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We investigate conserved quantities of periodic box-ball sys{&B8S with ar-
bitrary kinds of balls and box capacity greater than or equal to 1. We introduce the
notion of nonintersecting paths on the two dimensional array of boxes, and give a
combinatorial formula for the conserved quantities of the generalized PBBS using
these paths. @005 American Institute of PhysicDOI: 10.1063/1.1842354

I. INTRODUCTION

The box-ball systeniBBS) is a reinterpretation of a soliton cellular automaton proposed by
Takahashi—Satsurhas a dynamical system of balls in a one dimensional array of Hokesice,
the BBS shows both a feature of cellular autom@a4) and that of solitons.

CAs are mathematical idealizations of physical systems in which space and time are discrete,
and physical quantities take on a finite set of discrete values. The CAs were originally introduced
by von Neumann and Ulam as a possible idealization of biological systems, with the particular
purpose of modeling biological self-reproduction. Physical systems containing many discrete el-
ements with local interactions are often conveniently modeled as the CAs. Many biological sys-
tems have been modeled by the CAs. The CAs have also been used to study problems in number
theory and their applications to tapestry design. The CAs play an important role in various fields
like these.

On the other hand, the notion of a soliton arose from a peculiar solution of partial differential
equationﬁ.“‘ActualIy, the system in which solitons exist has continuous and smooth mathematical
structures, such as an inverse scattering method, a pseudodifferential operator, an algebraic mani-
fold, an infinite-dimensional Lie group and so on. Because of these rich structures, the soliton
systems play an important role in various fields of mathematics and physics.

The reason why the BBS has these two completely different features is well explained by the
notion of ultradiscretization.Ultradiscretization is a limiting procedure through which we can
construct piecewise linear equations or CAs from continuous equations. By taking the ultradiscrete
limit, the rich mathematical structures of soliton systems are introduced to the CAs. On the other
hand, the useful properties of the CAs for computer simulation are introduced to the continuous
systems by inverse ultradiscretization. Using this limiting procedure, the BBSs are obtained from
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FIG. 1. Time evolution rule for the PBBS.

the soliton equationgthe KdV equation and the Toda equal)iSﬁ Thus the BBS ha$\ soliton
solutions and an infinite number of conserved quantities and the BBS is called an “integrable” CA.
The periodic box-ball systerfPBBS) is the BBS in which the updating rule is extended to be
compatible with a periodic boundary conditibriLet us consider a one-dimensional arrayNof
boxes. A periodic boundary condition is imposed by assuming thalthdox is adjacent to the
first one.(We may imagine that the boxes are arranged in a cjrétethe generalized PBBS
(gPBBS, the capacity of theith (1<n=<N) box is denoted by a positive integ@f, and we
suppose that there aM kinds of balls distinguished by an integer indpxl<j<M). When
“ng,=1 andM =1, the gPBBS coincides with the PBBS. Then, the rule for the time evolution of
the gPBBS from time stepto t+1 is given as follows:

(1) At each box, create the same number of copies of the balls with index 1.

(2) Choose one of the copies arbitrarily and move it to the nearest box with an available space
to the right of it.

(3) Choose one of the remaining copies and move it to the nearest available box on the right of
it.

(4) Repeat the above procedure until all the copies have been moved.
(5) Delete all the original balls with index 1.

(6) Perform the same procedure for the balls with index 2.

(7) Repeat this procedure successively until all of the balls are moved.

An example of the time evolution of the gPBBS according to this rule is shown in Fig. 1.

In Ref. 9, we have established an algorithm to construct the conserved quantities of the
gPBBS by means of the ultradiscretization of the nonautonomous discrefiedkiP) equatior11.°
Using this algorithm, we obtain an expression for the conserved quantities of the gPBBS in the
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case of one kind of ballgM=1). We have also proved that, when box capacities are all one, our
conserved quantities fdvi=1 coincide with those described by the Young diagfam.

