CHAPTER 5

The Plactic Monoid

5.0. Introduction

Young tableaux have had a long history since their introduction by A. Young at
the turn of the century. It is only in the sixties that came to the fore a monoid
structure on them, a structure taking into account most of their combinato-
rial properties, and having applications to the different fields in which Young
tableaux were used.

Summarizing what had been his motivation to spend so much time on the
plactic monoid, M.P. Schiitzenberger detached three reasons: (1) it allows to
embed the ring of symmetric polynomials into a noncommutative ring; (2) it is
the syntactic monoid of a function on words generalizing the maximal length
of a nonincreasing subword; (3) it is a natural generalization to alphabets with
more than two letters of the monoid of parentheses.

The starting point of the theory is an algorithm, due to C. Schensted, for
the determination of the maximal length of a nondecreasing subword of a given
word. The output of this algorithm is a tableau, and if one decides to identify
the words leading to the same tableau, one arrives at the plactic monoid, whose
defining relations were determined by D. Knuth.

The first significant application of the plactic monoid was to provide a com-
plete proof of the Littlewood-Richardson rule, a combinatorial algorithm for
multiplying Schur functions (or equivalently, to decompose tensor products of
representations of unitary groups, a fundamental issue in many applications,
e.g., in particle physics), which had been in use for almost 50 years before being
fully understood. In fact, as will be shown in Section 5.4, the algebra of Schur
functions can be lifted to the plactic algebra, and even to the free associative
algebra. Once this crucial step is realized, all the proofs become straightforward.

Subsequent applications, also connected with group theory, physics and ge-
ometry, include a combinatorial description of the Kostka-Foulkes polynomials,
which arise as entries of the character table of the finite linear groups GL,, (F,),
as Poincaré polynomials of certain algebraic varieties, or in the solution of cer-
tain lattice models in statistical mechanics. One can also mention a noncom-
mutative version of the Demazure character formula, and the construction of
keys, leading to a better understanding of the standard bases of Lakshmibai
and Seshadri, and to a combinatorial description of the Schubert polynomials.
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Quite recently, the combinatorics of Young tableaux has been illuminated by
the theory of quantum groups, and especially by Kashiwara’s theory of crystal
bases. Roughly speaking, quantum groups are deformations depending on a
parameter ¢ of certain algebras classically associated with a Lie group G, which
give back the classical object for ¢ = 1. With some care, it is possible to take the
limit ¢ — 0 in certain formulas, and to recover in this way classical bijections
such as the Robinson-Schensted correspondence.

From a group-theoretic point of view, the combinatorics of Young tableaux
is associated with root systems of type A. By means of quantum groups, it is
now possible to define plactic monoids for other root systems, and to use them
for describing the corresponding Littlewood-Richardson rules. There is also a
similar construction taking into account the combinatorics of quasi-symmetric
functions (the hypoplactic monoid).

Conventions. In this chapter, A will denote a totally ordered alphabet of
n letters a; < ay < ... < a,. In the examples, we shall usually take A =
{1,2,...,n}.

5.1. Schensted’s algorithm

Consider the following problem: given a word w € A* on the totally ordered
alphabet A, find the length of the longest nondecreasing subwords of w.

C. Schensted has given an elegant algorithmic solution, which does not
require the actual determination of a maximal nondecreasing subword. His
method relies on the notion of Young tableau, a combinatorial structure issued
from group theory.

A nondecreasing word v € A* is called a row. Let v = xy---x, and v =
y1---Ys be two rows (z;,y; € A). We say that u dominates v (upwv) if r <s
and for i = 1,...,r, x; > y;. Clearly, every word w has a unique factorization
w = up -+ -ug as a product of rows of maximal length. A tableau is a word w
such that uy >us>...>ug. It is customary to think of tableaux as planar objects
and to represent w as the left justified superposition of its rows. For instance,
taking A={1<2<...},

t = 68 4556 223357 1112444

is a tableau whose planar representation is

6|8
41556
2|2 3|57
111]1(2]4]4|4

Similarly, a strictly decreasing word is called a column. Reading from bottom to
top the lengths of the rows of a tableau ¢, one obtains a nonincreasing sequence
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A= (A > Xy >...> A\;) which is called the shape of t. Such a sequence is called
a partition of the integer |A| = Ay +--- + Ax. On our example, A = (7,6,4,2).
The graphical representation of a partition by a planar diagram of boxes is
called its Ferrers (or Young) diagram. Thus, the Ferrers diagram of (7,6,4,2)
is

The conjugate partition X' of A is obtained by reading the heights of the columns
of the diagram of A. For example, the conjugate partition of (7,6,4,2) is
(4,4,3,3,2,2,1).

