3. k ≤ n. Balanced Kuo. Shape (+,−,+,−,+).
When (k + 2) + (n− 1) is odd, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 5

2

⌉
, 2n− 2 + 1,

⌊
k − 3n+ 3

2

⌋
− 1, n− k − 1 + 2

)
−K
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When (k + 2) + (n− 1) is even, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 5

2

⌉
− 1, 2n− 2 + 1,

⌊
k − 3n+ 3

2

⌋
− 2, n− k − 1 + 2

)
−R

−{p1}(B) :K → (0, 0,−1, 0,−1)−R
R→ (0,+1,−1,+1,−1)−K

−{p2}(W ) :→ (+1, 0, 0,+1,−1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

G− {p1, p2} =A(n−1)nB(n−1)2x2k+3

G− {p3, p4} =A(n−1)nB(n−1)2x2k−1

G− {p2, p3} =A(n−1)nB(n−1)2x2k+1

G− {p1, p4} =A(n−1)nB(n−1)2x2k+1

G =An
2

Bn2−nx2k

G− {p1, p2, p3, p4} =A(n−1)2B(n−1)(n−2)x2k+2

G −K (Special vertex kept): let p1 be the second from top (B) point on edge d, p2 be the
second from left (W) point on edge e, p3 be the second from bottom (B) point on edge b, p4
be the special vertex.

T ({p1, p2}) = x1x3, T ({p3, p4}) = x3x5, T ({p2, p3}) = x3x5,

T ({p1, p4}) = x1x3, T (∅) = 1, T ({p1, p2, p3, p4}) = x1x3x3x5.

G− R (Special vertex removed): let p1 be the second from bottom (B) point on edge d, p2
be the second from right (W) point on edge e, p3 be the second from bottom (B) point on
edge b, p4 be the (W) vertex bordering the 1-block below the special vertex.

T ({p1, p2}) = x1x3, T ({p3, p4}) = x1x5, T ({p2, p3}) = x3x5,

T ({p1, p4}) = x1x1, T (∅) = 1, T ({p1, p2, p3, p4}) = x1x1x3x5.

9.2. An
2+nBn2

x2k−1, n ≥ 1, k ≥ 3. Recurrence we use:

(An
2+nBn2

x2k−1)(A
(n−1)2+(n−1)B(n−1)2x2k+1)

=(An
2

Bn(n−1)x2k−2)(A
n2

Bn(n−1)x2k+2) + (An
2

Bn(n−1)x2k)
2

Kuo’s four points: p1, p2, p3, p4 are on edge d, e, b, c respectively.
The effect of removing p1, p2, p3, p4 and the sets used in the proof of covering monomial are
the same as in Section 9.1.
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9.2.1. Case 1. k ≥ 3n+ 1. Non-alternating Kuo. Shape (+,−,+,+,−).

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 3

2

⌉
, 2n− 1,

⌊
k − 3n+ 1

2

⌋
, n− k

)
.

G =An
2

Bn2−nx2k+2

G− {p1, p2, p3, p4} =An
2

Bn2−nx2k−2

G− {p1, p3} =An
2

Bn2−nx2k

G− {p2, p4} =An
2

Bn2−nx2k

G− {p1, p2} =An
2+nBn2

x2k−1

G− {p3, p4} =A(n−1)2+(n−1)B(n−1)2x2k+1

9.2.2. Case 2. n+ 2 ≤ k ≤ 3n. Unbalanced Kuo. Shape (+,−,+,−,−).
When (k + 1) + n is odd, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 3

2

⌉
, 2n− 1 + 1,

⌊
k − 3n+ 1

2

⌋
, n− k + 1

)
−K

When (k + 1) + n is even, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 3

2

⌉
− 1, 2n− 1 + 1,

⌊
k − 3n+ 1

2

⌋
− 1, n− k − 1 + 1

)
−R

G− {p1} =An
2

Bn2−nx2k+2

G− {p2, p3, p4} =An
2

Bn2−nx2k−2

G− {p3} =An
2

Bn2−nx2k

G− {p1, p2, p4} =An
2

Bn2−nx2k

G− {p2} =An
2+nBn2

x2k−1

G− {p1, p3, p4} =A(n−1)2+(n−1)B(n−1)2x2k+1

9.2.3. Case 3. 3 ≤ k ≤ n+ 1. Balanced Kuo. Shape (+,−,+,−,+).
When (k + 1) + n is odd, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 3

