
BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES

IN-JEE JEONG

Abstract. We explore connections between formulas for certain combinatorial and algebraic
objects. In particular, given a planar bipartite graph G, we consider the cluster algebra A
corresponding to a quiver obtained from its dual graph. We then obtain formulas for certain
cluster variables in A in terms of perfect matchings of subgraphs of G. Such subgraphs look
like trees; locally they look like snakes with bridges connecting them. In the case of a spine
snake with some trees attached to its edges we can obtain combinatorial formulas through
superpositions.

1. Introduction

Fomin and Zelevinsky, in [3, 4], created a new mathematical object called a cluster algebra.
Following their definitions, we start with an initial cluster (set of variables) {x1, x2, ..., xn} of
a cluster algebra A and mutate it to obtain more variables. It turns out that in certain types
of cluster algebras, cluster variables can be obtained by weights of graphs, as demonstrated in
[8, 9, 10].

As described in [2], there is a graphical way of formulating the rules for mutation. For each
cluster C of A, we consider a quiver (directed graph) QC such that mutation of C corresponds
to mutation of QC . In particular, it was shown in [12] that if we start with xi at the ith vertex
in the quiver below and mutate at 1,3,2,4,1,3,2,4,..., we get the weights of Aztec diamond
graphs with an appropriate weighting scheme. Gregg Musiker conjectured that if we mutate
at 1,4,3,4,3,4,..., we get the weights of a family of graphs shown below. In particular, if we
begin with ones instead of variables and mutate in that sequence, we will get the number of
perfect matchings of these graphs. When we were proving this, we realized that we could get
families of graphs which have more squares attached to both branches from the horizontally
unfolded version of this quiver. All of these graphs looks like a spine with branches attached.
With this motivation, we studied 1) which graphs qualify as a spine and 2) what is the most
general type of branch we can attach to such a spine.

1

2 3

4

1 1 14

1 14

1 14

3

1 14

1 14

3

1 14

3

1 14

1 14

3

1 14

1 14

3

3

Figure 1.1. Musiker’s Conjecture

It turns out that when we have a planar bipartite graph, its dual graph can be turned
into a quiver where variables we get from certain mutation sequences have combinatorial
interpretations in our original graph. These interpretations can be merged or superimposed

1

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 2

for mutation sequences that meet the required conditions. In this paper, we describe simple
instances when those combinations of combinatorial interpretations work well.

Our first main result is Theorem 3.2, which using the definitions in Section 2, says.

Theorem 3.2. Any natural mutation sequence associated with a tree T carries T .
It turns out that in certain cluster algebras, all noninitial variables represent weights of

trees embedded in a 2-connected planar bipartite graph. In other cases, trees cover only a few
variables. This has intersections with Musiker’s results in [8] although we do not recover all of
his results. After developing more definitions and notations in the next section, we state and
prove our second result. This is a generalization of the above conjecture (see Theorem 3.5).

The outline of this paper is as follows. In Section 2, we develop and discuss several concepts
which we will need throughout the paper. Then we prove two phenomena in Section 3. In the
last section, we first apply our results to infinite grid quivers. After that we consider various
finite quivers; in particular, we show that given a tree quiver, there is a corresponding planar
bipartite graph. Quivers of type An and Dn from [8] fit in this family. Also, superposition re-
covers a result from [9]. Finally, we attempt to combinatorially represent Markoff polynomials
studied in [11] within our framework.

2. Preliminaries

We now define some terminology that we will use throughout this paper.

Definition 2.1. If G is a 2-connected planar bipartite graph with its vertex set V = E1 ∪E2,
consider its dual graph H. We turn H into a quiver so that, near every vertex of E1, we have
arrows rotating clockwise around that vertex, and counterclockwise for E2. This is possible
since G is bipartite. After killing all resulting 2-cycles one by one, we call the resulting quiver
the dual quiver of G, Ḡ.

Figure 2.1. Here, G equals the union of four squares. All above dashed arrows
are involved in 2-cycles; hence Ḡ equals a four cycle plus one disconnected
vertex.

Here, 2-connectedness means G is connected and remains connected if any edge were to be
removed. This will make every face including the possible infinite faces of G to be well-defined.

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 3

So when we consider its dual, these faces of G will be vertices of Ḡ, and edges will be arrows
connecting these vertices. One can observe that in Ḡ, (before killing 2-cycles) faces are well
defined and arrows are cyclic in every face. Also every edge of G will be shared by two distinct
faces of G, and a 2-connected graph will be bipartite if and only if each face has even number of
edges. Throughout this paper, given a graph G, we will be looking at various subgraphs of G
and it is indeed enough that such subgraphs are 2-connected, bipartite, and can be embedded
into a plane so that their dual quivers are well defined. However, it is certainly convenient to
work with G that satisfies all such properties.

Given G, we attach a cluster variable xα to every vertex α of Ḡ (which is a face of G),
obtaining a cluster algebra AG = {xα}α∈Ḡ. When a vertex α is mutated for the first time, we
name new cluster variable yα. By a neighborhood (or neighbor) of a subgraph H of G (which
is a union of faces of G) we mean the set of all faces in G that is not a face of H and share at
least one edge with that subgraph. We use Kenyon’s edge weighting from [5]; w(e) = 1/xαxβ
where α, β are vertices correspond to two faces in G sharing e. Then the weight of a perfect
matching will be the product of weights of all the edges in that matching, and the weight of
a graph is the sum of the weights over all possible matchings.
To localize at a set of vertices of a dual quiver means that we will be looking at only those
vertices and arrows attached to them. We adopt a convention that unless otherwise specified,
we let the face in G corresponding to a vertex v of Ḡ be Fv. Similarly, if we have a face F in
G, we call the corresponding vertex in Ḡ vF and the variable initially attached to this vertex
xvF . When we mutate at vF for the first time, we will call the new variable yvF .

Definition 2.2. Here we define a collection of subgraphs of G which we call trees, as follows:
• A tree T is a finite union of partially ordered faces of G where no two faces in T share
more than one edge.
• This partial order on T satisfies the following conditions:

– there is a unique maximal face T
– a face A directly covers (or directly covered by) B if and only if A and B share

an edge.
– any non maximal face of T is directly covered by exactly one other face, and when

it directly covers several faces, it is called a bridge face.
• If A < B are two faces in T , then A and B can share at most one vertex if for every
C such that A < B < C, C has that vertex. If two faces are not comparable, they are
disjoint with each other.

We define the order of a tree T as the number of faces in T . We allow a single edge
of G as an order zero tree. If we have a tree T , we can consider the set of vertices in Ḡ
which corresponds to all the faces in T . Then we say a mutation sequence in Ḡ is natural
with respect to T if this sequence contains all vertices in that set exactly once and whenever
A < B (two faces of T), vB appears before vA in the sequence. That is, a natural sequence
respects the ordering on the tree. We say two trees are commuting if they are disjoint except
possibly at one vertex of their maximal faces. We call T a snake if it does not have any bridge
faces. Then we can also visualize a tree as a subgraph consisting of bridge faces and snakes
connecting them.

When we say mutate at a tree T or a subgraph of T we mean we mutate in any natural
mutation sequence or its subsequence in Ḡ. From our definition of a tree, the set of variables
we obtain when we mutate in any natural sequence should be the same. In particular, yvT
(the last variable) is the same. Also if T1 and T2 commutes then mutation at T1 and T2

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 4

Figure 2.2. A tree living inside a finite square grid; any face qualifies as the
maximal face when we order other faces with the distance from that face.

commutes simply because they do not share any edges so there is no arrow between them in
Ḡ. Similarly, mutating at a face F of T will mean mutating at the corresponding vertex vT
with the assumption that we have mutated at all faces A of T such that A < F .