Schensted’s algorithm associates to each w € A* a tableau ¢ = P(w). The
elementary step of the algorithm consists in the insertion of a letter into a row.
Given a row v = y; - - - ys and a letter x, the insertion of z into v is P(vz) = vz
if vz is a row, and P(vz) = y;v’ otherwise, where y; is the leftmost letter of v
which is strictly greater that z, and v’ is obtained from v through replacing y;
by x. To insert a letter x into a tableau ¢t = vy - - - vy, one first inserts x into
the bottom row vy. Then, if vy is not a row, P(vyx) = yv, and one inserts y
into vg_1, and so on. The process terminates when one reaches the top row vy,
or when a letter has been inserted at the right end of a row. For example, the
insertion of 3 in the tableau ¢ above goes through the following steps:

P(1112444 - 3) = 4 - 1112344,
P(223357-4) = 5223347,
P(4556 - 5) = 6 - 4555 ,
P(68-6) =8 - 66,

and the result is
P(t-3) =8-66-4555- 223347 -1112344..
In a more formal way, the map P is defined recursively by

B tx if vgx is a row
Pliz) = {P(m gy i Ploge) = yop

for a tableau ¢ with row decomposition ¢t = vy - - - vg, and for an arbitrary word
w e A*, P(wz) = P(P(w)x).

As an example of the general case, the successive steps of the calculation of
P(132541) are

w

w

ot
»—\NJC»J‘

3
[1]3] [1]2 1[2]5] [1]2]4
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THEOREM 5.1.1. The maximal length of a nondecreasing subword of w is equal
to the length of the bottom row of P(w).

Similarly, the maximal length of a decreasing subword of w is equal to the
height of the first column of P(w).

For example, the maximal nondecreasing subwords of w = 132541 are 125,
124, 135 and 134. Note that 114, the bottom row of P(w) is not a subword of
w.

Schensted’s theorem will be proved in the forthcoming section. Actually, we
will prove a more general result due to C. Greene, which gives an interpretation
of the lengths of all rows and the heights of all columns of P(w).

5.2. Greene’s invariants and the plactic monoid

For w € A*, let [x(w) be the maximum of the sum of the lengths of &k disjoint
nondecreasing subwords of w. Similarly, let [}, (w) be the maximum of the sum
of the lengths of k decreasing subwords of w.

Let A = (\1,...,A;) be the shape of P(w), and let ' = (\|,...,AL) be the
conjugate partition.

—lgp—1(w), and fork =1,...,s,

)
0).

THEOREM 5.2.1. Fork=1,...,7, A\ = l.(w
Ny = iy (w) — 1}, _y (w) (where lo(w) = lj(w) =

To prove this theorem, it is natural to investigate the relationship between
two words having the same Schensted tableau. Therefore, we introduce an
equivalence relation ~ on A* defined by

u~v <= P(u) = P(v).

For words of length < 2, one has u ~ v & u = v, since each such word is either
a row or a column. The first nontrivial relations occur in length 3, and come
from the tableaux of shape (2,1). With three letters z < y < z we have four
non monotonic words whose P-symbols are

z Y
P(zzy) = P(zay) =2 1Y |, P(yzz) = P(yzz) =212 |, (5.2.1)

and similarly, with two distinct letters x < y

Y Y
P(zyz) = P(yzz) =% 17|, P(yzy) = P(yyz) =71 Y | (5.2.2)

We will prove in the sequel that ~ is in fact the congruence on A* generated by
the relations implied by (5.2.1), (5.2.2). It is the quotient of the free monoid by
these relations that will be the main object of this chapter.
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DEFINITION 5.2.2. The plactic monoid on the alphabet A is the quotient
P1(A) = A*/ =, where = is the congruence generated by the Knuth relations

zzy=zzy (x<y<z)),

N BN
- W
~— —

yrz=yzr (x<y<z).
The first step in proving Greene’s theorem is

ProposITION 5.2.3. Every word is congruent to its Schensted tableau, that
is,

w = P(w).