2

⌉
, 2n− 1 + 1,

⌊
k − 3n+ 1

2

⌋
− 1, n− k + 2

)
−K

When (k + 1) + n is even, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 3

2

⌉
− 1, 2n− 1 + 1,

⌊
k − 3n+ 1

2

⌋
− 2, n− k + 2

)
−R

G− {p1, p2} =An
2

Bn2−nx2k+2

G− {p3, p4} =An
2

Bn2−nx2k−2

G− {p2, p3} =An
2

Bn2−nx2k
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G− {p1, p4} =An
2

Bn2−nx2k

G =An
2+nBn2

x2k−1

G− {p1, p2, p3, p4} =A(n−1)2+(n−1)B(n−1)2x2k+1

9.3. An
2
Bn(n−1)x2k, n ≤ −1, k ≥ 2. Recurrence we use:

(An
2

Bn(n−1)x2k)(A
(n+1)2Bn(n+1)x2k+2)

=(An(n+1)Bn2

x2k−1)(A
n(n+1)Bn2

x2k+3) + (An(n+1)Bn2

x2k+1)
2

Kuo’s four points: p1, p2, p3, p4 are on edge d, a, b, c respectively.

9.3.1. Case 1. k ≥ 1− 5n. Non-alternating Kuo. Shape (+,−,−,+,−).

G := Ĝ
(
k + n,−

⌈
k + 5n

2

⌉
, 2n,

⌊
k − 3n

2

⌋
, n− k

)
−{p1}(W ) :K → (0,−1,+1,−1,+1)−R

R→ (0, 0,+1, 0,+1)−K
−{p2}(W ) :→ (−1,+1, 0, 0,+1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K

G =An
2+nBn2

x2k+3

G− {p1, p2, p3, p4} =An
2+nBn2

x2k−1

G− {p1, p3} =An
2+nBn2

x2k+1

G− {p2, p4} =An
2+nBn2

x2k+1

G− {p1, p4} =A(n+1)2B(n+1)2−(n+1)x2k+2

G− {p2, p3} =An
2

Bn2−nx2k

G−K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the topmost
(W) point on edge a (not in a forced matching), p3 be the bottommost (B) point on edge b
(not in a forced matching), p4 be the (B) point on the edge between the 4-block and 5-block
above the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x4x4x5x5, T ({p1, p3}) = x4x5,

T ({p2, p4}) = x4x5, T ({p1, p4}) = x4x4, T ({p2, p3}) = x5x5.

G − R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be the
topmost (W) point on edge a (not in a forced matching), p3 be the bottommost (B) point
on edge b (in a forced matching), p4 be the (B) point on the edge between the 2-block and
3-block above the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x2x3x4x5, T ({p1, p3}) = x3x4,
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T ({p2, p4}) = x2x5, T ({p1, p4}) = x2x4, T ({p2, p3}) = x3x5.

9.3.2. Case 2. 2− n ≤ k ≤ −5n. Unbalanced Kuo. Shape (+,+,−,+,−).

G := Ĝ
(
k + n− 1,−

⌈
k + 5n

2

⌉
+ 1, 2n− 1,

⌊
k − 3n

2

⌋
, n− k

)
−{p1}(W ) :K → (0,−1,+1,−1,+1)−R

R→ (0, 0,+1, 0,+1)−K
−{p2}(W ) :→ (−1,+1, 0, 0,+1)

−{p3}(W ) :→ (+1,−1,+1, 0, 0)

−{p4}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K

G− {p3} =An
2+nBn2

x2k+3

G− {p1, p2, p4} =An
2+nBn2

x2k−1

G− {p1} =An
2+nBn2

x2k+1

G− {p2, p3, p4} =An
2+nBn2

x2k+1

G− {p2} =An
2

Bn2−nx2k

G− {p1, p3, p4} =A(n+1)2B(n+1)2−(n+1)x2k+2

G−K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the topmost
(W) point on edge a, p3 be the bottommost (W) point on edge b, p4 be the (B) point on the
edge between the 4-block and 5-block above the special vertex.

T ({p3}) = 1, T ({p1, p2, p4}) = x4x4x5x5, T ({p1}) = x4x5,

T ({p2, p3, p4}) = x4x5, T ({p2}) = x4x4, T ({p1, p3, p4}) = x5x5.

G − R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be the
topmost (W) point on edge a, p3 be the bottommost (B) point on edge b, p4 be the (B)
point on the edge between the 2-block and 3-block above the special vertex.

T ({p3}) = x2, T ({p1, p2, p4}) = x4x4x5, T ({p1}) = x4,

T ({p2, p3, p4}) = x2x4x5, T ({p2}) = x5, T ({p1, p3, p4}) = x2x4x4.