Definition 2.3. (separation and merging) Let T be a tree and U be a neighbor face. If U
shares multiple edges f1, f2, ...ft with T we may separate U into U ′ (which we will usually
identify as U) and V1, V2, ...Vt where all Vi are small quadrilaterals with one edge fi and other
three edges completely embedded in U ′. We will refer to Vi as parts of U . This procedure
is as follows: 1) We recover all 2-cycles killed before separation, so an arrow between U and
T will exist for each edge of T shared with U . As soon as we draw V1, we have three new
arrows between U (or U ′) and V1 in our dual quiver, so two of them kill each other. The arrow
between U and T is now split into two arrows of the same direction, one between U and V1 and
the other between V1 and T . All other arrows remain the same. After we draw all V1, ..., Vt,
U does not share any edges with T , Vi shares fi with T , and in our dual quiver all arrows
are preserved except those described above. We will identify xvU = xvU′ = xvV1 = ... = xvVt
for convenience. Merging is the inverse process. So when we say we merge V back to U it is
implicitly assumed that U used to contain V .

Definition 2.4. If T = ∪1≤i≤nFi is a tree in G, we define its covering monomial to be the
product

m(T) =

n∏
i=1

xfii
∏
U∈U

xgUvU ,

where U is the neighbor of T , and fi =(number of edges of Fi−2)/2.
To determine gU , we localize at the set {1, 2, ..., n, vU} of vertices of Ḡ which corresponds

to the set of faces {F1, F2, ...Fn, U} in G and recover all 2-cycles. A general cycle at this
localization will look like

Ci : U → Fi1 → Fi2 → ...→ Fik(i) → U

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 5

U

T T

V1

V2

U ′

Figure 2.3. An example of separation

(or all arrows in the opposite direction). We give a partial ordering on these cycles by declaring
the order of Ci to be the order of max1≤l≤k(i) Fil . Assume that there are two maximal faces, say
Fiq and Fip . (q < p) Then Fiq+1lFiq (Fiq directly covers Fiq+1) and Fip−1lFip since these pairs
share an edge respectively. And Fiq+2lFiq+1 since Fiq+1 cannot be directly covered by multiple
faces. Likewise Fip−2 l Fip−1 . Continuing this way, we will have some face Fik (q < k < p)
directly covered by two faces Fik−1

and Fik+1
; this is a contradiction. So max1≤l≤k(i) Fil is

well-defined.
Kill all 2-cycles one by one. After that, pick one of the minimal cycles and get rid of two

opposite arrows (killing) between U and T . If we still see cycles, repeat this until we have
no cycles. Then gU equals the sum of the number of all cycles killed (including 2-cycles) and
the number of remaining arrows between U and T . (not between faces of T) Equivalently gU
equals the number of edges shared by U and T minus the number of cycles killed.

We will refer to those cycles (including 2-cycles) killed in this procedure as U-cycles. So
from the definition of U -cycles, we have a specific sequence of killing minimal cycles one by one.
We will not show here that the number of U -cycles for each neighborhood U of T is independent
on the choice of killing sequence but it will be obvious once we prove yvT = m(T)w(T) since
neither w(T) nor yvT depends on the choice of the killing sequence.

Remark 2.5. More general covering monomials
We can extend the definition this monomial to cover more general family of subgraphs other

than trees. Assume that we have a subgraphH = ∪i∈IFi in G and a partial ordering on Fi such
that for any neighboring face U , whenever we have a cycle U → Fi1 → Fi2 → ...→ Fik(i) → U

in Ḡ, max1≤l≤k(i) Fil is well-defined. Then we can define its covering monomial in the same
way.

We will say that a sequence of vertices v1, v2, ...vn of Ḡ carries a tree T = ∪1≤i≤mFi if
w(T)m(T) equals the nth variable we get after we mutate the quiver in order of that sequence.
When the mutation sequence is understood, we will say vn (the last term of the sequence)
or Fm (maximal face of T) carries T . When T is not a tree but if its covering monomial
is well-defined and there exists a mutation sequence in Ḡ such that the last variable equals
w(T)m(T), we will also say that this sequence carries T .
Remark 2.6. Speyer’s weighting

There is an earlier face weighting scheme which appeared in [12]. Consider a connected
subgraph H of G and name the edges of the outer face of H as e1, e2, ...et clockwise. To

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 6

F1 F2

F3

U

e1

e2 e3
e4
e5

e6

Figure 2.4. U shares edges from e1 to e6 with a tree; hence we have three U -cycles

apply Speyer’s weighting, it is required that this outer face is “partitioned” by neighbor faces;
that is, if a neighbor face U contains ei and ej then U contains all ek which lies in either the
counterclockwise or clockwise path from ei to ej . There are no such restrictions in our original
setting. With this assumption, let M be a matching of H = ∪ni=1Fi. For each i, let b be the
number of edges of Fi not in M and a be the number of edges of Fi in M . For a neighbor
face U of H, let b be the number of edges of U ∩H not in M and a be the number of edges
of U ∩H in M . Then Speyer’s weighting equals

w̄(M) =

n∏
i=1

xhii
∏
U∈U

xdUvU

where hi = db− a
2
e − 1 and dU = db− a

2
e.

Then we set w̄(H) =
∑

M w̄(M) where this sum is over all matchings of H. Then we claim
w̄(M) = w(M)m(H) for a given matching M . First we compare exponents of xi for i = 1...n.
We have x−ai in w(M) and x(a+b)/2−1

i in m(H) so w(M)m(H) contains x(b−a)/2−1
i = xhii . For a

neighbor face U , due to our assumption, all U -cycles are short: If U shares edges ei, ...ej then
for each ek, (k = i...j−1) a cycle crossing ek and ek+1 is formed. Hence we observe b(b+a)/2c
U -cycles and gU = b + a − b(b + a)/2c = d(b + a)/2e. And we have x−avU in w(M) so we also
have xdUvU on the right hand side. This is true for all M , so w̄(H) = w(H)m(H). Therefore,
whenever an equality like y = w(H)m(H) holds where the outer face of H is partitioned, it
implies y = w̄(H).

3. Results

3.1. Tree Phenomenon. Our first goal is to show that any natural mutation sequence as-
sociated to a tree T carries T with the covering monomial defined above. We make some
notations to better deal with trees.

We say T is extendable to a face F of G if T ∪F qualifies as a tree with F being the new
maximal face and all other order relations being preserved. In this setting, let a and b be two
vertices shared by F and T and let T ∗ = T \{a, b} denote the subgraph of T obtained from T
by getting rid of a, b and all edges incident to them (T star with respect to F). The weight
w(T ∗) is well-defined; when T is an order zero tree, T ∗ is empty so its weight is 1. We mutate
at T \T and localize at T . We always have an arrow between vF and vT ; assume vF → vT .
Then consider all arrows vT → vα and define y∗vT be the product of all variables carried by

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 7

T

F
f

Figure 3.1. This tree T (shaded region) with maximal face T is extendable
to F . Notice that there is only one matching of T ∗ (thicker edges) so w(T ∗)
equals the product of weights of six floating edges.

a

b

c
d e

f

g
a

b

Figure 3.2. Examples of localization at T : y∗vT = xaxbxcxdxexfxg, y∗vT =
xaxb (left, right)

such vα with correct multiplicities. Now mutate at T and localize at F ; we will have arrows
vF → vα from all such vα. Together with the arrow vF ← vT (reversed after mutating at T),
we say these arrows are “originated” from T . As a special case, if T is an order zero tree e
(an edge), set the other face containing e to be T and define y∗vT = xvT and yvT = 1. This
convention makes sense since we have not mutated at T . Notice that w(T ∗) is not affected
by the neighbor of T but y∗vT is highly affected by it. Naively, at this localization we expect
arrows from neighbor faces of T which respectively contains a prohibited edge of T ∗. This is
no longer true when a neighbor face contains several edges of T ∗.