In this paper, using a path description and the results obtained in Ref. 9, we investigate the
conserved quantities of the gPBBS for arbitrdfyIn Sec. Il, we derive the path description of the
characteristic polynomial of a particular matrix. In Sec. Ill, we briefly summarize the results of
Ref. 9, which we will use in the subsequent sections. In Sec. IV, we treat the ndKP equation which
corresponds to the gPBBS. We shall obtain an explicit expression for the conserved quantities of
the ndKP equation. Using the results in Sec. IV, we construct the conserved quantities of the
gPBBS in Sec. V. In Sec. VI, we discuss algebraic aspects of the gPBBS with respect to the affine
Weyl group and the crystals of quantum affine algebra. Section VIl is devoted to concluding
remarks.

Il. PATH DESCRIPTION OF CHARACTERISTIC POLYNOMIAL FOR A PARTICULAR
MATRIX

For a particular matriA which contains a parametgrin the upper half elements, we give a
combinatorial description for coefficients of the characteristic polynomightle®d) in A andw in
terms of nonintersecting patti$heorem I1.1. The result will be used in the subsequent sections
to obtain a combinatorial formula for conserved quantities of the gPBBS.

We denote byS, the set of all permutations of elements X {1,2,... N}. Let A be an
arbitraryN X N matrix, andA,, ,, denote thgn, m) element ofA. The characteristic polynomial of
Ais

N
de\-A) = X sgio)[] A& .0 - A i)

€812\ i=1
N
=2 DV X X soro) [T A,
k=0 XC{1,2,...N} o0eSx ieX
#X=N-k

where 6, , is Kronecker’s delta. Fod C X, we set

i<o(i) (ied),
See= {" “Xliz o) (ie X—J).}'
Since
N
Sx=U U S, (disjoint),
j=0 JCX
$J=j
we have

N N-k
deM -A)=> DV X X X X soro) [T A

k=0 XC{L2,. N} =0 IEX geg) fex

#X=N-K .
N N-k

=2 (VY X > > SQF(U)(HAi,a(i))( II Ai,a(i))- (1)
k=0 j=0 XC{1.2,.. N} ICX gcg) icd iex-J
EX=N-k  #J5

Now we assume
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A=(Do-Y)(D1-Y)---(Dy-Y), 2
whereD;=diagXyj, X, ... Xy (i=0,1,... M) and
o
1
Y := 1
1
If we setho)== D; and Di(r) i= diaQ(XNor+1j ) XNor+2 s -« XN X1y« - - Xn—r,i) fOr O<r <N, we have

D"VY=YD". Hereafter, foii=0, we defineX —¢,«...<c**+=1. Then

M+1
A= (-1 D DID(D ... pliv-eraM+0\ vt
=0 O<h;<hy<--- o M-€+1
o <hy-g41=M

We assumeM +1<N. The (n,m) element ofA is the following.

(i) if m=n, Xn,0%n,1" " " Xn M+
(i) if m=N+n-¢ ({=1,2,... M),

M-€+1
CD'p X I Xonsicin
O<hj<hy<--- i=1
wr<hy-g+1=M
@iy if m=n-¢ (€=1,2,... M),
M-¢+1
G IT Xonsicin:
O<hj<hy<-- i=1
- <hp_gs1=M

(i) if m=N+n-M-1, (-)M*1y;
(i") if m=n-M-1, (-1)M*L:
(iv) otherwise, 0.

Hence, from(1), we have

N-k

N
deM -A) =2 DVND w2 X X sgno)
k=0

=0 XC{L2...N} ICX geg)

4X=N-k  4J=j
M-=N-n+g(n)+1
x[ 11 > 11 Xn-h.+i-1h,
ned 0<h;<hy<--- i=1
<hy-N-n+o(m+1=M
M-n+o(n)+1
x( 11 > I1 Xn-n+i-1h, | |- Q)
neX-J O<hy<hp<:--- i=1

o ~<hM—n+(r(n)+lsM

A combinatorial description of the coefficients is possible.

By Cywm+1 We denote theN X (M+1) boxes in Fig. 2 and byn,m)-box the box at theth
column in the(m+ 1)th row. We assume that tidth column is adjacent to the first one.

