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We investigate conserved quantities of periodic box-ball systemssPBBSd with ar-
bitrary kinds of balls and box capacity greater than or equal to 1. We introduce the
notion of nonintersecting paths on the two dimensional array of boxes, and give a
combinatorial formula for the conserved quantities of the generalized PBBS using
these paths. ©2005 American Institute of Physics.fDOI: 10.1063/1.1842354g

I. INTRODUCTION

The box-ball systemsBBSd is a reinterpretation of a soliton cellular automaton proposed by
Takahashi–Satsuma1 as a dynamical system of balls in a one dimensional array of boxes.2 Hence,
the BBS shows both a feature of cellular automatasCAd and that of solitons.

CAs are mathematical idealizations of physical systems in which space and time are discrete,
and physical quantities take on a finite set of discrete values. The CAs were originally introduced
by von Neumann and Ulam as a possible idealization of biological systems, with the particular
purpose of modeling biological self-reproduction. Physical systems containing many discrete el-
ements with local interactions are often conveniently modeled as the CAs. Many biological sys-
tems have been modeled by the CAs. The CAs have also been used to study problems in number
theory and their applications to tapestry design. The CAs play an important role in various fields
like these.

On the other hand, the notion of a soliton arose from a peculiar solution of partial differential
equations.3,4 Actually, the system in which solitons exist has continuous and smooth mathematical
structures, such as an inverse scattering method, a pseudodifferential operator, an algebraic mani-
fold, an infinite-dimensional Lie group and so on. Because of these rich structures, the soliton
systems play an important role in various fields of mathematics and physics.

The reason why the BBS has these two completely different features is well explained by the
notion of ultradiscretization.5 Ultradiscretization is a limiting procedure through which we can
construct piecewise linear equations or CAs from continuous equations. By taking the ultradiscrete
limit, the rich mathematical structures of soliton systems are introduced to the CAs. On the other
hand, the useful properties of the CAs for computer simulation are introduced to the continuous
systems by inverse ultradiscretization. Using this limiting procedure, the BBSs are obtained from
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the soliton equationssthe KdV equation and the Toda equationd.6,7 Thus the BBS hasN soliton
solutions and an infinite number of conserved quantities and the BBS is called an “integrable” CA.

The periodic box-ball systemsPBBSd is the BBS in which the updating rule is extended to be
compatible with a periodic boundary condition.8 Let us consider a one-dimensional array ofN
boxes. A periodic boundary condition is imposed by assuming that theNth box is adjacent to the
first one. sWe may imagine that the boxes are arranged in a circle.d In the generalized PBBS
sgPBBSd, the capacity of thenth s1ønøNd box is denoted by a positive integerun, and we
suppose that there areM kinds of balls distinguished by an integer indexj s1ø j øMd. When
∀nun=1 andM =1, the gPBBS coincides with the PBBS. Then, the rule for the time evolution of
the gPBBS from time stept to t+1 is given as follows:

s1d At each box, create the same number of copies of the balls with index 1.
s2d Choose one of the copies arbitrarily and move it to the nearest box with an available space

to the right of it.
s3d Choose one of the remaining copies and move it to the nearest available box on the right of

it.
s4d Repeat the above procedure until all the copies have been moved.
s5d Delete all the original balls with index 1.
s6d Perform the same procedure for the balls with index 2.
s7d Repeat this procedure successively until all of the balls are moved.

An example of the time evolution of the gPBBS according to this rule is shown in Fig. 1.
In Ref. 9, we have established an algorithm to construct the conserved quantities of the

gPBBS by means of the ultradiscretization of the nonautonomous discrete KPsndKPd equation.10

Using this algorithm, we obtain an expression for the conserved quantities of the gPBBS in the

FIG. 1. Time evolution rule for the PBBS.
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case of one kind of ballssM =1d. We have also proved that, when box capacities are all one, our
conserved quantities forM =1 coincide with those described by the Young diagram.11

In this paper, using a path description and the results obtained in Ref. 9, we investigate the
conserved quantities of the gPBBS for arbitraryM. In Sec. II, we derive the path description of the
characteristic polynomial of a particular matrix. In Sec. III, we briefly summarize the results of
Ref. 9, which we will use in the subsequent sections. In Sec. IV, we treat the ndKP equation which
corresponds to the gPBBS. We shall obtain an explicit expression for the conserved quantities of
the ndKP equation. Using the results in Sec. IV, we construct the conserved quantities of the
gPBBS in Sec. V. In Sec. VI, we discuss algebraic aspects of the gPBBS with respect to the affine
Weyl group and the crystals of quantum affine algebra. Section VII is devoted to concluding
remarks.