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 8

Unless T is an order zero tree, let T be the maximal face of T with edges e1, ...e2m (clockwise)
and consider T \T . Let Ti be the maximal subtree of T \T attached to ei. If we set Fi 6= T
be the face containing ei, then the maximal face of Ti (unless it equals ei) is Fi. Two faces
Fi = Fj for i 6= j is possible only when Ti = ei and Tj = ej . For convenience, we set the
vertex corresponding to Fi in Ḡ i (so it carries xi and yi). We also have T = T ∪ (∪2m

i=1Ti) and
from our definition of a tree, we observe that Ti are all commuting with each other. Also each
subtree Ti is extendable to T . Let vi and vi+1 (modulo 2m) be two vertices (clockwise) of ei.
Set T ∗i =Ti\{vi, vi+1} for all i. Then we have the following lemma.

Lemma 3.1. Let T be a tree of positive order. Then a matching of T either comes from a set
of matchings of {Ti, T ∗j } or {Tj , T ∗i } where i ranges over all even and j all odd between 1 and
2m. Therefore,

(3.1) w(T) =

m∏
j=1

w(T2j)w(T ∗2j−1) +

m∏
i=1

w(T2i−1)w(T ∗2i).

Proof. In a matching of T , if the edge containing v1 is from T1, the same holds for v2 because
T1 has an even number of vertices. So this matching of T contains a matching of T1. Then
again by parity, edges containing v2 and v3 cannot come from T2, so this matching contains
a matching of T ∗2 . This pattern continues; we see that this matching equals the union of a
matching of Ti for i odd and a matching of T ∗j for j odd. We conclude that a matching of T
is either from a set of matchings of {Ti, T ∗j } or from {T ∗i , Tj} for all i even and j odd. �

T1

T ∗
2

T3

T ∗
4

T5

T ∗
6

T

T

Figure 3.3. Two possible sets of matchings of T = T ∪ (∪6
i=1Ti)

The simplest example of above lemma is when T = T . This order one tree T has two
matchings; one contains all ei for i even and the other contains all ej for j odd. Let us define
w(T ev) =

∏m
j=1w(T2j)w(T ∗2j−1) and w(T od) =

∏m
i=1w(T2i−1)w(T ∗2i) so w(T) = w(T ev) +

w(T od).
Theorem 3.2. Any natural mutation sequence associated with a tree T carries T .
Proof. We follow the notations from above discussion. We claim something stronger: If we
have a tree T , (after following a natural mutation sequence) yvT = m(T)w(T) holds and if it
is extendable to F then y∗vT xvF = m(T)w(T ∗) holds. We use induction on the order of a tree.
If T is an edge e, then 1 = m(e)w(e) and xvT xvF = m(e) so our claim holds where F can be
one of two faces containing e. Now let T to be a tree of positive order, and assume that this
claim is true for all trees that have order less than T . For each 1 ≤ i ≤ 2m, Ti is extendable

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 9

to T and have order less than that of T , so yi = m(Ti)w(Ti) and y∗i xvT = m(Ti)w(T ∗i). We
mutate at all subtrees and localize at T . Here we consider the well-split case first:

(i) Well-split around T : This means a neighbor face U of T shares edges with only one
of Ti. In this case, we follow the definition of the covering monomial to obtain m(T) =

(
∏2m
i=1m(Ti))/xm+1

vT
. Also, when we localize at T , there are no cancellations of arrows. There-

fore, all arrows in y∗i for each i are preserved. Then we clearly have

(3.2) yvT xvT =
m∏
j=1

y2jy
∗
2j−1 +

m∏
i=1

y2i−1y
∗
2i.

Define yevvT =
∏m
j=1 y2jy

∗
2j−1 and yodvT =

∏m
i=1 y2i−1y

∗
2i. We multiply both sides of the for-

mula for w(T) by m(T) and we are left with yvT = m(T)w(T). Now without loss of
generality, assume that T is extendable to F1 , which would imply that T1 = e1. Then
m(T) = x1(

∏2m
i=2m(Ti))/xmvT and w(T ∗) =

∏m
i=1w(T ∗2i)

∏m−1
j=1 w(T2j+1). Also it is easy to see

y∗vT =
∏m
i=1 y

∗
2i

∏m−1
j=1 y2j+1. Combining these, we get

y∗vT x1 = m(T)w(T ∗).
(ii) General case: We can use above separation scheme to make the neighbor of T to be

well-split. That is, each neighbor face U is split into V1, V2, ...Vt such that Vi (can be empty)
only shares one edge with T . For each U , we are looking for a specific merging sequence such
that we have yvT = m(T)w(T) and y∗vT x1 = m(T)w(T ∗) throughout the whole process. In
Ḡ, we localize at vertices that correspond to faces in T and vU and look for cycles containing
U and its parts. There are four types of such cycles:

A : U → Va1 → Tia → Va2 → U,

B : U → Vb1 → Tib → T → Vb2 → U,

C : U → Vc1 → Tic → T → Tjc → Vc2 → U,

and

D : U → Vd1 → T → Vd2 → U,

(or all arrows in the opposite direction) where “→ Ti →” means this cycle is passing through
some faces of Ti. Cycles of types B,C, and D have the same (maximal) order since T is the
maximal face. Cycles of type A have strictly less order than cycles of other types. Pick one of
minimal cycles of type A and merge corresponding Va1 and Va2 back to U . As we merge parts
back, we should kill the corresponding A cycle to be coherent with our covering monomial
rule. We repeat this until we see no more A cycles. Some cycles of type B,C, and D will
be killed in this process. When we merge parts from A cycles back to U , T is still well-split
around T , so yvT = m(T)w(T) and y∗vT x1 = m(T)w(T ∗) holds.

If we have a D cycle left, merge Vd1 and Vd2 back to U . Then we have a cancellation of
arrows U → T and U ← T so yvT has lost one factor of xvU . But since we observe a 2-cycle at
T , when we are determining gU of m(T), we have lost one factor of xvU , so yvT = m(T)w(T)
is still true. Also both of yevvT and yodvT has lost one factor of xvU . We are assuming that T ∪F1

is a tree, so it is not possible that F1 = U . Hence xvU 6= x1 = y∗1 and if shows y∗vT has lost one
factor of xvU . That is, y∗vT x1 = m(T)w(T ∗) also holds. And we kill this 2-cycle. We repeat
this until we see no more D cycles.

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 10

Next we look at a B or C cycle, if any. If we have a B cycle, we merge back Vb1 and Vb2 to
U . After merging, this cycle looks like

U(→ Vb1)→ B1 → B2 → ...→ Bk = Fib → T (→ Vb2)→ U

where B1, ...Bk are faces of Tib . Then m(T) has lost one xvU since we now have one more
U -cycle. When we mutate at B1 in a natural mutation sequence, the arrow U → B1 gets
transported to an arrow U → B2. If 2 6= k, assume that at B2 there are more or equal number
of arrows of B2 → U than the number of U → B2 so that this arrow U → B2 originated
from Vb1 → B1 is killed. It is a contradiction since we then have an “unexpected” cycle
U(→ Vb1) → B1 → B2 → U which should have been killed when considering this B cycle.
That is, the arrow U → B2 “survives” at the localization at B2 and gets transported to B3

when we mutate at B2. By the same argument, this pattern continues and the arrow U → B1

finally gets transported to an arrow U → T and kills the arrow T (→ Vb2) → U . Therefore,
yvT has lost one factor of xvU . We kill this cycle, and look for a B or C cycle.

Assume there is a C cycle left. Then we merge back Vc1 and Vc2 ; It looks like

U → B1 → ...→ Bk → T → Al → ...→ A1 → U

where B1, ...Bk belong to Tic and A1, ...Al belong to Tjc for some ic and jc. Again, m(T)
lose one factor of xvU and as we mutate at Tic the arrow U → B1 is transported to an arrow
U → T and A1 → U becomes T → U . Hence yvT also lose one factor of xvU . And kill this
cycle. Repeat this procedure until we do not see any B or C cycles.