Leta andb be column indicesa,b=1,2, ... N). A pathconnecting thénitial point a and the
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M

1 2 o o e n . e N

FIG. 2. NX (M+1) boxes.

end point bis a (continuou$ polygonal line from the initial poing to the end point which
consists of(i), (ii) or (iii ) in Fig. 3 locally; here by the initial poird we mean the middle point of

the south edge ofa,0)-box and by the end poinb the middle point of the north edge of
(b,M)-box. For example, the left-hand part in Fig. 4 shows a path connecting the initial point 1
and the end point 1, and the right-hand part shows a path from 5 to 2.

There is a natural correspondence betwBER" X, i1 (O<h;<h,<---<hy_r,;<M)
and a path onCyy.;. To put it concretely, we draw the liné) on (n—hj+i-1,h)-box (i
=1,2,... M—¢+1); for eachr, h;<r <h,,,, we draw the lingii) on (n+i-r,r)-box and the line
(iii) on (n+i-r—1,r)-box wherehy=-1 andhy,_,,»,=M+1; then we obtain a path. For example,
for N=8 andM =5, X; gX1 1X1 X1 3X1 4X1 5 @aNdXs gX4 2Xo 5 COrrespond to paths in Fig. 4, respectively.

Let X={d;,d,, ... ,dyo} (1=d;<d,<---<dy=<N); we denote byP(d; o) the set of all
paths which connect the initial poiatand the end point(d) (d € X, o € S; cf. Fig. 5. Define
énm:P(d; 0) —{X,m, 1} as

Xam (P has the vertical line on tfie,m)-box of Cy y+1),

&nm(P) = {1 (otherwisg,

(4)

whereP € P(d; o). Then, we obtain

S N

@ G (Gid)

FIG. 3. Aline can pass through a box in three possible ways.
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FIG. 4. Paths corresponding %@ oX; 1X; 2% 1 X1 5 @NdXs X4 Xp 5

M=N-n+g(n)+1

> > 2 sgro)| I1 > 11 Xn-hi+i-1p;

XC{1,2,..N}ICX eg) neld O<h;<hy<--- i=1
#X=N-k  #J=j <Ay -N-n+o(n)+1=M
M-n+o(n)+1
x| I1 > 11 Xn-h+i-1p,
neX-J O<h;<hy<--- i=1
"'<hM—n+<r(n)+1§’VI
N-k N M
= 2 22 2 - 2 syl I &nP. (5)
l=di<dp<-+ JCX g} PrePdpo) Pn-k€ P(dnii0) i=1 n=1 m=0

ce<dnk=N #J=)

If we draw N-k pathsP; € P(d;;0), ... ,Py— € P(dy—; o) on Cym+1, SOMe paths may go

o (d)

M 1L

\

FIG. 5. A pathP e P(d; o).
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(@) ) ©
(d) ) ®

FIG. 6. Two lines can pass through a box in six possible ways.

through the same baxf. Fig. 6). When two paths pass through a single box, there are six possible
states as shown in Fig. 6. Except for the siaein Fig. 6, the lines touch each other. When the
lines touch each other, we say that the limgsrsect

Now we show that, in(5), terms corresponding to intersecting paths cancel out. Riet
5 P(dil;a) and Pi2 € P(di2§<f) be paths which intersect; <i,). Then at some box, the stat@
occurs as in the left-hand part of Fig. 7. L@'& and Pi’2 denote new paths constructed fr(ﬂiq and
P, by exchanging lines in the box as shown in Fig. 7, WHE’I;E Pdi ;0), Pi’2 e P(d;,;o") and

,_( d; d;, d;, dn-k )
T\ o(dy o o(d) - () o oldy)

Since sgfio)=-sgr(o”) and &,m(P} )& m(P;,) = &\m(Pi))&nm(P;,) for any P e P(di;0) (i #i1,i0),
the terms corresponding (®,, ... ,P Pi, ... ,Pya) and(Py, ... ,Pi’l, ,Pi’z, ...,Pn) can-
cel each other out i5).