II. PATH DESCRIPTION OF CHARACTERISTIC POLYNOMIAL FOR A PARTICULAR
MATRIX

For a particular matrixA which contains a parameterm in the upper half elements, we give a
combinatorial description for coefficients of the characteristic polynomial detslI −Ad in l andm in
terms of nonintersecting pathssTheorem II.1d. The result will be used in the subsequent sections
to obtain a combinatorial formula for conserved quantities of the gPBBS.

We denote bySX the set of all permutations of elements inX, h1,2, . . . ,Nj. Let A be an
arbitraryN3N matrix, andAn,m denote thesn,md element ofA. The characteristic polynomial of
A is

detslI − Ad = o
sPSh1,2,. . .,Nj

sgnssdp
i=1

N

sldi,ssid − Ai,ssidd

= o
k=0

N

s− 1dN−klk o
X,h1,2,. . .,Nj

]X=N−k

o
sPSX

sgnssdp
iPX

Ai,ssid,

wheredn,m is Kronecker’s delta. ForJ,X, we set

SX
J
ª Hs P SXUi , ssid si P Jd,

i ù ssid si P X − Jd.
J .

Since

SX = ø
j=0

N

ø
J,X

]J=j

SX
J sdisjointd,

we have

detslI − Ad = o
k=0

N

s− 1dN−klk o
X,h1,2,. . .,Nj

]X=N−k

o
j=0

N−k

o
J,X

]J=j

o
sPSX

J

sgnssdp
iPX

Ai,ssid

= o
k=0

N

s− 1dN−klko
j=0

N−k

o
X,h1,2,. . .,Nj

]X=N−k

o
J,X

]J=j

o
sPSX

J

sgnssdSp
iPJ

Ai,ssidDS p
iPX−J

Ai,ssidD . s1d

Now we assume
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A = sD0 − YdsD1 − Yd ¯ sDM − Yd, s2d

whereDi =diagsx1,i ,x2,i , . . . ,xN,id si =0,1, . . . ,Md and

Y ª 3
m

1

1

�

1
4 .

If we setDi
s0d
ªDi andDi

srd
ªdiagsxN−r+1,i ,xN−r+2,i , . . . ,xN,i ,x1,i , . . . ,xN−r,id for 0, r ,N, we have

Di
sr+1dY=YDi

srd. Hereafter, fori =0, we defineoc1,c2,¯,ci
¯ª1. Then

A = o
,=0

M+1

s− 1d,S o
0øh1,h2,¯

¯,hM−,+1øM

Dh1

sh1dDh2

sh2−1d
¯ DhM−,+1

shM−,+1−M+,dDY,.

We assumeM +1,N. The sn,md element ofA is the following.

sid if m=n, xn,0xn,1¯xn,M;
sii d if m=N+n−, s,=1,2, . . . ,Md,

s− 1d,m o
0øh1,h2,¯

¯,hM−,+1øM

p
i=1

M−,+1

xn−hi+i−1,hi
;

sii 8d if m=n−, s,=1,2, . . . ,Md,

s− 1d, o
0øh1,h2,¯

¯,hM−,+1øM

p
i=1

M−,+1

xn−hi+i−1,hi
;

siii d if m=N+n−M −1, s−1dM+1m;
siii 8d if m=n−M −1, s−1dM+1;
sivd otherwise, 0.