We have seen that yvT = m(T)w(T) holds when we merge back parts that belonged to such
cycles. Likewise we see that y∗vT x1 = m(T)w(T ∗) throughout this whole procedure. Now we
merge back all parts left which does not involved in any U -cycles. First, this does not affect
m(T) since there are no cycles at this stage. This also does not affect yvT ; if it is affected, it
means there are two “new” opposite arrows (after merging) between T and U when we mutate
at all subtrees and localize at T . This requires the existence of a cycle of type B, C, or D.
Therefore, we have successfully merged back all parts of U and two equations still hold. We
repeat this procedure for all neighbor face of T and we are done. �

Remark 3.3. We have defined yevvT and yodvT in the well-split case so that yvT xvT = yevvT + yodvT .
In non well-split cases, yevvT =

∏m
j=1 y2jy

∗
2j−1 is no longer true (we will miss some factors due

to cancellations), but we can still define yevvT and yodvT such that yvT xvT = yevvT + yodvT still holds.

3.2. Superposition. Until this point, we have never mutated at previously mutated vertices.
Here we describe an instant where we still get combinatorial interpretations in G when we
repeatedly mutate at some sequences of vertices in Ḡ.

We introduce some notations. For each odd n, initial cluster variable of Fn will be called xn
as usual, and further variables we get as we successively mutate at n will be named yn = y[n,n],
y[n−2,n+2], y[n−4,n+4],... and so on. For even n, variables will be called xn, yn = y[n−1,n+1],
y[n−3,n+3], y[n−5,n+5],... and so on.

A snake was defined as a tree without bridge faces. We will write faces of a snake S as
F1, ...Fn where Fi < Fj if and only if i < j so that Fn is the maximal face. We let the vertex
in Ḡ corresponding to Fi be i. When we have a snake S = ∪ni=1Fi, we say S is straight
at 1 < j < n if in Ḡ with respect to j (vertex corresponding to Fj) arrows j ↔ j + 1 and
j − 1↔ j have the opposite direction. Otherwise we say it is bent at j. In this situation, let
ei be the unique edge shared by Fi and Fi+1 for i = 1...n− 1. Let e0 (resp. en) be the second
edge different from e1 (en−1) in F1 (Fn) counted counterclockwise (clockwise) from e1 (en). In
Fi, we label edges of Fi counterclockwise from ei as ei,−ji−1, ei,−ji , ...ei,−2,ei,−1, ei,0, ei,1, ...ei,ki

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 11

where ei−1 = ei,0, ei = ei,ki+1 = ei,−ji−1. Here, ki and ji will have the same parity. An edge of
S will be called even if it is ei,q for some nonzero even q and 1 ≤ i ≤ n. An edge which is not
one of ep is called odd otherwise. As two exceptions, e0 = e1,0 and en = en,−2 are considered
even. Parity of edge ei,q will mean parity of q. Parity of ep for 1 ≤ p < n is not defined. An
infinite snake S is simply a union of distinct faces of G, S = ∪i∈ZFi (or ∪i∈NFi) such that any
subunion of the form ∪j≤i≤kFi for any pair of integers j≤ k is a snake of order k − j + 1 (or
for a pair of integers 1 ≤ j ≤ k for S = ∪i∈NFi).

F1

F2
F3

F4
F5

e1,0 = e0 e5,−2 = e5

e1,−1

e1,3

e1,2

e1,1

e1

F1 F2 F3 F4 F5

e1,0 = e0

e1

e1,−1

e1,2

e1,1

e5,−2 = e5

e1,3

Figure 3.4. Two hexagonal snakes; At vertices 2, 3, and 4, above one is bent
and below one is straight

Definition 3.4. A spine will mean a (possibly infinite) snake that is straight at all faces.
Assume S = ∪a≤i≤bFi is a spine. (a = −∞, b =∞, or both is allowed) We let Ti,k be the tree
attached to the edge ei,k whenever ei,k is well-defined. Define Ti = Fi ∪ (∪Ti,k) for all i and k
defined, and T[c,d] = ∪c≤k≤dTk where we require Tk to be well-defined for all c ≤ k ≤ d.

In a spine, mutation at Fi and Fj commutes if |i−j| ≥ 2. So consider a procedure “o” where
we simultaneously mutate at all odd faces of S and “e” where we mutate at all even. When
we do “o” (or “e”) arrows Fi → Fi+1 still alternate for all i; that is, we again get a spine no
matter how many times we repeat this simultaneous mutation. Motivated from this, we do not
define the ordering on S in the usual way but we impose Fodd < Feven when we consider the
sequence oeoeoe....We assume that each face Fi have trees (all commuting) attached and they
are already mutated (which will imply that Ti,l l Fi for all i and l where Ti,l is the maximal
face of Ti,l). Mutation sequences eoeoeo... or oeoeoe... respects 2-periodicity of our rough
picture, so it is enough to localize at one even face of S after eo...eoeo or o...eoeo and one
odd face after oe...oeoe or e...oeoe. To be more precise, if at a certain stage Fi carries T[a,b]

then it automatically means Fi+2k carries T[a+2k,b+2k] for any integer k, as long as Fi+2k and
T[a+2k,b+2k] are well-defined.

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 12

One thing we should note is that T[a,b] is not a tree since it has many maximal faces (namely
all Feven in T[a,b]) but we can define its monomial in the exact same way, since it is well-ordered
among faces that contain a U -cycle; that is, any U -cycles cannot pass through several maximal
faces (Remark 2.5).

Theorem 3.5. Assume we have a spine S in G whose faces are indexed by integers, ∪a≤i≤bFi.
After mutating at all commuting trees Ti,l, we consider the mutation sequence oeoeoeoeoeoe....
At kth stage, Fk+1+2t carries T[1+2t,2k+1+2t] for any integer t whenever T[1+2t,2k+1+2t] is well-
defined. That is, y[1+2t,2k+1+2t] = w(T[1+2t,2k+1+2t])m(T[1+2t,2k+1+2t]).

Proof. It is enough to show y[1,2k+1] = w(T[1,2k+1])m(T[1,2k+1]), assuming that T[1,2k+1] is well-
defined. This is achieved by comparing the cluster variable formula from mutated quiver with
the weight formula of the graph. To get the cluster variable formula, we need an explicit
description of all the arrows connected to faces of S at each stage of our mutation sequence;
which can be done by induction. On the other hand, we will use Kuo’s condensation to get a
formula for the weights. Once we have all the formulas, it is a direct computation.

Without loss of generality, assume that we have an arrow F0 → F1 in Ḡ, which will determine
directions of all other arrows in Ḡ. Localize at F1, after mutating at all its attached trees,
T1,l. Since T1 = F1 ∪ (∪T1,l) is a tree with maximal face F1, y1x1 = y[1,1]x1 = yod1 + yev1 . We
did not mutate at F0 and F2 yet, so variable yod1 contains arrows from F0 and F2; we now
want to keep track of these arrows separately. We define x0x2y

tod
1 = yod1 , ytev1 = yev1 so that

y[1,1]x1 = x0x2y
tod
1 + ytev1 .

F0

F1

F2

F3

F4

F5

ytod1

ytod2

ytod3

ytod4

ytev1

ytev2

ytev3

ytev4

F0

F1

F2

F3

F4

F5

ytod1

ytod2

ytod3

ytod4

ytev1

ytev2

ytev3

ytev4

F0

F1

F2

F3

F4

F5

ytod1

ytod2

ytod3

ytod4

ytev1

ytev2

ytev3

ytev4

Figure 3.5. First two mutations; Dashed lines in the rightmost figure now
carries ytev1 /P12, y

tev
3 /P23, y

tev
3 /P34, and ytev5 /P45 respectively from top to bot-

tom.