If any two of P4, ... ,Py_¢ do not intersect, we say that the paths are nonintersecting. Hence
only terms corresponding to nonintersecting paths contributg)to

PEREE

o (diz) o (diz)
} '
o (du) o (du) I
\ P12 \ Pix
N S
| |
4 t 4
di diz du diz

FIG. 7. Definition ofPi’1 and Pi’z.
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¢ IR
. N,

: AV
m

: P2 \

- Piv-s)

B
0 L& y S \o =

di dz e dNk
1 2 e o n r— N

FIG. 8. Nonintersecting path,, ... Py

When Py, ... Py are nonintersectinP; € P(d;;0), ... Py e P(dyi; o) and o e Sy, #J
=jl,

d (i-j=1),
o(d) = !
) {dN+i—j (i-j=<0

(cf. Fig. 8 and Fig. § and therefore sgm)=(-1)/(N-xD

In (3), the upper bound of the summation oyes {[(N k)/N](M+1)} where[¢] denotes the
largest integer which does not exced

From (3) and(5), we obtain the following theorem.

Theorem II.1: For A defined in (2), it holds that

det\l — A)
N [(N—k)(M+1)/N] N-k N M
=D (- X (iR Y > ITITIT é.n(Py),
k=0 j=0 1<di<dy<---  (P,...Pno) 1=1 n=1m=0

o<y =N G ey, dyy)
where§, , are defined in (4) and

P; connects the initial point;dand the
end point ¢i_j(1<i=<));P
. (6)
connects dand d_(j <i<N-Kk).
Any two of them are nonintersectin

P(J)(dl, - 7dN_k) = (Pl, - ,PN_k)
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dt

M I

, S

' P

m .

1

0 N

di

FIG. 9. A pathP e P(d;;0), o e S}, #J=], which connects), ando(d)=d,_;.

IIl. gPBBS AND ndKP EQUATION

We briefly summarize the results obtained in Ref. 9 to fix the notations used in the subsequent
sections.

A. gPBBS and its equation of motion

In order to describe the dynamics of the gPBBS, we introduce a new independent variable
(seZ). As any integes can be uniquely expressedssMt+j (te Z,1<j<M), we denote by}
the number of balls with indek=smodM in the nth box at time step=[(s—1)/M], where[x]
denotes the largest integer which does not exceéd other words, the newime variables is a
refinement of the original time, indicating explicitly when balls with indemove.

We assume thaf, andu;, satisfy the relation

N M N N
So-> Du=Du (k=12 ... M). (7)
n=1 j=1n=1 n=1

The first and second terms of the left-hand sidg®frepresent the number of spaces and the
number of balls in the gPBBS, respectively, hence the left-hand side is the total number of free
spaces of the gPBBS. The right-hand side(®fis the number of balls with indek. Thus(7)
requires the total number of free spaces of the gPBBS to be larger than the number of copies of
any type of ball in the time evolution process.

Let us consider the process at tigd.e., the movement of the balls with indgxat time step
t wheres=Mt+j; we often uses instead ofj, i.e., we treat the indices moduM. If we definex,
which denotes the number of spaces of tile box ats, by

S—M+l)
1

Kn = 0n_(urs1+urs1_l+ o+ Uy

condition(7) is rewritten as
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N N

Exn>§‘,u5 M (k=1,2,... M).

n=1

Theorem 1l.1 (Ref. 9): The time evolution of the gPBBS is described by an ultradiscrete
equation

k
TREEE _max [2 up - Kf‘,_j+1] - max[o max [2 up - Kﬁ_j+1:| } . (8

N j=1 N1 =1

B. From ndKP equation to g°PBBS
The ndKP equation is obtained from the generating formula of the KP hier}fr&ﬁu is
given as
(b(m) = c(n) (I + L,mn)r(I,m+ 1,n+1) + (c(n) - a(h))#(l,m+ 1,7l + 1, mn+1) + (a(l)
—-b(m))~(I,mn+ 1)l +1,m+1,n) =0, (9

wherel, m, n e 7Z are independent variables, the tau functiod X Z X Z— R (or ) is dependent
variable and the coefficien&]l), b(m), c(n) are arbitrary functions which depend on the indepen-
dent variabled, m, n, respectively.

In order to relate the ndKP equation to the gPBBS, we &ke=0, b(m)=1, c(n)=1+4, and
impose the following constraint of(l,m,n):

(I,mn) =71 -M,m-1,n).