Hence, froms1d, we have

detslI − Ad = o
k=0

N

s− 1dN−klko
j=0

N−k

m j o
X,h1,2,. . .,Nj

]X=N−k

o
J,X

]J=j

o
sPSX

J

sgnssd

31p
nPJ 1 o

0øh1,h2,¯

¯,hM−N−n+ssnd+1øM

p
i=1

M−N−n+ssnd+1

xn−hi+i−1,hi22
31 p

nPX−J 1 o
0øh1,h2,¯

¯,hM−n+ssnd+1øM

p
i=1

M−n+ssnd+1

xn−hi+i−1,hi22 . s3d

A combinatorial description of the coefficients is possible.
By CN,M+1 we denote theN3 sM +1d boxes in Fig. 2 and bysn,md-box the box at thenth

column in thesm+1dth row. We assume that theNth column is adjacent to the first one.
Let a andb be column indicessa,b=1,2, . . . ,Nd. A pathconnecting theinitial point a and the
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end point bis a scontinuousd polygonal line from the initial pointa to the end pointb which
consists ofsid, sii d or siii d in Fig. 3 locally; here by the initial pointa we mean the middle point of
the south edge ofsa,0d-box and by the end pointb the middle point of the north edge of
sb,Md-box. For example, the left-hand part in Fig. 4 shows a path connecting the initial point 1
and the end point 1, and the right-hand part shows a path from 5 to 2.

There is a natural correspondence betweenpi=1
M−,+1xn−hi+i−1,hi

s0øh1,h2, ¯ ,hM−,+1øMd
and a path onCN,M+1. To put it concretely, we draw the linesid on sn−hi + i −1,hid-box si
=1,2, . . . ,M −,+1d; for eachr, hi , r ,hi+1, we draw the linesii d on sn+ i −r ,rd-box and the line
siii d on sn+ i −r −1,rd-box whereh0=−1 andhM−,+2=M +1; then we obtain a path. For example,
for N=8 andM =5, x1,0x1,1x1,2x1,3x1,4x1,5 andx5,0x4,2x2,5 correspond to paths in Fig. 4, respectively.

Let X=hd1,d2, . . . ,dN−kj s1ød1,d2, ¯ ,dN−køNd; we denote byPsd;sd the set of all
paths which connect the initial pointd and the end pointssdd sdPX, sPSX; cf. Fig. 5d. Define
jn,m:Psd;sd→ hxn,m,1j as

jn,msPd ª Hxn,m sP has the vertical line on thesn,md-box of CN,M+1d,

1 sotherwised,
J s4d

wherePPPsd;sd. Then, we obtain

FIG. 2. N3 sM +1d boxes.

FIG. 3. A line can pass through a box in three possible ways.
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o
X,h1,2,. . .,Nj

]X=N−k

o
J,X

]J=j

o
sPSX

J

sgnssd1p
nPJ 1 o

0øh1,h2,¯

¯,hM−N−n+ssnd+1øM

p
i=1

M−N−n+ssnd+1

xn−hi+i−1,hi22
3 1 p

nPX−J 1 o
0øh1,h2,¯

¯,hM−n+ssnd+1øM

p
i=1

M−n+ssnd+1

xn−hi+i−1,hi22
= o

1ød1,d2,¯

¯,dN−køN

o
J,X

]J=j

o
sPSX

J
o

P1PPsd1;sd
¯ o

PN−kPPsdN−k;sd
sgnssdp

i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid. s5d

If we draw N−k pathsP1PPsd1;sd , . . . ,PN−kPPsdN−k;sd on CN,M+1, some paths may go

FIG. 4. Paths corresponding tox1,0x1,1x1,2x1,3x1,4x1,5 andx5,0x4,2x2,5.

FIG. 5. A pathPPPsd;sd.
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through the same boxscf. Fig. 6d. When two paths pass through a single box, there are six possible
states as shown in Fig. 6. Except for the statescd in Fig. 6, the lines touch each other. When the
lines touch each other, we say that the linesintersect.

Now we show that, ins5d, terms corresponding to intersecting paths cancel out. LetPi1
PPsdi1

;sd and Pi2
PPsdi2

;sd be paths which intersectsi1, i2d. Then at some box, the statesad
occurs as in the left-hand part of Fig. 7. LetPi1

8 andPi2
8 denote new paths constructed fromPi1

and
Pi2

by exchanging lines in the box as shown in Fig. 7, wherePi1
8 PPsdi1

;s8d, Pi2
8 PPsdi2

;s8d and

s8 = S d1 ¯ di1 ¯ di2 ¯ dN−k

ssd1d ¯ ssdi2
d ¯ ssdi1

d ¯ ssdN−kd
D .