Proof. By definition of =, the proposition is true for |w| < 3. We proceed by
induction on |w|. Assume that for a word w we have P(w) = w, and let = be a
letter. We have to show that P(wz) = wz, or equivalently P(wz) = P(w) - .
The definition of the map P allows us to reduce this verification to the case
where w is a row. Assuming this, if wz is a row then P(wz) = wz, and
otherwise, P(wz) = yw' where y is the leftmost letter in w which is > z, and
w' is obtained from w by replacing y by z. Then, writing w = uyv, we have
wr = uywv by a sequence of applications of (5.2.4), and uyzv = yuxv by a
sequence of applications of (5.2.3). n

Next, we show that

PROPOSITION 5.2.4. Ifw = w', then I (w) = I (w') for all k.

Proof. We can assume that w' is obtained from w by a single Knuth transfor-
mation. Let us write, for instance,

w = urzZYv, w' = uzzyv (z<y<2).

Clearly, all nondecreasing subwords of w’ are also subwords of w. Hence,
lg(w) > lp(w'). Conversely, let (wy,...,wg) be a k-tuple of disjoint nonde-
creasing subwords of w. Then, w; is also a subword of w’, unless w; = u'zzv’,
where ¢’ and v’ are subwords of u and v. If y does not occur in any of the
remaining w;, then w; can be replaced by w} = u'zyv’, which is a nondecreas-
ing subword of w'. Otherwise, if some w; = u"yv", then, one replaces the pair
(ws, wj) by w; = v'zyv" and w’ = u"zv'. The case of a Knuth transformation

J
of type (5.2.4) is similar. Therefore, we have I (w) <Ii(w'). "

Thus the integers I, (w) are not modified by Knuth’s transformations (5.2.3)

(5.2.4). They are called Greene’s plactic invariants. Two other important plac-
tic invariants, the charge and cocharge, will be studied in Section 5.6.

Proof of Theorem 5.2.1. Using Propositions 5.2.3 and 5.2.4, the only thing
to prove is that for a tableau ¢ of shape A, lx(t) = Ay + --- + Ax. Taking for
wi, - . ., wy the k longest rows of ¢, we see that I (t) > A1 + -+ Ag. Conversely,
a nondecreasing subword w of ¢ uses at most one letter from each column of the
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planar representation of ¢, therefore k disjoint nondecreasing subwords can use
at most Ay + -+ - + A\, letters of ¢. n

We are now in a position to prove the cross-section theorem:

THEOREM 5.2.5. The equivalence ~ coincides with the plactic congruence. In
particular, each plactic class contains exactly one tableau.

Proof. Let us assume that w ~ w’. Then, by Proposition 5.2.3,
w = Pw) =Pw')=w'.

Conversely, suppose that w = w’. Then, from Proposition 5.2.4 and Theo-
rem 5.2.1 we see that P(w) and P(w') have the same shape. Now, let z be
the greatest letter of w and w’, and write w = uzv, w' = u'zv’, where z does
not occur neither in v nor in v'. Then, we claim that uv = u/v’. Indeed, we
can assume that w and w' differ by a single Knuth transformation. If z is not
involved in this transformation, then either u = v’ and v = v', or v = v’ and
v =v'". And if z is involved, erasing z in (5.2.3) or (5.2.4) leaves us with zy = zy
or yr = yx, so that uv = u'v’.

By induction on the length of w, we can assume that P(uv) = P(u'v').
From the description of Schensted’s algorithm, since z is the greatest letter, it
is clear that after erasing z in P(uzv), one is left with P(uv). Therefore, P(w)
is obtained from P(uv) by adding a box z at a place imposed by the shape of
P(w), and since the same is true for w’, we conclude that P(w) = P(w’). "

5.3. The Robinson-Schensted-Knuth correspondence

We have seen in the preceding section that the set Tab (A) of all tableaux over
the alphabet A is a cross-section of the canonical projection 7 : A* — P1(A) =
A*/ =. Tt is now a natural question to investigate the structure of the plactic
classes 771(t), t € Tab(A). As we will see, the elements of 7=!(t) are also
parametrized by certain tableaux.