If we defineo}:=r(s—1,0,n), (9) turns into

stM-1 s S—l S stM s
On+1 On+1 _ (1+6 ) On+1 _ On  On+1 (10)
s+M s— Y g1 s T N+l s s+tM -
On+1 On+1 On+10n OnOn+1
Furthermore, we defing? andK? as
oS 0_s+1 M
s n+l _ s—j+1
Uy = S stl’ _3_5n+1'1_[UnJ
(1+6udonon  Kj j=1
and impose the following periodic condition &
US=US,\. (11)
Then, from(10), we have
US—M+1
Urs1+1_ k=1j=1 nj+1 12
s N-1 k  s-M+1° (12)

n 1 + E H %J_
k=1 j=1 Rp-j+1

To take the ultradiscrete limit, we seﬁ=e“ﬁ’f, Kf]:e"ﬁ’f, 1/8,,1=€<. Then, we found the
following.

Theorem 1.2 (Ref. 9): The ultradiscrete limit of the constrained ndKP equation with the
periodic boundary condition [i.e., (11) and (12)] coincides with the time evolution equation of the
gPBBS (8) [ |
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IV. CONSERVED QUANTITIES OF ndKP EQUATION

In Ref. 9 we derived the Lax representation for the ndKP equation when it has pénoithe
spatial variablen. In short, the equatiofil2) is equivalent to the matrix equation

M()L(M;s) =L(M:s— 1)M(s),
WherelT/I(s):GU;s—?,
L(M;9) = (= Gs*+ Y)(Gus-mer = Y)(Guismsz— Y) +++ (Gus— Y), (13
G.s=diag1/K$,1/KS, ..., 1KS), Gys=diag1/U3,1/U3, ..., 1/U5), and

(1+6y) 7
1+6
Y = 1+56, ;

here, n is an arbitrary parameter.
This means

det\l +L(M;s)) =dei(\l + L(M;s-1));
therefore, the coefficients, of the characteristic polynomial
deih +L(M;9) = AN+ g ANV T+ ANV 2+ - +e N+ g
are conserved in time. Furthermore, sincey is arbitrary ande, contain », if we defineeE] by

&= 67, (14
J

then e[k” are also conserved.
Let A:=TIN,(1+8),

andD:=diag1,1+5;,(1+8)(1+5,), ... JIN}(1+8)). SinceY=(D,) YD, we have(Ref. 9
det\l +L(M;s)) =dei\l + Ly(M;9)), (15)
where
LO(M ;S) = (_ GK;s + Y)(GU;S—M+1 - Y)(GU;S—M+2 - Y) ce (GU;S - Y) .

From Theorem 1.1, we obtain a combinatorial formula (15} immediately.
Theorem IV.1: Set

1

Xn,O:K_ﬁy Xn,m=W1 (m+0)

in (4) and setu=7A. Then, for k0,1,... N and j=0,1,...[(N-k)(M+1)/N], it holds that
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N-k N M
dl=(-pikiai ¥ > [T 11 &Py,
Isd;<dy<--+  (Py,...Pno) =1 n=1m=0
co<dnk=N G epildy,. . dyoy)
wheref(k,j) = (j+1)N-(k+]j+kj). [ |

V. CONSERVED QUANTITIES OF gPBBS

Using the results in Sec. IV, we construct the conserved quantities of the gPBBS.
Fork=0,1,...Nandj=0,1,... [(N-k)(M+1)/N], the ultradiscrete limit ofeﬁl is

N-k N M
ugl:= - lim elog((- 1)‘“Vel)) = - lim elog| A} X} > ITITII &P |.
e—+0 e—+0 1<d;<dy<--*  (Py,...Pyg)  i=1 n=1m=0
co<dnk=SN ey, dyy)
Since 6, is the capacity of thath box,
N N
lim elogAl=j - lim elog [[ (1 +e %) =j-> max0,-6]=0.
e—+0 e—+0 j=1 j=1