Since sgnssd=−sgnss8d and jn,msPi1
8 djn,msPi2

8 d=jn,msPi1
djn,msPi2

d for any Pi PPsdi ;sd si Þ i1, i2d,
the terms corresponding tosP1, . . . ,Pi1

, . . . ,Pi2
, . . . ,PN−kd andsP1, . . . ,Pi1

8 , . . . ,Pi2
8 , . . . ,PN−kd can-

cel each other out ins5d.
If any two of P1, . . . ,PN−k do not intersect, we say that the paths are nonintersecting. Hence

only terms corresponding to nonintersecting paths contribute tos5d.

FIG. 6. Two lines can pass through a box in six possible ways.

FIG. 7. Definition ofPi1
8 andPi2

8 .
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When P1, . . . ,PN−k are nonintersectingfP1PPsd1;sd , . . . ,PN−kPPsdN−k;sd and sPSX
J ,]J

= jg,

ssdid = Hdi−j si − j ù 1d,

dN+i−j si − j ø 0d J
scf. Fig. 8 and Fig. 9d, and therefore sgnssd=s−1d jsN−k−1d.

In s3d, the upper bound of the summation overj is hfsN−kd /NgsM +1dj wheref,g denotes the
largest integer which does not exceed,.

From s3d and s5d, we obtain the following theorem.
Theorem II.1: For A defined in (2), it holds that

detslI − Ad

= o
k=0

N

s− 1dN−klk o
j=0

fsN−kdsM+1d/Ng

s− 1d jsN−k−1dm j o
1ød1,d2,¯

¯,dN−køN

o
sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

p
i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid,

wherejn,m are defined in (4) and

Ps jdsd1, . . . ,dN−kd ª 5sP1, . . . ,PN−kd*
Pi connects the initial point di and the

end point dN+i−js1 ø i ø jd;Pi

connects di and di−js j , i ø N − kd.

Any two of them are nonintersecting
6 . s6d

j

FIG. 8. Nonintersecting pathsP1, . . . ,PN−k.
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III. gPBBS AND ndKP EQUATION

We briefly summarize the results obtained in Ref. 9 to fix the notations used in the subsequent
sections.

A. gPBBS and its equation of motion

In order to describe the dynamics of the gPBBS, we introduce a new independent variables
ssPZd. As any integers can be uniquely expressed ass=Mt+ j stPZ ,1ø j øMd, we denote byun

s

the number of balls with indexj ;smodM in the nth box at time stept=fss−1d /Mg, wherefxg
denotes the largest integer which does not exceedx. In other words, the newtime variables is a
refinement of the original time, indicating explicitly when balls with indexj move.

We assume thatun andun
s satisfy the relation

o
n=1

N

un − o
j=1

M

o
n=1

N

un
j ù o

n=1

N

un
k sk = 1,2, . . . ,Md. s7d

The first and second terms of the left-hand side ofs7d represent the number of spaces and the
number of balls in the gPBBS, respectively, hence the left-hand side is the total number of free
spaces of the gPBBS. The right-hand side ofs7d is the number of balls with indexk. Thus s7d
requires the total number of free spaces of the gPBBS to be larger than the number of copies of
any type of ball in the time evolution process.

Let us consider the process at times, i.e., the movement of the balls with indexj at time step
t wheres=Mt+ j ; we often uses instead ofj , i.e., we treat the indices moduloM. If we definekn

s,
which denotes the number of spaces of thenth box ats, by

kn
s
ª un − sun

s + un
s−1 + ¯ + un

s−M+1d,

condition s7d is rewritten as

FIG. 9. A pathPPPsdi ;sd, sPSX
J , ]J= j , which connectsdi andssdid=di−j.
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o
n=1

N

kn
s ù o

n=1

N

un
s−M+k sk = 1,2, . . . ,Md.

