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Introduction

The sandpile group of a graph is a finite abelian
group with combinatorial, algebraic, and geometric
interpretations. We are interested in the sandpile
group of hypercube graphs and their generalizations,
Cayley graphs of the group Fr2 with arbitrary gen-
erating sets. While the Sylow-p component of these
sandpile groups has been classified for p 6= 2 [1],
the Sylow-2 subgroup remains a mystery. In this
project, we use linear algebra and ring theory to
achieve the following results:
•A sharp upper bound for the largest Sylow-2
cyclic factor in the sandpile group of an arbitrary
Cayley graph;

•An exact formula for the largest few Sylow-2
cyclic factors of the sandpile group of a hypercube
graph;

•A full classification of the sandpile group for
r = 2 and other enlightening results for small r.

Definitions

The Laplacian of an undirected graph G, denoted
L(G), has entries

L(G)i,j =


deg(vi) i = j,

−#edges from vi to vj i 6= j.

If |V (G)| = k, L(G) is an integral k × k matrix, so
we can view it as an endomorphism of Z-modules
Zk → Zk. When G is connected, the kernel is
span(1), so cokerL(G) ∼= Z⊕K(G) where K(G) is
a finite abelian group. We call K(G) the sandpile
group of G. For example, it is well known that
complete graphs have K(Kn) ∼= (Zn)n−2.
Fixing Γ = Fr2, and a set of generators M =
{v1, . . . , vn} for Γ, we define the Cayley graph
G(Fr2,M) with vertices V (G) = Fr2 and u,w ∈
V (G) share an edge if u − w = vi for a generator
vi ∈ M . Multiple edges are allowed. When n = r
and M = {e1, . . . , en}, G(Fr2,M) = Qn, is called
the hypercube graph.
For Cayley graphs, L(G(Fr2,M)) has a natural
eigenbasis indexed by the vectors u ∈ Fr2. Namely,
let fu = ∑

v∈Fr2(−1)u·vev. Then the fu, fv are pair-
wise orthogonal and fu is an eigenvector with eigen-
value λu,M := n− ∑

v∈M(−1)u·v.

Previous Results

Previously, it has been proven:
1 For p 6= 2 we have

Sylp(K(G)) ' Sylp
(
⊕u∈Fr2Zλu,M

)
2 [2] Let ck(G) denote the exponent of the kth
largest cyclic factor in Syl2(K(G)). Then
c1(Qn) ≤ n + blog2 nc

Main Results I: Largest Sylow-2
Factor

First, we generalize the Anzis-Prasad bound [2]:
Theorem (General Sharp Upper Bound):
Given an arbitrary Cayley graph G(Fr2,M), we have

c1(G) ≤ blog2(n)c + r − 1,
which is sharp when G = Q2k, Q2k+1.
This is proven by using the technique in Anzis-
Prasad [2] to view K(G) as a ring

Z⊕K(G) ∼= Z[x1, . . . , xr]/
x2

i − 1, n−
n∑
i=1

∏
j
x

(vi)j
j


Then c1(G) is the additive order of some xi − 1 in
the ring. By translating xi − 1 back as vector in
Z⊕K(G), we have the following lemma
Lemma: c1(G) is the smallest C such that for
any S ⊆ [n], |S| ≥ 2, d ∈ F|S|2 \ {0},

C

2r−|S|
∑
uS=d

1
λu,M

∈ Z.

Note that when G = Qn, the values of λu,M are
n − 2k with multiplicity

(
n
k

)
. By fully exploiting

the lemma above, we determine the exact value of
c1(Qn) using elementary number theory:
Theorem (Exact Max Factor for Hyper-
cubes): For G = Qn, we have the exact formula
c1(Qn) = max{max

x<n
{v2(x) + x}, v2(n) + n− 1}.

We further generalized this result and proved that
Theorem (More Max Factors for Hyper-
cubes): For hypercube graph Qn and 2 ≤ k ≤
n− 1, we have the exact formula

ck(Qn) = max
1≤x<n

{v2(x) + x}.

The reason is ck(Qn) is the additive order of xk−x1
for 2 ≤ k ≤ n− 1, and they are all the same due to
symmetries.

Limits of Main Results I

We are unable to determine ck(Qn) for k ≥ n be-
cause cn(Qn) is the additive order of some x1x2−1+
t1(x1− 1) + t2(x2− 1), and its value is more difficult
to determine number-theoretically. However, based
on data, we conjecture that for n ≥ 3, cn(Qn) =
max{maxx<n−1{v2(x) +x}, v2(n− 1) +n− 3}. and
for n ≥ 4 that cn+1(Qn) = maxx<n−1{v2(x) + x}.
We have no conjectures for further factors.

Main Results II: Sandpile group
for small r

We can use the interpretation of c1(Qn) as a minimal
C to completely determine the sandpile group in
small cases. For example, when r = 2, we have a
complete classification:
Theorem (Classification for r = 2): If M =
1
0

a ,
0
1

b ,
1
1

c
 with gcd(a, b, c) = 1 then

Syl2K(G) =


Z2v2(b+c)+1 a odd, b, c even
Z2v2(a+b)+1 a, b odd, c even
Z2e × Z2f a, b, c odd

where f = max(v2(a + b), v2(b + c), v2(a + c)) + 1
and e = v2(|K(G)|)− f .
The Sylow-2 group for r = 2 has at most 2 factors,
so it suffices to compute c1(G), which is what the
proof amounts to.
For r = 3, Syl2(K(G)) can have many more
cyclic factors, but when M is generic, i.e. when∑
v∈M v 6= ~0, it turns out there are only 3 cyclic fac-

tors, which is the smallest number of factors. In this
case,
Theorem (r = 3 ‘generic case’): Suppose
that the sum ∑

~v∈M ~v 6= ~0, and let d1 ≤ · · · ≤ d7 be
the powers of 2 in the eigenvalues λu,M . Then

Syl2(K(G)) =


Z2d5−1 × (Z2d7+1)2 d6 = d7

Z2d5 × Z2d6 × Z2d7+1 d6 < d7

The proof of this theorem involves an explicit com-
putation of the largest and second largest cyclic
factors for each of these sandpile groups, apply-
ing the similar techniques used for the hypercube.
These computations uniquely determine the 3rd fac-
tor since we already know the order of Syl2(K(G)).

Limits of Main Results II

Other r = 3 cases and r = 4 appear far less
tractable, since in these cases Syl2(K(G)) has at
least 5 cyclic factors, so we would need to explic-
itly compute 4 factors by hand. This was reasonable
when we had the symmetry of the hypercube, but
in general appears to be difficult.

Conclusion and Remaining
Questions

1 The Sylow 2 component of the Sandpile group
appears to be extremely complex, based on our
results about the top factors for the hypercube.

2 We conjecture that the eigenvalues of the
Laplacian (given that the graph is reduced)
uniquely determine the group.

3 One mysterious conjecture is that
Syl2(K(Q2k)) ∼= Syl2(K(Q2k−1))2 × Z22k+k−1

This could fit into an interpretation via graph
coverings.

4 Potential future approaches to this problem
include Grobner bases, matroid deletion and
contraction, and graph coverings.
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