Therefore, from Theorem I\/.Juq[j] is given by the following.
Theorem V.1: Set

Xn0= K3 Xqm=US MM (M 0)

in (4). Then, for k0,1,... N and j=0,1,... [(N-k)(M+1)/N], it holds that

N-k N M
ué(l] = min min 2 2 gn,m(Pi) .
1<d;<dpy<--|  (Py,.. PNt i
--<dn-g=N E’P(l’)(dlp AN

|
Remark V.1: The conserved quantity[koﬁje{Os k=<N) is trivial. Since FO, all paths are
vertical lines. Hence we have

Nk M N-k
ug?= min | DS+ MM (= min | X 6|
1sdy<dpy<---| j=1 Yomer 1Sdi<dp<- | j=1
- <dpo=N - <dyo=N

As 6, is the capacity of the nth bomq[(o] does not depend on the time steps. So we are not
interested in them

Remark V.2: Once we obtain all quantities that are conserved in varighle sre to have all
quantities that are conserved in the original time variahl@he reasoning is as follows: Assume
that A, is a conserved quantity of the gPBBS; this meaps A (s) has period M in s[Since
equation of motion (8) is Mth order in, #\,(s) is written as

A9 =F(US, ... uuy s st M us MY

by some function FLet A(s)=A.(s+j-1) (j=2,3,..); they all have period M in.sBy definition
A(s+1)=A(s) (j=1,2,..), and, since As) has period M Ay(s+1)=Ay((s+1)+M-1)
=A;(s+M)=A(s); hence, symmetric polynomials of(8), ... ,Au(s) are conserved in.sMore
explicitly, let (s) be the kth elementary symmetric polynomial gfsh ... ,Ay(s); then, we have
M quantities §(s), ... ,Sy(s) that are conserved in.<onversely, once we know the elementary
symmetric polynomials &), ...,Su(s) of A(9),...,Au(s), we can obtain AS),... Au(9).
Therefore, the statement follows
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M ui us ud | v | uNa | uN
-1 -1 -1 1 -
M-1 ul | uZ? | u% . utid | u¥
2 us-}sii+2 us-héld us-hgn .e usN M+2 us-M+2
M+l M+1 -M+1 M .
1 us l* us z+ us 3+ ese usN .+ll us B‘l‘-ﬁ-l
0 kKi| k2| k8| = | kNa| KN

1 2 3 e N-1 N

FIG. 10. Associate valueg, uS, ... ,us™** with boxes ofCy 1.

An easy way to read offSYfSN SV & (P) is as follows: Associate valuess,
u, ..., us™M*1 with boxes ofCy 41 @s shown in Fig. 10. FofPy, ... ,Pyo) € PI(dy, ... Ay,
summing up the values corresponding to the vertical lines of the paths, we get the value
EiﬁlkEE:lEM:ogn,m(Pi)-
Example V.1: For a state in Fig. 1IN=10,M=5), we obtain a table in Fig. 12For paths
shown in Fig. 13

+(0+1+0+(1+0=6.
Occasionally these paths minimiz& S\ sM « (P): thus ue?! is 6.

£ @
@ ®
o m
® ® | ®
o|lo([Ple|eo|¥|e
®|lel@|lo|e[®]|®
@|oleo|lo(o|o|a
@ o leleo|lo|loa|lo|a
® ololo|o|lo|o|el®
@ olololololeolele
1 2 3 4 5 6 7 8 9 10

FIG. 11. A state of the gPBBS.
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O = N W O
o O = O | |O

® O |0 |0 ||

A =t = | = DN
BN = = N e |

1
1
2
2
1
0

o N O | NS

2
0
2
1
1
3

D =t = = e |

2
1
2
1
1
1

O O = = O

1

2

3 4

5 6

7 8

9 10

FIG. 12. A table obtained for a state in Fig. (4=10,M=5).

VI. DISCUSSION

In this section we discuss some algebraic aspects of the gPBBS. The time evolution of the
gPBBS is decomposed into a product of transformations, each of which is a representation of the
generators of the affine Weyl gI‘OLW(A(l)) Furthermore a state of the gPBBS is naturally
identified with a vector of a tensor product of the crystajl;{;A
interpreted as twisted lattices of the crysthllgA
by the combinatoriaR matrices.