Theorem III.1 (Ref. 9): The time evolution of the gPBBS is described by an ultradiscrete
equation,

un
s+1 − kn

s = max
k=1,. . .,N

Fo
j=1

k

un−j
s−M+1 − kn−j+1

s G − maxF0, max
k=1,. . .,N−1

Fo
j=1

k

un−j
s−M+1 − kn−j+1

s GG . s8d

j

B. From ndKP equation to gPBBS

The ndKP equation is obtained from the generating formula of the KP hierarchy.12,13 It is
given as

sbsmd − csnddtsl + 1,m,ndtsl,m+ 1,n + 1d + scsnd − aslddtsl,m+ 1,ndtsl + 1,m,n + 1d + sasld

− bsmddtsl,m,n + 1dtsl + 1,m+ 1,nd = 0, s9d

wherel, m, nPZ are independent variables, the tau functiont :Z3Z3Z→R sor Cd is dependent
variable and the coefficientsasld, bsmd, csnd are arbitrary functions which depend on the indepen-
dent variablesl, m, n, respectively.

In order to relate the ndKP equation to the gPBBS, we takeasld=0, bsmd=1, csnd=1+dn and
impose the following constraint ontsl ,m,nd:

tsl,m,nd = tsl − M,m− 1,nd.

If we definesn
s
ªtss−1,0,nd, s9d turns into

sn+1
s+M−1sn+1

s

sn+1
s+Msn+1

s−1 − s1 + dn+1d
sn

s−1sn+1
s

sn+1
s−1sn

s = − dn+1
sn

s+Msn+1
s

sn
ssn+1

s+M . s10d

Furthermore, we defineUn
s andKn

s as

Un
s
ª

sn+1
s sn

s+1

s1 + dn+1dsn
ssn+1

s+1 ,
1

Kn
s = dn+1 ·p

j=1

M

Un
s−j+1

and impose the following periodic condition onUn
s:

Un
s = Un+N

s . s11d

Then, froms10d, we have

Un
s+1

Kn
s =

o
k=1

N

p
j=1

k
Un−j

s−M+1

Kn−j+1
s

1 + o
k=1

N−1

p
j=1

k
Un−j

s−M+1

Kn−j+1
s

. s12d

To take the ultradiscrete limit, we setUn
s=eun

s/e, Kn
s=ekn

s/e, 1 /dn+1=eun/e. Then, we found the
following.

Theorem III.2 (Ref. 9): The ultradiscrete limit of the constrained ndKP equation with the
periodic boundary condition [i.e., (11) and (12)] coincides with the time evolution equation of the
gPBBS (8). j
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IV. CONSERVED QUANTITIES OF ndKP EQUATION

In Ref. 9 we derived the Lax representation for the ndKP equation when it has periodN in the
spatial variablen. In short, the equations12d is equivalent to the matrix equation

M̃ssdLsM ;sd = LsM ;s− 1dM̃ssd,

whereM̃ssd=GU;s−Ỹ,

LsM ;sd = s− GK;s + ỸdsGU;s−M+1 − ỸdsGU;s−M+2 − Ỹd ¯ sGU;s − Ỹd, s13d

GK;s=diags1/K1
s ,1 /K2

s , . . . ,1 /KN
s d, GU;s=diags1/U1

s ,1 /U2
s , . . . ,1 /UN

s d, and

Ỹ ª 3
s1 + dNd · h

1 + d1

1 + d2

�

1 + dN−1

4;

here,h is an arbitrary parameter.
This means

detslI + LsM ;sdd = detslI + LsM ;s− 1dd;

therefore, the coefficientsek of the characteristic polynomial

detslI + LsM ;sdd = lN + eN−1l
N−1 + eN−2l

N−2 + ¯ + e1l + e0

are conserved in times. Furthermore, sinceh is arbitrary andek containh, if we defineek
f jg by

ek = o
j

ek
f jgh j , s14d

thenek
f jg are also conserved.

Let Dªpi=1
N s1+did,

Y ª 3
hD

1

1

�

1
4 ,

andDdªdiags1,1+d1,s1+d1ds1+d2d , . . . ,pi=1
N−1s1+didd. SinceY=sDdd−1ỸDd we havesRef. 9d

detslI + LsM ;sdd = detslI + L0sM ;sdd, s15d

where

L0sM ;sd ª s− GK;s + YdsGU;s−M+1 − YdsGU;s−M+2 − Yd ¯ sGU;s − Yd.