Let us say that a tableau is standard if its entries are the integers 1,2,...,n,
each of them occurring exactly once. The set of standard tableaux is denoted
by STab . For a partition A, we denote by Tab (A, A) (resp. STab ()\)) the set of
tableaux over A (resp. of standard tableaux) of shape A.

By keeping track of the successive steps of the insertion algorithm, one can
define a map @ : A* — STab such that w — (P(w), Q(w)) is one-to-one. More
precisely, let w = y1 - - y,,. Observe that a standard tableau t is nothing but
a chain of partitions AV ¢ A® < ... ¢ A" such that the diagram of \(+1)
is obtained from that of A(¥ by adding one box, which is the one labelled i + 1
in ¢. Now, Q(w) is by definition the standard tableau encoding the chain of
shapes of P(y1), P(y1y2), ..., P(w). For example, the chain of insertions seen
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above gives

I—\OJCTJ|
ot

Q(132541) =
Clearly, Q(w) has the same shape as P(w).

THEOREM 5.3.1. The map

p:A* — [, Tab (X, A) x STab ()
w — (P(w), Qw))

is a bijection, called the Robinson-Schensted correspondence.

Proof. The inverse map p~! can be explicitly constructed. The idea is that,

given a row v and a letter y, there exists a unique row v’ and letter x such
that yv = v'z. This shows that the insertion process described in Section 5.1
can be reversed, provided that one specifies the box to be erased. Given a
pair (¢,t') € Tab (), A) x STab (\), one constructs w = p~1(t,t') by deleting
successively in ¢ the boxes labelled n,n —1,...,1in t'. [

COROLLARY 5.3.2. (@ induces a bijection between the plactic class of each
tableau t and STab (\), where X is the shape of t. In particular, the cardinality
of the class of t is equal to

f 1= |STab (M)].

Restricting p to the set of standard words on A = {1,2,...,n}, which can
be identified with the symmetric group &,,, one obtains a bijection

S «— [[STab (A) x STab ()). (5.3.1)
A
It provides in particular a bijective proof of an identity of Frobenius:
nl= > fi,
[A|=n

a special case of the fact that the cardinality of a finite group is equal to the
sum of the squares of the dimensions of its irreducible representations (over C).

As shown by the next theorem, there is some compatibility between the
Robinson-Schensted map and the group structure of &,,.

THEOREM 5.3.3. Foro € G, Q(o) = P(c™!).
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The original proof of Schiitzenberger proceeded by induction on n. We give
below a simple derivation based on Greene’s theorem.

To this aim, it will be convenient to represent a permutation o by a biword
(or word in biletters, that is, pairs of letters (a,b) € A x B in the product of

two alphabets, denoted here for convenience by (Z ).

o < |:7/.1 . l.n :|
Ju o n
where each j, = o(ir). Among the biwords representing o, we have two distin-
. id ot
guished ones [a] and [ i

the lexicographic order on biletters with priority on the top or bottom row.

, which are obtained by sorting one of them using

More generally, for a biword {Z] where u,v € A* are not necessarily stan-
!
dard, we denote by [Z,] the nondecreasing rearrangement of {Z] for the lex-

n
icographic order with priority on the top row, and by Z,, the nondecreasing

rearrangement for the lexicographic order with priority on the bottom row.
Thus, for

v 13652414

u'| 12233445 d u”| 22514433
o' | T | 31156442 | *MC o | T | 11234456 |

The crucial property is the following:

- [

we have

LEMMA 5.3.4. For any biword [Z}, the tableaux P(v') and P(u") have the

same shape.

Uy -~ Um,
V1" Um

Proof. Let {Z] = [

} and consider a nondecreasing subword =

!
- u . .
v, -+ - v;, of v'. Then, by definition of o | Wi, 18 also nondecreasing,