Define ytedn and ytodn similarly, such that ynxn = y[n,n]xn = xn−1xn+1y
tod
n + ytevn for all

n. Applying (3.2) to the tree T1 with maximal face F1 gives us yev1 = w(T ev1)m(T1)x1

and yod1 = w(T od1)m(T1)x1. Here, notice that w(T ev1) contains w(e0) and w(e1); define
w(T tev1)w(e0)w(e1) = w(T ev1) and w(T tod1) = w(T od1). From these, we now have formulas

(3.3) ytevn = w(T tevn)m(Tn)/xn−1xnxn+1

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 13

and

(3.4) ytodn = w(T todn)m(Tn)xn/xn−1xn+1

for any n.
After we get yi for all odd i, we do “o” and look at even snake faces; by periodicity, we

only need to look at one of them, say F2. This is another tree phenomenon at work with
maximal face F2, where the tree attached to e1 is T1 and the tree attached to e2 is T3 and we
have original trees of F2, namely T2,l. We will actually verify F2 carries T[1,3] with our new
notations. For a moment assume that it is a tree well-split case; that is, a neighborhood of
T[1,3] do not share edges with both of T1 and T2 or both of T3 and T2. Sharing edges with both
T1 and T3 does not matter; first, there cannot be any cycle (the monomial is not affected)
going through F1, F2, and F3 as our snake is straight, and also at this stage, arrows originated
from T1 and T3 cannot kill each other as they have the same direction (cluster variable formula
is also unaffected). In this setting, we easily verify by comparing exponents that

m(T[1,3]) = m(T1)m(T2)m(T3)/x1x
2
2x3,

and from Equation (3.1), it is direct to see

w(T[1,3]) = w(T1)w(T tev2)w(T3) + w(T tev1)w(T tod2)w(T tev3).

Multiply both sides by m(T[1,3]) and compare the resulting equation with y2x2 = y[1,3]x2 =

y1y
tev
2 y3+ytev1 ytod2 ytev3 , which we get from the quiver. Then we see y2 = m(T[1,3])w(T[1,3]) holds.

In the general case, for each neighbor face U of T[1,3], we might observe cycles U ↔ T[1,3] going
through F1 and F2 or F2 and F3. That is, they all have the same order and hence can be
taken care of (as before, we are assuming that we first separate neighbor faces to reduce to a
tree well-split case, then merge parts from U -cycles of this particular form, and finally merge
back parts left - which does not change anything indeed) one by one. In the former case, a
component of ytev1 is reacting with a component of ytev2 and in the latter case, a component of
ytev3 is reacting with a component of ytev2 . If we look at localization of y2, it is clear that at this
stage these are only two possibilities of cancellations, since cancellations of (sets of) arrows
ytod2 and ytev2 are assumed to be taken care of. Such cancellations are shown as circular arrows
in Figure (3.5). So when we pick one of these cycles and merge corresponding parts back to
U , m(T[1,3]) lose one xvU ; on the other side, ytev2 always lose one xvU and either ytev1 or ytev3

(not both) lose one xvU . That is, y2 lose one xvU in any cases; y2 = m(T[1,3])w(T[1,3]) remains
true. After we are done with merging, all U -cycles going through F2 are determined for all
neighbor faces U and now ytev1 and ytev3 has lost some monomials respectively. Call them P12

and P23 respectively so that the former ytev1 , ytev2 , and ytev3 now carries ytev1 /P12, ytev2 /P12P23,
and ytev3 /P23, respectively. Same thing is happening at every F2k due to 2-periodicity. In
general, U -cycles are “short” (only formed within U ↔ Ti ↔ Ti+1 for some i) so we can merge
every parts back after taking care of such short cycles. Our monomial formula now reads

m(T[2k−1,2k+1]) = m(T2k−1)m(T2k)m(T2k+1)/x2k−1x
2
2kx2k+1P2k−1 2kP2k 2k+1.

After “e” we localize at F3. We have arrows going out to faces that have variables ytod2 , ytod3 ,
ytod4 , ytev1 /P12, ytev5 /P45, ytev3 /P23, and ytev3 /P34 and arrows coming in from faces of ytev3 , y2,
and y4. The arrow ytev3 is totally canceled by two arrows ytev3 /P23 and ytev3 /P34 and we are left
with the arrow ytev3 /P23P34 going out. So we have only two arrows coming in faces F2 and F4,
so no new cancellations can occur at this step (this must be happening since we have merged
all our faces back). We have y[1,5]y3 = y2y4 + (ytev1 /P12)(ytev3 /P23P34)(ytev5 /P45)ytod2 ytod3 ytod4 .

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 14

We claim and prove by induction that after we mutate for k times and look at Fk+1, after
cancellations, we have arrows going out to ytodi where 2 ≤ i ≤ 2k, ytev1 /P12, ytev2k+1/P2k 2k+1,
and ytevj /Pj−1 jPj j+1 for 3 ≤ j ≤ 2k − 1 and arrows coming in from Fk and Fk+2. That is,

(3.5) y[1,2k+1]y[3,2k−1] = y[1,2k−1]y[3,2k+1] +
2k∏
i=2

ytodi

2k−1∏
j=3

(ytevj
1

Pj−1 jPj j+1
)
ytev1 ytev2k+1

P12P2k 2k+1
. (k ≥ 2)

Again, no further cancellations of arrows can occur. Next we consider the monomials. It is
another simple computation to check that m(T[1,2k+1])m(T[3,2k−1]) = m(T[1,2k−1])m(T[3,2k+1])
holds. Also it is straightforward to see

(3.6) m(T[1,n]) = x1xn

n∏
i=1

(
m(Ti)
x2
i

)

n−1∏
j=1

(
1

Pj j+1
).

a b

cd

F1

F2

F3

F4

F5

a b

cd

e1

e4

e1

e4

Figure 3.6. A simple example of T[1,5]\{a, b} and T[1,5]\{a, d}. (left, right)

The final piece of the puzzle is a corresponding formula for weights. Let two vertices of e1

be a and b and two vertices of e2k be c and d such that a, b, c, and d are located in the cyclic
order in a face of S. We apply the condensation formula in [7] to H = T[1,2k+1] with these
four vertices. S is straight so a, c are in the same vertex set and b, d are in the other vertex
set. Hence

w(H)w(H\{a, b, c, d}) = w(H\{a, b})w(H\{c, d}) + w(H\{a, d})w(H\{b, c}).
We see what happens if we get rid of a and b (and all incident edges to them). In T1,

we will have full even positions (including e0) and star odd positions, which together have
weight w(T tev1)/x0x2. On the other hand, in T2 we have full odd positions and star even posi-
tions, leaving T[3,2k+1] free. Therefore, w(T[1,2k+1]\{a, b}) = w(T tev1)w(T tev2)w(T[3,2k+1])/x0x2.
Two terms w(T[1,2k+1]\{c, d}) and w(T[1,2k+1]\{a, b, c, d}) are analogously determined. When

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 15

we get rid of a, d, what happens is that in T1we still have w(T tev1)/x0x2. But in T2, we
have a mixed pattern; for positive l, when we consider T2,l then we have full odd and star
even, but for negative l we have full even and star odd. This pattern is reversed in T3;
for positive l we have full even and star odd, and for negative l we have full odd and star
even. This continues to alternate until we reach the end where we are left with the weight
w(T tev2k+1)/x2k+1x2k+2. By symmetry, we have the opposite pattern when we get rid of b, c and
it shows w(T[1,2k+1]\{a, d})w(T[1,2k+1]\{b, c}) equals (w(T tev1)/x0x2)2(w(T tev2k+1)/x2k+1x2k+2)2

times
∏

2≤i≤2k(w(T tevi)w(T todi)). When we plug everything in the condensation formula we
are left with

w(T[1,2k+1])w(T[3,2k−1]) = w(T[1,2k−1])w(T[3,2k+1]) +
2k∏
i=2

w(T todi)
2k−1∏
j=3

w(T tevj)
w(T tev1)w(T tev2k+1)

x0x2x2k+1x2k+2
,

where k ≥ 2. Multiply both sides of this equation with m(T[1,2k+1])m(T[3,2k−1]), which is
equal tom(T[1,2k−1])m(T[3,2k+1]). We first use induction assumptions (w(T[3,2k−1])m(T[3,2k−1]) =
y[3,2k−1], w(T[1,2k−1])m(T[1,2k−1]) = y[1,2k−1], and w(T[3,2k+1])m(T[3,2k+1]) = y[3,2k+1]) to sim-
plify. To take care of the last term, we use (3.6) to write m(T[1,2k+1]) and m(T[3,2k−1]) as
products of m(Tj) and other monomials. Then we can again simplify by equations (3.3) and
(3.4). Finally, we compare the resulting equation with (3.5); we are left with

y[1,2k+1] = w(T[1,2k+1])m(T[1,2k+1]).