From Theorem II.1, we obtain a combinatorial formula forek
f jg immediately.

Theorem IV.1: Set

xn,0 =
1

Kn
s , xn,m =

1

Un
s−M+m smÞ 0d

in (4) and setm=hD. Then, for k=0,1, . . . ,N and j=0,1, . . . ,fsN−kdsM +1d /Ng, it holds that
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ek
f jg = s− 1d,sk,jdD j o

1ød1,d2,¯

¯,dN−køN

o
sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

p
i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid,

where,sk, jdª s j +1dN−sk+ j +kjd. j

V. CONSERVED QUANTITIES OF gPBBS

Using the results in Sec. IV, we construct the conserved quantities of the gPBBS.
For k=0,1, . . . ,N and j =0,1, . . . ,fsN−kdsM +1d /Ng, the ultradiscrete limit ofek

f jg is

uek
f jg
ª − lim

e→+0
e logss− 1d,sk,jdek

f jgd = − lim
e→+0

e log1D j o
1ød1,d2,¯

¯,dN−køN

o
sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

p
i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid2 .

Sinceun is the capacity of thenth box,

lim
e→+0

e log D j = j · lim
e→+0

e log p
j=1

N

s1 + e−u j/ed = j ·o
j=1

N

maxf0,−u jg = 0.

Therefore, from Theorem IV.1,uek
f jg is given by the following.

Theorem V.1: Set

xn,0 = kn
s, xn,m = un

s−M+m smÞ 0d

in (4). Then, for k=0,1, . . . ,N and j=0,1, . . . ,fsN−kdsM +1d /Ng, it holds that

uek
f jg = min

1ød1,d2,¯

¯,dN−køN
3 min

sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

Fo
i=1

N−k

o
n=1

N

o
m=0

M

jn,msPidG4 .

j

Remark V.1: The conserved quantity uek
f0g s0økøNd is trivial. Since j=0, all paths are

vertical lines. Hence we have

uek
f0g = min

1ød1,d2,¯

¯,dN−køN

Fo
i=1

N−kSkdi

s + o
m=1

M

udi

s−M+mDG = min
1ød1,d2,¯

¯,dN−køN

Fo
i=1

N−k

udiG .

As un is the capacity of the nth box, uek
f0g does not depend on the time steps. So we are not

interested in them.
Remark V.2: Once we obtain all quantities that are conserved in variable s, we are to have all

quantities that are conserved in the original time variable t. The reasoning is as follows: Assume
that A1 is a conserved quantity of the gPBBS; this means A1=A1ssd has period M in s. fSince
equation of motion (8) is Mth order in s, A1ssd is written as

A1ssd = Fsu1
s, . . . ,uN

s ,u1
s−1, . . . ,uN

s−1, . . . ,u1
s−M+1, . . . ,uN

s−M+1d

by some function F.g Let Ajssd=A1ss+ j −1d s j =2,3, . . .d; they all have period M in s. By definition
Ajss+1d=Aj+1ssd s j =1,2, . . .d, and, since A1ssd has period M, AMss+1d=A1sss+1d+M −1d
=A1ss+Md=A1ssd; hence, symmetric polynomials of A1ssd , . . . ,AMssd are conserved in s. More
explicitly, let Skssd be the kth elementary symmetric polynomial of A1ssd , . . . ,AMssd; then, we have
M quantities S1ssd , . . . ,SMssd that are conserved in s. Conversely, once we know the elementary
symmetric polynomials S1ssd , . . . ,SMssd of A1ssd , . . . ,AMssd, we can obtain A1ssd , . . . ,AMssd.
Therefore, the statement follows.
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An easy way to read offoi=1
N−kon=1

N om=0
M jn,msPid is as follows: Associate valueskn

s,
un

s , . . . ,un
s−M+1 with boxes ofCN,M+1 as shown in Fig. 10. ForsP1, . . . ,PN−kdPPs jdsd1, . . . ,dN−kd,

summing up the values corresponding to the vertical lines of the paths, we get the value
oi=1

N−kon=1
N om=0

M jn,msPid.
Example V.1: For a state in Fig. 11sN=10,M =5d, we obtain a table in Fig. 12. For paths

shown in Fig. 13,

o
i=1

N−k

o
n=1

N

o
m=0

M

jn,msPid = s0 + 0 + 1d + s0 + 1 + 0 + 0d + s0 + 0 + 0 + 0d + s0 + 1 + 0d + s0 + 0 + 1d

+ s0 + 1 + 0d + s1 + 0d = 6.