{“"1] <... < [“i’"]
Vi, - | Vi,

for both lexicographic orders. Therefore, a is also a nondecreasing subword of
u”. From this remark, we see that there is a bijection between the k-tuples of
disjoint nondecreasing subwords of v and those of u'. By Theorem 5.2.1 the
conclusion follows. n

and
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! : " —1
Proof of Theorem 5.3.3. Let 0 € G,, and Z,] = {lj], {Z,,] = {Uid ] The

left factors of o are encoded by the biwords
uk'| _[1 2 - k
vk) | |oy o2 - op

7]

v(k)" ] [(or--on) T

where (o1 ---0)) 1 is the increasing rearrangement of the left factor oy - - - oy,
and for a word w € A* and a subset B of A, w|p denotes the subword of w
obtained by erasing the letters which are not in B. From Lemma 5.3.4, at each
step of the insertion algorithm, we have that P(oy ---0}) and P(o |y ) have
the same shape. So at the end, P(c™!) = Q(0). n

for which we have

In fact, Theorem 5.3.3 can be readily generalized to give a similar result for
the insertion tableau Q(w) of an arbitrary word w € A*. To do this, we need
the notion of standardization.

Let 1 < w2 < ... < x, be the letters occurring in w, with respective
multiplicities mq,...,m,. By labelling from 1 to m; the occurrences of x,
reading from left to right, then from m; 4+ 1 to m; + mso the occurrences of x,,
and so on, we get a standard word, denoted by std (w). For example

std (31156442) = 41278563 .

This defines in particular the standardization of a tableau. It is immediate to
check from Knuth’s relations that

LeEmMMA 5.3.5. If w = w', then std (w) = std (w'). In particular, P(std (w)) =
std (P(w)). "

It is also clear from the description of the Robinson-Schensted algorithm
that

LEMMA 5.3.6. Q(w) = Q(std (w)). "

We can now state:

COROLLARY 5.3.7. For any w € A*, Q(w) = P(std (w)™1).

Proof. By Theorem 5.3.3, P(std (w)~!) = Q(std (w)), which is equal to Q(w)
by Lemma 5.3.6. -

In the Robinson-Schensted correspondence for non standard words, there is a
dissymmetry between the left tableau P(w) and the right tableau Q(w). Lemma
5.3.4 shows the way to restore the symmetry, by extending the correspondence
to commutative classes of biwords, i.e. monomials in commutative biletters
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. Given two words u = w1 ... Uy, and v = vy ...v,, of the same length, we

denote by (Z) = <Zl> (Zm> the associated monomial in commutative
1 m

biletters (not to be confused with the biword [Z] ).

"

!
DEFINITION 5.3.8. Let (Z) be a monomial, and [Z,], [z,,] be the two

biwords associated as above to the biword qu . The Knuth correspondence k

is defined by

By corollary 5.3.7, we recover the Robinson-Schensted correspondence by

m > By Lemma 5.3.4,
Ym

we know that P(v') and P(u") have the same shape. It will follow from the
alternative description given below that x is a bijection between monomials in
biletters and pairs of tableaux of the same shape. Recall that the evaluation of

a word is the vector ev (w) = (Jw|ay, |W]ags- - -»|W]a, ), where A = {aq,...,an}.

encoding w = y; - - -y, as the monomial (yl ) (
1

PROPOSITION 5.3.9. P(u") is the unique tableau of evaluation ev (u") such
that std (P(u'")) = Q(v").

o E;‘;] we have (std (v)")~1 = std (u)".

Since lexicographic sorting obviously commutes with standardization, it follows
that (std (v'))~! = std (u"). Hence,

Proof. By lexicographic sorting of [

Q') = P((std (v')™') (Corollary 5.3.7)
P(std (u"))
=std (P(u")) (Lemma 5.3.5).

Therefore, to compute the inverse image of a pair of tableaux (¢,t¢') under
the Knuth correspondence, we can apply the inverse Robinson-Schensted map

!
to (t,std (') to get v' = p~1(¢,std (¢')). Then, s~ 1(t,t') = <tv,T>.
Note that the symmetry

K (;‘) = (tt") = & (Z) = (1),

which generalizes Theorem 5.3.3 is incorporated in the definition of . In par-
ticular, taking t' = ¢, k establishes a bijection between Tab (A) and the set of
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symmetric monomials in biletters, i.e. those such that <Z> = <Z> (which

amounts to say that for any z,y € A, (;) and <i> occur with the same mul-

tiplicity). As an immediate consequence of this observation, we can compute
the generating series of the numbers

do = |{t € Tab(4) | ev (t) = a}| (a € N4)

which are the cardinalities of the multihomogeneous components of the plactic
monoid.