�

4. Applications

4.1. Infinite Grids.

4.1.1. The Square Grid. Consider the infinite unit square grid G in which squares are centered
at (i, j) where i and j ranges over all integers. Naturally, each square which we will denote
as s(i, j) will have variable x(i,j) indexed by its center. Its dual quiver will be another infinite
square grid where arrows are cyclic and vertices are indexed by two integers.

0

0’

-1 1

-1’ 1’

2 3

2’ 3’

-2-3

-2’-3’

Figure 4.1. 2×∞ Rectangular Quiver

To approach the original conjecture, we define an equivalence relation on the set Z × Z:
(a, b) ∼ (c, d) if and only if a= c and b and d have the same parity. We set n and n′ to be the
equivalence classes containing (n, 1) and (n, 0) respectively. With this relation, our infinite
grid quiver is folded into 2 by ∞ quiver with vertices n and n′. In this setting, our infinite
straight snake S will be the union of all squares with its first coordinate zero. These squares
are colored by 0 and 0′, alternatively.

On the infinite gridG, consider the following three families of graphs {P (j, k)n}∞n=1,{Q(j, k)n}∞n=1,
and {R(j, k)n}∞n=1 for each pair of non negative integers (j, k), where

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 16

Figure 4.2. Graphs of P (4, 2)3, R(4, 2)3, and A(4, 2)3; the squre s(0, 0) is
marked with a dot

P (j, k)n =
(⋃
−j≤i≤k

0≤l≤n−1

s(i, 2l)
)
∪
(2n−1⋃
m=1

s(0,m)
)
,

R(j, k)n =
(⋃
−j≤i≤k

0≤l≤n−2

s(i, 2l + 1)
)
∪
(2n−1⋃
m=1

s(0,m)
)
,

and

A(j, k)n =
(⋃

0<i≤k
0≤l≤n−2

s(i, 2l + 1)
)
∪
(⋃
−j≤i<0

0≤l≤n−1

s(i, 2l)
)
∪
(n−1⋃
m=1

s(0, 2m− 1)
)
.

By using Theorem (3.5), we obtain the following result.

Corollary 4.1. We first mutate in the order −j,−j − 1, ...,−2− 1, k, k− 1, k− 2, ...2, 1 (first
mutate at the branches) and then mutate in the sequence 0, 0′, 0, 0′, 0, then y[0,2n−2] =
w(P (j, k)n)m(P (j, k)n). When we mutate at the branches and mutate at 0′, 0, 0′, 0, 0′, ..., we
have y[0,2n−2] = w(R(j, k)n)m(R(j, k)n). Finally, when we mutate in the order −j,−j −
1, ...,−2−1, k′, (k−1)′, ...2′, 1′ and mutate at 0, 0′, 0, 0′, 0, ..., y[0,2n−2] = w(A(j, k)n)m(A(j, k)n).

Proof. We observe that the action of folding the infinite quiver commutes with simultaneous
mutation at all vertices of the same equivalence class. Hence mutating at −j in our folded
quiver corresponds to simultaneously mutating at all vertices (−j, 2r) for all integer r. There-
fore we are really mutating at all the branches when we do −j,−j − 1, ...,−2 − 1, k, k −
1, k− 2, ...2, 1. Our spine (infinite straight snake) is S = ∪i∈Zs(0, i) and superposition applies.
Similarly we treat R and A. �

Remark 4.2. The graphs P (1, 1)n correspond to those appearing in Figure 1.1 and the con-
jecture that inspired this project. When j = k = 1, vertices −1,1 and −1′, 1′ become indistin-
guishable, so we can strengthen the equivalence relation by defining Z × Z: (a, b) ∼ (c, d) if
and only if a,c have the same parity and b,d have the same parity. Then this corresponds to
further folding our 2×∞ quiver to 2× 2 quiver and we get the original conjecture back with
the correct weighting if we name four equivalence classes as 1, 2, 3, and 4 appropriately. Also
R(1, 1) “lives inside” this 2 × 2 quiver but A(1, 1) does not. The smallest quiver containing
A(1, 1) is 2× 4.

From the formula

y[1,2k+1]y[3,2k−1] = y[1,2k−1]y[3,2k+1] +

2k∏
i=2

ytodi

2k−1∏
j=3

(ytevj
1

Pj−1 jPj j+1
)
ytev1 ytev2k+1

P12P2k 2k+1
, (n ≥ 2)

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 17

we get recurrence relations on the number of matchings. We set all initial variables to be
ones, then Pnn+1 = 1 for any n, and if T used to carry a subgraph H of G, yT equals the
number of matchings of H. As an example, we can apply this to P (j, k). For i even, there
are no trees attached to Fi = s(0, i) so ytedi = ytodi = 1. For odd i, we count ytodi = fj+2fk+2

and ytedi = fj+1fk+1 where fv is the vth Fibonacci number with f1 = f2 = 1. Finally
y[1,2n+1] = #matching(P (j, k)n+1), so we are left with the recurrence

p(j, k)n+1p(j, k)n−1 = p(j, k)2
n + (fj+2fk+2)n−1(fj+1fk+1)n+1

for n ≥ 2, where p(j, k)i = #matching(P (j, k)i). Similarly,

r(j, k)n+1r(j, k)n−1 = r(j, k)2
n + (fj+2fk+2)n+1(fj+1fk+1)n−1

for n ≥ 2, where r(j, k)i = #matching(R(j, k)i). Likewise, whenever we have a superposi-
tion situation, we can compute ytodi and ytevi explicitly for all i to get similar recurrences as
above. All of families P , R, and A have vertical period 2. We can unfold 2×∞ quiver to get
skeleton types of graphs of period 4, 6, ... living inside quivers 4×∞, 6×∞, and so on.

1 3 11 4

3

31

1

23 3 11

1

1

1

2

2

4 4

3 3

331 4

32

Figure 4.3. Fully folded rectangular quiver and first five Aztec diamonds

Here we rephrase the Aztec diamond theorem. Consider the fully folded rectangular quiver
and the infinite square grid with the corresponding equivalence relation, so that each square
is colored either 1, 2, 3, or 4. We consider the partial order 3 < 2 < 4 < 1 on the Aztec
diamonds living inside this square grids; then Remark 2.5, we have gU = 1 for every neighbor
face U of each Aztec diamond. We consider the mutation sequence 1, 3, 2, 4, 1, 3, 2, 4, ...
on our quiver. When we mutate at 1 (resp. 3) for the kth time, the cluster variable we get
carries the order 2k− 1 Aztec diamond centered at a face colored 1 (resp. 3). Likewise, when
we mutate at 2 (resp. 4) for the k th time, the cluster variable we get carries the order 2k
Aztec diamond centered at a face colored 2 (resp. 4). A proof can be found in [12].

4.1.2. Tilings of the triangular grid. If we have the triangular grid, we can first consider its
rhombus tilings. Any rhombus tiling is bipartite, so we can consider its dual quiver and apply
previous results. This contains the example of infinite square grid as a special case. We can
define a tile in this triangular grid more generally to be a union t = ∪2m

i=1fi of an even number
of triangles such that for any i, exist j 6= i, fi and fj share an edge. Then, any tiling with
such tiles is again bipartite so we consider its dual quiver. An important example of this tiling
is the infinite hexagonal grid. We see that its dual graph is the triangular grid with arrows
being cyclic in every face.