Occasionally these paths minimizeoi=1
N−kon=1

N om=0
M jn,msPid; thus, ue3

f2g is 6.

FIG. 10. Associate valueskn
s, un

s , . . . ,un
s−M+1 with boxes ofCN,M+1.

FIG. 11. A state of the gPBBS.

022701-13 Path description of conserved quantities J. Math. Phys. 46, 022701 ~2005!

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.101.152.245 On: Fri, 05 Jun 2015 21:27:25



VI. DISCUSSION

In this section we discuss some algebraic aspects of the gPBBS. The time evolution of the
gPBBS is decomposed into a product of transformations, each of which is a representation of the

generators of the affine Weyl groupW̃sAM
s1dd. Furthermore a state of the gPBBS is naturally

identified with a vector of a tensor product of the crystalsUq8sAM
s1dd, and a time evolution pattern is

interpreted as twisted lattices of the crystalsUq8sAN−1
s1d d whose Boltzmann weights are determined

by the combinatorialR matrices.

A. Affine Weyl group and gPBBS

Let T be the set ofN3 sM +1d rectangular tableaux with integer entries, ands,s,PZ / sM
+1dZd andp be mappings:T→T. For a tableau

these mappings are given as

where

FIG. 12. A table obtained for a state in Fig. 11sN=10,M =5d.
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s,syn,md = yn,m+1 + Qn,m − Qn−1,m sm; , modM + 1d,

s,syn,m+1d = yn,m + Qn−1,m − Qn,m sm; , modM + 1d,

s,syn,md = yn,m smÞ ,,, + 1 modM + 1d,

psyn,md = yn,m+1,

and

Qn,m = max
1øhøN

Fo
k=1

h−1

yn+k,m+1 + o
k=h+1

N

yn+k,mG .

Here we extend the indicesn,m of yn,m for n,mPZ by the conditionyn+N,m=yn,m+M+1=yn,m.
The following theorem is proved by direct calculations.
Theorem VI.1 (Refs. 14 and 15):The mappings s, s,PZ / sM +1dZd and p defined as above

give a realization of the affine Weyl group W˜ sAM
s1dd. j

Remark VI.1: The affine Weyl group W˜ sAn−1
s1d d is defined as the group generated by the simple

reflections s0,s1, . . . ,sn−1 and diagram rotationp subject to the fundamental relations

si
2 = 1,

sisj = sjsi s j Þ i,i ± 1 modnd,

sisjsi = sjsisj s j ; i ± 1 modnd,

psi = si+1p,

where we understand the indices for si as elements ofZ / sM +1dZ.
When we set

yn,0 = kn
s, yn,m = un

s−M+m smÞ 0d, s16d

we get the following theorem which gives a relation between the gPBBS and the affine Weyl
group.

Theorem VI.2: psM−1sM−2¯s0 gives the time evolution which concerns the original time

FIG. 13. Pathsssee textd.
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variable t, i.e.,

. j

The proof goes as follows.
The equation of motions8d is

un
s+1 = un

s−M+1 + Qn−1,0− Qn,0.

This means

s0skn
sd = un

s+1,

and

s0sun
s−M+1d = kn

s + Qn−1,0− Qn,0 = kn
s + un

s+1 − un
s−M+1;

in the gPBBS,kn
s denotes the number of spaces of thenth box ats, andun

s+1, un
s−M+1 denote the

numbers of balls which come in thenth box and get out thenth box from time steps to s+1,
respectively; hence

s0sun
s−M+1d = kn

s+1.

Therefore

Repeating the above procedure, we obtain
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Finally, applyingp upon it immediately gives Theorem VI.2.