9.3.3. Case 3. 2 ≤ k ≤ 1− n. Balanced Kuo. Shape (−,+,−,+,−).

G := Ĝ
(
k + n− 2,−

⌈
k + 5n

2

⌉
+ 2, 2n− 1,

⌊
k − 3n

2

⌋
, n− k + 1

)
−{p1}(W ) :K → (0,−1,+1,−1,+1)−R

R→ (0, 0,+1, 0,+1)−K
−{p2}(B) :→ (+1,−1, 0, 0,−1)
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−{p3}(W ) :→ (+1,−1,+1, 0, 0)

−{p4}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K

G− {p2, p3} =An
2+nBn2

x2k+3

G− {p1, p4} =An
2+nBn2

x2k−1

G− {p1, p2} =An
2+nBn2

x2k+1

G− {p3, p4} =An
2+nBn2

x2k+1

G− {p1, p2, p3, p4} =A(n+1)2B(n+1)2−(n+1)x2k+2

G =An
2

Bn2−nx2k

G−K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the bottommost
(B) point on edge a, p3 be the topmost (W) point on edge b (not in a forced matching), p4
be the (B) point on the edge between the 4-block and 5-block above the special vertex.

T ({p2, p3}) = x2x2, T ({p1, p4}) = x4x4, T ({p1, p2}) = x2x4,

T ({p3, p4}) = x2x4, T ({p1, p2, p3, p4}) = x2x2x4x4, T (∅) = 1.

G − R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be the
bottommost (B) point on edge a, p3 be the topmost (W) point on edge b (not in a forced
matching), p4 be the (B) point on the edge between the 2-block and 3-block above the special
vertex.

T ({p2, p3}) = x2x2, T ({p1, p4}) = x2x4, T ({p1, p2}) = x2x4,

T ({p3, p4}) = x2x2, T ({p1, p2, p3, p4}) = x2x2x2x4, T (∅) = 1.

9.4. An
2+nBn2

x2k−1, n ≤ −1, k ≥ 3. Recurrence we use:

(An
2+nBn2

x2k−1)(A
(n+1)(n+2)B(n+1)2x2k+1)

=(A(n+1)2B(n+1)nx2k−2)(A
(n+1)2B(n+1)nx2k+2) + (A(n+1)2B(n+1)nx2k)

2

Kuo’s four points: p1, p2, p3, p4 are on edge d, a, b, c respectively.
The effect of removing p1, p2, p3, p4 and the sets used in the proof of covering monomial are
the same as in Section 9.3.

9.4.1. Case 1. k ≥ −1− 5n. Non-alternating Kuo. Shape (+,−,−,+,−).

G := Ĝ
(
k + n,−

⌈
k + 5n+ 2

2

⌉
, 2(n+ 1)− 1,

⌊
k − 3n− 2

2

⌋
, 1 + n− k

)
G =A(n+1)2B(n+1)nx2k+2

G− {p1, p2, p3, p4} =A(n+1)2B(n+1)nx2k−2

G− {p1, p3} =A(n+1)2B(n+1)nx2k

G− {p2, p4} =A(n+1)2B(n+1)nx2k
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G− {p1, p4} =A(n+1)2+(n+1)B(n+1)2x2k+1

G− {p2, p3} =An
2+nBn2

x2k−1

9.4.2. Case 2. 2− n ≤ k ≤ −2− 5n. Unbalanced Kuo. Shape (+,+,−,+,−).

G := Ĝ
(
k + n− 1,−

⌈
k + 5n+ 2

2

⌉
+ 1, 2(n+ 1)− 1− 1,

⌊
k − 3n− 2

2

⌋
, 1 + n− k

)

G− {p3} =A(n+1)2B(n+1)nx2k+2

G− {p1, p2, p4} =A(n+1)2B(n+1)nx2k−2

G− {p1} =A(n+1)2B(n+1)nx2k

G− {p2, p3, p4} =A(n+1)2B(n+1)nx2k

G− {p1, p3, p4} =A(n+1)2+(n+1)B(n+1)2x2k+1

G− {p2} =An
2+nBn2

x2k−1

9.4.3. Case 3. 2 ≤ k ≤ 1− n. Balanced Kuo. Shape (−,+,−,+,−).

G := Ĝ
(
k + n,−

⌈
k + 5n+ 2

2

⌉
, 2(n+ 1)− 1,

⌊
k − 3n− 2

2

⌋
, 1 + n− k

)

G− {p2, p3} =A(n+1)2B(n+1)nx2k+2

G− {p1, p4} =A(n+1)2B(n+1)nx2k−2

G− {p1, p3} =A(n+1)2B(n+1)nx2k

G− {p2, p4} =A(n+1)2B(n+1)nx2k

G− {p1, p2, p3, p4} =A(n+1)2+(n+1)B(n+1)2x2k+1

G =An
2+nBn2

x2k−1

9.5. An
2+nBn2

x3, n ≥ 1. Recurrence we use:

(An(n+1)Bn2

x3)(A
n2

Bn(n−1)x8)

=(An(n+1)Bn2

x5)(A
n2

Bn(n−1)x6) + (An(n+1)Bn2

x7)(A
n2

Bn(n−1)x4).