In the hexagonal grid, we can consider similar types of graphs as in the square grid case, with
the infinite hexagonal spine. For an example, the infinite snake ...BGBGBG... in Figure 4.5 is
straight, so it is a spine. We can attach commuting hexagonal trees to edges of this spine. On

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 18

0 1 2 3

0 1 2 3

-1’ 0’ 1’ 2’ 3’

0 1 2 3

-1’ 0’ 1’ 2’ 3’

4

Figure 4.4. Vertical folding of the infinite triangular quiver into the 2 ×∞
triangular quiver

the quiver side, we can also fold its dual infinite triangular quiver into a 2×∞ triangular quiver
and fold this further in the other direction, too. (This equivalence relation is shown in Figure
4.4.) In this 2 × ∞ triangular quiver, (or equivalently in its further-folded version) we will
get the weights of period 2 hexagonal skeleton-type graphs by following appropriate mutation
sequences. An example is shown in Figure 4.5. Again, we can fold the infinite triangular
quiver to be a 2m×∞ triangular quiver and obtain weights of hexagonal skeleton-type graphs
of period 2m.

4.2. Embedding and Dualizing Quivers. Assume we have a planar quiver Q and want to
find combinatorial interpretations for cluster variables from mutation sequences in V (set of
vertices of Q). We will set xw = 1 for all vertices w /∈ V , so we only need to worry about arrows
between vertices in V . Then we can dualize Q around V to obtain a planar, 2-connected, and
bipartite graph G such that the dual quiver of G is a subquiver of Q whose vertex set contains
V . To obtain such G, we clearly need for all v ∈ V to be cyclic; the direction of arrows
attached to v should alternate. This is also sufficient. Whenever there exists a vertex in V of
degree 2, we attach two (or any even number) new alternating arrows to v. After that, draw
a 2n-gon around each v ∈ V where deg v = 2n in a way that if v, w ∈ V are connected by an
arrow, their corresponding polygons will share an edge. There can be issues on where and how
many should we add such arrows, given a vertex of degree 2. It does not matter; all planar
bipartite graphs we obtain in this way will be matchingwise equivalent. That is, their weights
(w(G)m(G)) are the same. Assume we have obtained two dual graphs, G1 and G2, from a
quiver Q. Consider a tree in G1, ∪ni=1Fi; this corresponds to a set of vertices in Q, and then
consider the union of faces in Q corresponds to those vertices. We can see that such union
of faces is a tree, ∪ni=1F

′
i , and has the same weight as ∪ni=1Fi. To prove this, it is enough to

show that the action of adding two opposite arrows to a vertex does not affect the weight of
its dual.

Assume we have a cyclic vertex vE with degree 4 (Figure 4.6). We draw a quadrilateral
E around vE such that each arrow crosses exactly one side of this quadrilateral. If we add
a 2-cycle between vA and vE , vE is still cyclic, now with degree 6 - so we get a hexagon E′
around vE . Notice that any matching of E′ comes from a matching of E with one of two new
edges. These two new edges have the same weight of 1/xvExvA ; hence w(E′) = w(E)/xvExvA .
On the other hand, in the monomial formula, m(E′) has one more factor of xvE than m(E)

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 19

A

H

BA G H

BA

BA

G H

G H

BA

BA

BA

G H

G H

BA

BA

BA

BA

G H

BA

G H

G H

G H

BA

BA

BA

BA

G H

A B C

E F G H

D

Figure 4.5. The mutation sequence A,H,B,G,B,G,B,G, ... carries this fam-
ily of hexagonal graphs (embedded in the hexagonal grid)

EA

B

C

D

E ′

A

B

C

D

E ′′

B

C

D

A

Figure 4.6. Matchingwise equivalent graphs

since its number of edges has increased by two. It also has one more factor of xvA , as the
neighbor face A now shares two more edges with E′ and one additional A-cycle is formed.

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 20

Hence m(E′) = m(E)xvExvA and we have w(E′)m(E′) = w(E)m(E). Alternatively, if we use
Speyer’s weighting, it is more direct to see that w̄(E) = w̄(E′). This argument applies equally
well when we consider a union of faces containing E: for example, w(D ∪ E)m(D ∪ E) =
w(D ∪ E′)m(D ∪ E′).

As an example, we dualize cyclic quivers of n vertices. In such a quiver, each vertex has
degree 2, we add two (or any even number) arrows to each vertex and dualize around all
vertices. From above discussion, weights of the trees living inside the dual graph does not
depend on the location and number of the (pairs of opposite) arrows added. Moreover, we do
not care to which vertices such dashed arrows are connected on the other side.

A E

B
C

D

vA

vB

vC

vD

vE

A
E

B
C

D

vA

vE

vB vD

vC
Figure 4.7. Dualizing the cyclic quiver on five vertices. We can add extra
arrows on the outer face of the cycle (above) or do the opposite (below). Two
resulting planar bipartite graphs look quite differently. Above graph has five
finite faces sharing a vertex. Below graph consists of five infinite faces, and a
“hollow” in the center. One can observe that a snake in one of them has the
same weight as its corresponding snake on the other planar bipartite graph
(matchingwise equivalent).

In [1], it was shown that these cyclic quivers are mutation equivalent to the quiver associated
with the cluster algebra of type Dn. We also know there are n2 distinct cluster variables, from
[4]. When we count the number of snakes in the corresponding dual planar bipartite graphs,
we see there are n snakes of order i for any 1 ≤ i ≤ n − 1. An observation is that when we
have a tree T with maximal face T and mutate in any natural sequence, the denominator
of yvT equals

∏
Fα∈T xα. One can also observe that this denominator never cancels out with

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 21

vA
vB

vC vD

vE

vF

vG

vI

vH

A B C D F

E

G H

I

Figure 4.8. A tree quiver and its dual tree graph

the numerator. Therefore, yvT is distinct for all n(n − 1) snakes. This shows that every non
initial cluster variable in this form of Dn represents the weight of a snake. This is one of a few
instances where all non initial variables can be represented by snakes in the dual graph.

Now, if some vertices in V were not cyclic, we can embed Q into a quiver which is cyclic
at vertices in V ; simply force each vertex in V to be cyclic by adding arrows of appropriate
directions. Again, we cannot add arrows between vertices in V . For each vertex, there is
a minimal number of mandatory arrows to make it cyclic. After that, we can add pairs of
opposite arrows to each vertices, which will not affect the weight of its dual. That is, chosen
a set of vertices V in Q, its dualization after embedding into a cyclic quiver is matchingwise
unique.

As an example of this embedding, we can consider a particular family of quivers, which will
be dual to trees. We will say a quiver is a tree if when viewed as an undirected graph, it is
connected with no cycles (usual definition of a tree in graph theory). Given a tree quiver Q,
we can embed it to a cyclic quiver by adding arrows and dualize “around” vertices of Q to
obtain a planar 2-connected bipartite graph, TQ, which is indeed a tree we considered in the
previous section, without prescribed partial order. When we dualize TQ, we recover Q (with
uninteresting vertices w with xw = 1). That is, there is a bijective correspondence between
tree quivers and (matchingwise) equivalence classes of trees, if we forget about partial order.

Now we impose a partial order on TQ. We have many choices as any face of TQ can be
chosen as the maximal face. Then it induces a partial order on the quiver Q and naturally we
consider natural mutation sequences correspond to this particular order. In this situation, all
neighbor faces have variables 1 associated to them, so in particular, m(TQ) is independent of
the partial order on TQ. The weight w(TQ) is also independent, so m(TQ)w(TQ) = yvT (T is
the maximal face) is independent. Equivalently we can use Speyer’s weighting, w̄(TQ) = yvT .
That is, the cluster variable yvT is indeed something independent on the choice of T but it
depends only on the shape of Q. Hence we can define a variable yQ associated with Q.

Corollary 4.3. Assume Q is a tree quiver. If we follow any natural mutation sequence on
Q with respect to any partial ordering on TQ, we get the same variable; yQ = m(TQ)w(TQ) =
w̄(TQ).