A. Affine Weyl group and gPBBS

), and a time evolution pattern is

) whose Boltzmann weights are determined

Let 7 be the set ofN X (M+1) rectangular tableaux with integer entries, af € Z/(M
+1)7) and 7 be mappingsZ— 7. For a tableau

these mappings are given as

where

S((Y)

NmM|YeMm|- YN M
Y:
Na | Y211+ Yna
Yo | Yol | YNo
se(yim) | Se(yanm) |-+« | se(ynar)
se(y1) | se(yan) |- +| se(ymwa)
se(y1.0) | se(y20) |-+ | se(ynyo)
ﬂ'(yLM) Tr(yz,M) 7T(yN,M)
77(91,1) 7T(y2,1) ﬂ'(yN,l)
m(y10) | T(y20) || T(¥n0)
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5 199 2h o1 he| 129
s hehoN L oheN [0 )1 [ R
310/ 1) ABNEE
2 01 0|2 ASIE
SRR IRNIEE
o hahehslz]ofols]g]1ha

1 2 3 4 5 6 7 8 9 10

FIG. 13. Pathgsee text

S((yn,m) =Ynme1 t Qn,m - Qn—l,m (m=+¢modM +1),
S€(yn,m+1) =Ynmt Qn—l,m - Qn,m (m=+{modM +1),

s€(yn,m) =Ynm (m # {,£ +1 modM + :]_)7

77(yn,m) = Ynm+1s

and
h-1 N
Qn,m: max Eyn+k,m+1+ 2 Yn+km | -
1sh=N]| k=1 k=h+1

Here we extend the indicas m of y, ,, for n,me Z by the conditiony,.n m=Ynmm+1=Ynm-
The following theorem is proved by direct calculations.
Theorem VI.1 (Refs. 14 and 15)The mappings ¢ € Z/(M+1)7) and 7 defined as above

give a realization of the affine Weyl gron(m((})). [ |

Remark VI.1: The affine Weyl gron(mzl_)l) is defined as the group generated by the simple
reflections §,s;, ... ,S,-1 and diagram rotation subject to the fundamental relations

§=1,
ssi=ss  (j #i,ix1modn),
ssis =sss; (j=1ix1modn),

TS =S4T,
where we understand the indices feras elements of/(M+1)Z.
When we set
Yno=Kn Yam=Up "M (m#0), (16)

we get the following theorem which gives a relation between the gPBBS and the affine Weyl
group.
Theorem VI.2: wSy_1Su-2**Sp gives the time evolution which concerns the original time
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variable t i.e.,

s 3 . s s+M ) s+M || s+ M
uy u2 uN Uy Uy .. UN
TSM-15M~2"""80 =
s—M+1 s—M+1 s—-M+1 s+1 s+1 s+1
Uy Uy uN Uy g UN
] s .. s s+ M s+M s+ M
K} K3 Ky K1 Ky |k

The proof goes as follows.
The equation of motiorn8) is

s+l _  s~M+1
Uy "= Uy + Qn—l,O_ Qn,o-
This means

— St

SO(K?]) - un )
and

So(Uy ™™ = K5+ Quo1,0= Qo= Kyt Uy T = U
in the gPBBS«% denotes the number of spaces of tite box ats, andu:™, u>™** denote the
numbers of balls which come in theh box and get out thath box from time steps to s+1,
respectively; hence

s—M+1,
n

s—M+1y _ s+l
Souy ) =k

Therefore
uj uy | ul uj u3 ufy
So =
s—M+1 s—M+1 —M+1 —-M+1 -M+1 -M
u uy o uy so(ui ™M ¥ | so(ug™™HN) |-+ | so(uiy MH)
5 s S
K T R B so(#7) so(r3) [-o-| so(s%)
£l 8
Uy | Us uy
341 s+1 s+1
Piail oenl B e
s+1 3+1 s+1
uy o lug e luy
Repeating the above procedure, we obtain
s s 3 s+M s+M s+M
Uy L I e Ky g RN
s+M s+M s+M
WM [t g
SM-18M-2° - Sg =
s=M+1 s—M+1 s—M+1
ul u2 e uN
3 3 s+1 s+1 s+1
K] K Ky uy Uy Upy
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Finally, applying7 upon it immediately gives Theorem VI.2.