B. gPBBS as twisted crystal lattice

The BBSs can be reformulated as integrable lattice models at temperature zero from view-
point of the crystal theory and the combinatorialR matrix.16,17 The PBBS with one kind of ball
and box capacity one has also been reformulated into two types of lattice models, a periodicA1

s1d

crystal lattice and a twistedAN−1
s1d crystal chain, whereN denotes the number of the boxes in the

system.8 It is straightforward to extend this result to the case of the gPBBS. In this section, we will
briefly show how the gPBBS is reinterpreted as some integrable lattice systems. Since the proofs
for the statements below are almost the same as those in Ref. 8, we will omit them here.

Let Bk be the classical crystal ofUq8sAM
s1dd corresponding to thek-fold symmetric tensor

representation ofUqsAMd. As a set it consists of the single row semistandard tableaux of lengthk
on lettersh1,2, . . . ,M +1j,

An elementb

is also denoted as a series ofM +1 integersb;sxsM+1d ,xsMd , . . . ,xs2d ,xs1dd, wherexs jd is the number
of letters j in b. A stateuclt of the gPBBS is naturally identified with

uclt > b1
t

^ b2
t

^ ¯ ^ bN
t P Bu1

^ Bu2
^ ¯ ^ BuN

,

where

bn
t = skn

s,un
s−M+1,un

s−M+2, . . . ,un
sd sn = 1,2, . . . ,Nd.

For the BBS without the periodic boundary condition, time evolution is given by the isomorphism
induced by the combinatorialR matrices,

T:B` ^ sBu1
^ Bu2

^ ¯ ^ BuN
d → sBu1

^ Bu2
^ ¯ ^ BuN

d ^ B`,

T:uh0jl ^ uclt → uclt+1 ^ uh0jl,

whereuh0jl is the highest weight vector ofB`. For the gPBBS, by taking the trace of the auxiliary
state inB`, TªTrB` T, we have the time evolution

T:Bu1
^ Bu2

^ ¯ ^ BuN
→ Bu1

^ Bu2
^ ¯ ^ BuN

,

T:uclt → uclt+1.

As theA1
s1d crystal, the operatorT mapsuclt to the unique tensor product ofAM

s1d crystal that exactly
corresponds to the state of the gPBBS att+1.

The gPBBS is also reformulated as a twisted lattice ofM vertical axes in terms ofAN−1
s1d

crystals. In this case, a stateuclt is identified

uclt > bk
t

^ sbu1

t
^ bu2

t
^ ¯ ^ buM

t d P Bk ^ sBn1
^ Bn2

^ ¯ ^ BnM
d,

where

bk
t = skN

s ,kN−1
s , . . . ,k1

sd,
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buj

t = suN
s−M+j,uN−1

s−M+j, . . . ,u1
s−M+jd s j = 1,2, . . . ,Md,

kªon=1
N kn

s andnjªon=1
N un

s−M+j. The time evolution is determined by the isomorphism induced by
the combinatorialR-matrix for AN−1

s1d crystal,

bk
t

^ sbu1

t
^ bu2

t
^ ¯ ^ buM

t d > sbu1

t+1
^ bu2

t+1
^ ¯ ^ buM

t+1d ^ bk
t+1.

In Fig. 14, we schematically show the twisted crystal lattice associated with the gPBBS.

VII. CONCLUDING REMARKS

In this paper, using a path description of the characteristic polynomial of particular matrices
and an algorithm to construct the conserved quantities using the Lax representation of the ndKP
equation, we showed explicit form of the conserved quantities of the gPBBS. Relations to the
affine Weyl group action and the crystal theory were also clarified. An advantage to reformulate
the PBBS as crystal lattices is that we can extend it to the crystals associated with other root
systems.

Since the gPBBS is composed of a finite number of boxes and balls, it can only take on a finite
number of patterns. Hence its trajectory is always periodic and a fundamental cycle, i.e., the
shortest period of the periodic motion, exists for any given initial state. In the case where the box
capacity is one everywhere and only one kind of ball exists, the formula used to calculate the
fundamental cycle is explicitly obtained using the conserved quantities and some rescaling prop-
erties of the states.18 Hence, using the results in this paper, we may get the formula to calculate the
fundamental cycle for the gPBBS, which is a problem we wish to address in the future.
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