A particular example of a tree quiver is the one corresponds to the cluster algebra of type
D5. We add arrows to turn it into a cyclic quiver, which is shown on the right. Dualize
this cyclic quiver and obtain a planar graph G. Look at the faces of G which correspond to
the vertices from Q. Then we count that this shaded area has seventeen trees. Therefore,
three noninitial cluster variables are not covered by trees. This example was motivated from
Musiker’s previous work; one can find out in [8] that the other three graphs have two central
hexagons and extra arcs. Such extra arcs are also found in [9].

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 22

Figure 4.9

For another example, we analyze the case of An. For each n, consider the linear quiver which
correspond to the cluster algebra of type An where arrows are alternating. As an example,
when n = 5 we have

1 2 3 4 5
.

Let us name this quiver Qn. Vertices are named 1, 2, ..., n and their corresponding faces will
be named F1, ..., Fn. We embed all of Qn into the infinite square grid quiver. Its dual is the
infinite square grid, and we consider trees consisting of squares F1, F2, ..., Fn. These are snakes
of the form ∪ki=jFi for all pairs of integers (j, k) where 1 ≤ j < k ≤ n and hence we precisely
recover the corresponding result in [8]. We can repeat this analysis for any linear quiver which
is mutation equivalent to Qn. This interpretation is not new; see [10].

1 2 3 4 5

1

2 3 4 5

1 2 3 4 5

1 2

3 4

5
2 3 4 51

1 2 3 4 5

Figure 4.10. Three linear quivers of the type A5 and their embeddings

4.3. Unfolding. If we have a quiver with multiple arrows, it is more efficient to unfold first
and dualize, since we might observe a spine and then superposition applies. In particular, if we
have a doubled arrow between two vertices of Q, it unfolds to be an infinite spine. The simplest
possible example of this type is the following: 1 2. This was covered in [9], with
Speyer’s weighting (which will be equivalent to Kenyon’s weighting). We can fold it to be the
infinite linear quiver 1 12 2 2 .
This is a subquiver of the square grid quiver, so we naturally consider its dual living inside
the square grid:

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 23

2 1 2 1 21 2
.

Recall that a spine is defined as a (possibly infinite) snake which is straight at all its faces.
Equivalently, a snake graph is a spine if we have alternating arrows along vertices in its dual
quiver. So this graph is a spine, and we see the mutation sequence 1,2,1,2,... corresponds

to subgraphs
1

,
1 2 1

,
1 2 11 2

, and so on. Alternatively, one can
observe that this quiver corresponds to {P (0, 0)n}n≥1 considered in 4.1.1.

As a slightly more complicated example, consider the cyclic triangular quiver with doubled
arrows. Cluster variables from this quiver are called Markoff polynomials in [11]. We can
unfold this quivers to be a subquiver of the infinite triangular quiver. Hence we consider the
corresponding hexagonal subgraph of the dual infinite hexagonal grid. This 2×∞ hexagonal
graph (embedded in the hexagonal grid) is shown on the right. In Figure 4.11, the infinite
snake ...acacac... qualifies as a spine, since the direction of arrows a← c and c→ a alternates.
Therefore, superposition applies to mutation sequences a, c, a, c, ... and c, a, c, a, That is, if
we never mutate at b, all cluster variables are represented as snakes embedded in this 2×∞
hexagonal graph. Following the results from [11], we can attempt to represent all cluster
variables as snakes living inside this graph. The following is merely a re-interpretation, so we
will omit the proofs.

a b

c

a
a c a

a c

a c

a

a

c a

c ac

a

a c b a c b

b a c b a c

Figure 4.11. Unfolding of a triangular quiver and first few superpositions
along ...acacac..., namely [a], [ac], [aca], and [acac].

We will illustrate the procedure through an example. Given a finite mutation sequence
a1...an, let us name the snake it carries as [a1a2...an]. We only consider reduced sequences;
that is, ai 6= ai+1 for all i. Consider mutation sequence acab. The mutation sequence aca
carries the straight snake of length five ([aca]), from superposition. When we mutate at b,

we claim that it carries the snake [acab] =

a c

a

a c a

c b a ca , where its monomial is
the square of the monomial of [aca]. This snake is obtained by joining two [aca]s through a
face of b and “splitting” the vertical edge shared by faces c and b. This snake is symmetric,
and at each ends it contains snakes [ac] and [aca] which are the snakes carried by vertices
c and a respectively at this stage. Now when we mutate at c (resp. a), c (resp. a) carries
the snake obtained by combining two above snakes in a way that their intersection is [ac]

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 24

(resp. [aca]). In general, when we have a sequence a1a2...an, where an is a previously mutated
vertex, (say at is the latest) the snake [a1...an] is obtained by combining two snakes [a1...an−1]
in a way that their intersection is precisely [a1, ...at]. This works since we can prove by
induction that any snake [a1...an] contains the snake [a1...an−1] at each ends (which would
contain [a1...an−2] and so ons. We need a separate definition for m([a1...an]), and one can
verify that it equals m([a1...an−1])2/m([a1...at]). If an were not previously mutated, connect
two [a1...an−1]s through a face of an to obtain [a1...an], and m([a1...an]) = m([a1...an−1])2.

a c

a

a c a

c b a ca

a c

a

a

c b a c

Figure 4.12. [acabc]

Remark 4.4. We have observed connections between a planar bipartite graph and the cluster
algebra its dual quiver generates, through tree and superposition phenomena. Although they
are of limited use, it is likely that such phenomena are special instances of more general
phenomenon. Still, the dual planar graph of a quiver is not “big” enough to cover all cluster
variables from its dual quiver, as the need for a split of edges in the above example or extra arcs
from [8] suggests. It is possible that there exists a higher-dimensional construction containing
more information about the cluster algebra from its corresponding quiver.

Acknowledgments

This research was done in the University of Minnesota REU program, which was supported
by NSF grant number DMS-1001933. I would like to thank Vic Reiner, Gregg Musiker,
and Pavlo Pylyavskyy for their guidance and support. I owe my deepest gratitude to Gregg
Musiker; he not only proposed the original conjecture and the cyclic grid quiver but also he
gave me countless insightful suggestions throughout the REU program. It should be mentioned
that I relied on his Sage package with Christian Stump [6] to test conjectures. I also thank
Shiyu Li and Gregg Musiker for reading through and commenting on the drafts.

References

[1] Aslak Bakke Buan and Hermund André Torkildsen. The number of elements in the mutation class of a
quiver of type Dn. Electron. J. Combin., 16(1):Research Paper 49, 23, 2009.

[2] P. Caldero, F. Chapoton, and R. Schiffler. Quivers with relations arising from clusters (An case). Trans.
Amer. Math. Soc., 358(3):1347–1364, 2006.

[3] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497–529
(electronic), 2002.

[4] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. II. Finite type classification. Invent. Math.,
154(1):63–121, 2003.

[5] R. Goncharov, A. B.; Kenyon. Dimers and cluster integrable systems. eprint arXiv:1107.5588, 2011.
[6] Christian Stump Gregg Musiker. A compendium on the cluster algebra and quiver package in sage.

arXiv:1102.4844v2, 2011.
[7] Eric H. Kuo. Applications of graphical condensation for enumerating matchings and tilings. Theoret.

Comput. Sci., 319(1-3):29–57, 2004.
[8] G. Musiker. A graph theoretic expansion formula for cluster algebras of classical type. Annals of Combi-

natorics, 15:147–184, 2011.

BIPARTITE GRAPHS, QUIVERS, AND CLUSTER VARIABLES 25

[9] Gregg Musiker and James Propp. Combinatorial interpretations for rank-two cluster algebras of affine
type. Electron. J. Combin., 14(1):Research Paper 15, 23 pp. (electronic), 2007.

[10] Gregg Musiker and Ralf Schiffler. Cluster expansion formulas and perfect matchings. J. Algebraic Combin.,
32(2):187–209, 2010.

[11] James Propp. The combinatorics of frieze patterns and markoff numbers. arXiv:math/0511633v4, 2005.
[12] David E. Speyer. Perfect matchings and the octahedron recurrence. J. Algebraic Combin., 25(3):309–348,

2007.