B. gPBBS as twisted crystal lattice

The BBSs can be reformulated as integrable lattice models at temperature zero from view-
point of the crystal theory and the combinatofamatrix®'’ The PBBS with one kind of ball
and box capacity one has also been reformulated into two types of lattice models, a p&fl)odlc
crystal Iattlce and a thsteA , crystal chain, wherdl denotes the number of the boxes in the
system It is straightforward to extend this result to the case of the gPBBS. In this section, we will
briefly show how the gPBBS is reinterpreted as some integrable lattice systems. Since the proofs
for the statements below are almost the same as those in Ref. 8, we will omit them here.

Let By be the classical crystal dﬂ(;(A(,j)) corresponding to thé-fold symmetric tensor
representation ol,(Ay). As a set it consists of the single row semistandard tableaux of léngth
on letters{1,2,... M+1},

Bk::{ili;---ik 1< <4y < <zk<M—|—1}
An elementb
b= |ilig|-+ |ir] € B
is also denoted as a seriesMft 1 integersdh= (xM*D xM . x@ x®) wherex" is the number

of lettersj in b. A state|y), of the gPBBS is naturally identified with
|l//>t5btl®bt2® e ® b}\, € Bgl(g) Baz® e ® Ban
where

bl = (k3,uS ™M uS™M2 L uS) (n=1,2,...N).

For the BBS without the periodic boundary condition, time evolution is given by the isomorphism
induced by the combinatorid& matrices,

TB.®(By, ®By,® -+ @By ) = (By ®By,® - ® B, ) ®B.,

TR0 @ [ — [hher @ {OD),
where[{0}) is the highest weight vector &,. For the gPBBS, by taking the trace of the auxiliary
state inB.,, T:=Trg, 7, we have the time evolution

T:B‘91®B‘92® ®BQN_)B'91® B‘92® e ®B(.)N,

T:|(/f>t - |¢>t+1-

As theA(ll) crystal, the operatdF maps|¢); to the unique tensor product Aﬁ) crystal that exactly
corresponds to the state of the g°PBBS #l.

The gPBBS is also reformulated as a twisted latticeMbfvertical axes in terms oA(Nlll
crystals. In this case, a stdig), is identified

|¢>tsb;®(bﬁl®bhz® ®bLM) eB® (B, ®By,® - ®By ),

M

where

b = (KR KRy - - - oK),
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/
T

= t t
;—1—"” - b:c s b«
[ K

/1

— -

1

-

71 Z1
[1 [y
[
\
A \
Il Il Z1
NN h
AR
]
A \ \
AY
S
xE
o .
kS gt
gt
/ /
! /
II =2 ll
Iy
Et—-
dr*
LA

. ~ 1

FIG. 14. The twisted crystal lattice associated with the gPBBS.

by, = (™R M) (=12, M),

k:==N_ 1«5 andn;:= SN, us™*. The time evolution is determined by the isomorphism induced by
the combinatoriaR-matrix for A{, crystal,

~ 1 1 1 1
bl ® (b, ® b, ® -+ @b} )= (b @b ® - ®bih) @b

In Fig. 14, we schematically show the twisted crystal lattice associated with the gPBBS.

VIl. CONCLUDING REMARKS

In this paper, using a path description of the characteristic polynomial of particular matrices
and an algorithm to construct the conserved quantities using the Lax representation of the ndKP
equation, we showed explicit form of the conserved quantities of the gPBBS. Relations to the
affine Weyl group action and the crystal theory were also clarified. An advantage to reformulate
the PBBS as crystal lattices is that we can extend it to the crystals associated with other root
systems.

Since the gPBBS is composed of a finite number of boxes and balls, it can only take on a finite
number of patterns. Hence its trajectory is always periodic and a fundamental cycle, i.e., the
shortest period of the periodic motion, exists for any given initial state. In the case where the box
capacity is one everywhere and only one kind of ball exists, the formula used to calculate the
fundamental cycle is explicitly obtained using the conserved quantities and some rescaling prop-
erties of the state’¥ Hence, using the results in this paper, we may get the formula to calculate the
fundamental cycle for the gPBBS, which is a problem we wish to address in the future.
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