Kuo’s four points: p1, p2, p3, p4 are on edge e, a, c, d respectively.
When n = 1: can verify the contour match the graph using Balanced Kuo or just directly
verify the matching polynomial.
Let n ≥ 2. Unbalanced Kuo. Shape (+,−,+,−,+).
When n+ 3 is odd, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
, 2n,

⌊
3− 3n− 2

2

⌋
, n− 3 + 2

)
−R
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When n+ 3 is even, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
− 1, 2n,

⌊
3− 3n− 2

2

⌋
− 1, n− 3 + 2

)
−K

−{p1}(W ) :→ (+1, 0, 0,+1,−1)

−{p2}(W ) :→ (−1,+1, 0, 0,+1)

−{p3}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

−{p4}(B) :K → (0, 0,−1, 0,−1)−R
R→ (0,+1,−1,+1,−1)−K

G− {p1} =An
2+nBn2

x7

G− {p2, p3, p4} =An
2

Bn(n−1)x4

G− {p3} =An
2+nBn2

x5

G− {p1, p2, p4} =An
2

Bn(n−1)x6

G− {p2} =An
2+nBn2

x3

G− {p1, p3, p4} =An
2

Bn(n−1)x8

G −K (Special vertex kept): let p1 be the leftmost (W) point on edge e (the bottommost
point of edge d), p2 be the bottommost (W) point on edge a (not in a forced matching), p3
be the special vertex, p4 be the (B) point on the edge between the 1-block and 4-block below
the special vertex.

T ({p1}) = x1, T ({p2, p3, p4}) = x1x3x5, T ({p3}) = x3,

T ({p1, p2, p4}) = x1x1x5, T ({p2}) = x5, T ({p1, p3, p4}) = x1x1x3.

G−R (Special vertex removed): let p1 be the leftmost (W) point on edge e (the bottommost
point of edge d), p2 be the bottommost (W) point on edge a (not in a forced matching), p3
be the (W) point below the special vertex, p4 be the (B) point below p3.

T ({p1}) = x1, T ({p2, p3, p4}) = x1x3x5, T ({p3}) = x1,

T ({p1, p2, p4}) = x1x3x5, T ({p2}) = x5, T ({p1, p3, p4}) = x1x1x3.

9.6. An
2+nBn2

x3, n ≤ −1. Recurrence we use:

(An(n+1)Bn2

x3)(A
(n+1)2Bn(n+1)x8)

=(An(n+1)Bn2

x5)(A
(n+1)2Bn(n+1)x6) + (An(n+1)Bn2

x7)(A
(n+1)2Bn(n+1)x4)

Kuo’s four points: p1, p2, p3, p4 are on edge a, e, c, b respectively.
When n = −1, can check directly to see contour for Bx3 is correct.
Let n ≤ −2. Unbalanced Kuo. Shape (−,+,−,+,−).
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When n+ 3 is odd, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
+ 1, 2n,

⌊
3− 3n− 2

2

⌋
+ 1, n− 3 + 2

)
−K

When n+ 3 is even, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
− 1, 2n,

⌊
3− 3n− 2

2

⌋
− 1, n− 3 + 2

)
−R

−{p1}(B) :→ (+1,−1, 0, 0,−1)

−{p2}(B) :→ (−1,+1, 0, 0,+1)

−{p3}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K

−{p4}(W ) :→ (+1,−1,+1, 0, 0)

G− {p1} =An
2+nBn2

x7

G− {p2, p3, p4} =An
2

Bn(n−1)x4

G− {p3} =An
2+nBn2

x5

G− {p1, p2, p4} =An
2

Bn(n−1)x6

G− {p2} =An
2+nBn2

x3

G− {p1, p3, p4} =An
2

Bn(n−1)x8

G−K (Special vertex kept): let p1 be the topmost (B) point on edge a (in a forced matching),
p2 be the rightmost (B) point on edge e (in a forced matching), p3 be the (B) point with 3
neighbors on the 3-block above the special vertex, p4 be the bottommost (W) point on edge
b.

T ({p1}) = x1, T ({p2, p3, p4}) = x2x3x5, T ({p3}) = x5,

T ({p1, p2, p4}) = x1x2x3, T ({p2}) = x3, T ({p1, p3, p4}) = x1x2x5.

G − R (Special vertex removed): let p1 be the topmost (B) point on edge a (in a forced
matching), p2 be the rightmost (B) point on edge e (in a forced matching), p3 be the (B)
point on the edge between the 2-block and 3-block above the special vertex, p4 be the
bottommost (W) point on edge b.

T ({p1}) = x1, T ({p2, p3, p4}) = x2x2x5, T ({p3}) = x2,

T ({p1, p2, p4}) = x1x2x5, T ({p2}) = x5, T ({p1, p3, p4}) = x1x2x2.
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