THEOREM 5.3.10. Let &1,&5, ... be commuting indeterminates. Then,

" 1 1
2 dat _Hl—figl—fifj'

aENA i

Proof. The commutative image ¢ of a tableau ¢ under a; — §; is obtained
from (Z) = k1(t,t) by mapping each biletter (;) to (£&&;)Y/%. Now, the

generating series of all symmetric monomials in biletters is clearly
M 11—
S=()=-0) ()
i J i

COROLLARY 5.3.11. For |A| = n, the cardinality of the homogeneous compo-
nent of degree k of P1(A) is equal to the coefficient of z* in

1 1

(]_ _ Z)n (]_ _ ZQ)n(n—l)/2 !

5.4. Schur functions and the Littlewood-Richardson rule

Let &1,&, ..., &, be commuting indeterminates as in the preceding section, and
retain the notation w — w for the commutative image a; — §; of a word w € A*.

DEFINITION 5.4.1. Let A be a partition. The generating function

S)\(gl,...,gn): Z z

teTab (A,A)

is called a Schur function.
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Although not obvious from this definition, sy is a symmetric polynomial in
&,.. ., &, (this will be proved in Section 5.6). Most of the combinatorial con-
structions of Section 5.3 imply interesting and classical Schur function identities.
For example, Schur’s identity 5.3.10 can be rewritten as

stfu---afn H1_&H1—515J

1<y

From Theorem 5.3.1 we get

T =2 ).

Indeed, the left-hand side is clearly the generating function of A*.

Finally, from the bijectivity of Knuth’s correspondence, we obtain a classical
and fundamental identity which can be tracked back to Cauchy. To state it, we
need a second set 71, . .., 7, of commuting variables. Sending the biletter <Zi' >

J
onto &mn; and the pair (¢,t') to the product of the commutative image of ¢ in
the variables £ and of ¢’ in the variables n, we get

THEOREM 5.4.2.

H 1- fﬂb Z 8)\ 8)\

i,j

Group theoretical arguments show that a product of Schur functions is equal
to a positive sum of Schur functions:

=3 &0 (5.4.1)

where ¢§,, € N. The calculation of the coefficients s, 18 of interest in many
fields. A combinatorial interpretation of these numbers implying an efficient
algorithm for their computation has been given without proof by Littlewood
and Richardson.

The most illuminating proof of this rule proceeds by lifting the calculus of
Schur functions to the algebra Z[P1(A)] of the plactic monoid, introducing the

plactic Schur function
S\d)y= > ot

teTab (,A)

where tableaux are evaluated in the plactic monoid. This plactic Schur function
can be seen as the projection in Z[P1(A)] of anyone of the free Schur functions

ZwGZ

indexed by t € STab (A). In fact the Littlewood-Richardson rule will be deduced
from a statement in the free algebra Z(A).
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THEOREM 5.4.3. Let A’ and A" be two subalphabets such that o' < o', for
allae A', o' € A". Fort' € Tab (A') and t" € Tab (A") we have

Y wjul ¥ ow)- ¥ oy
P(w')=t' Plw'")=t" teSh (¢ ,"") P(w)=t
where Sh (t',t") is the set of all tableaux t such that t|4» =t' and P(t|ar) =1t",

that is, of all tableaux t occurring in the shuffle product of t' and a word in the
plactic class of t"'.

Thus the shuffle of a plactic class of A’ and a plactic class of A” is a union
of plactic classes of A (identifying a class and the sum of its elements). It is in
fact a direct consequence of the following

LEMMA 5.4.4. Let I be an interval of A. Then
w=w = wl =w;

Proof. Tt is enough to check the lemma in the case when w' differs from w by a
single Knuth transformation, and this amounts to the observation that erasing
x or z in 5.2.3 or 5.2.4, we are left with zy = zy or yz = yz. L]

Proof of Theorem 5.4.3. The words occurring in the shuffle are exactly those
w such that w|ar = t' and w|a» = ¢'. By Lemma 5.4.4 , this set of words is
saturated with respect to the plactic congruence, hence is a union of plactic
classes. ]

We can now state the plactic version of the Littlewood-Richardson rule.

THEOREM 5.4.5. The plactic Schur functions span a commutative subalgebra
of Z[P1(A)] and we have

SA(A)Su(A) = Y 5,80 (4)

where the ¥, are the same as in (5.4.1). In particular ¢, 1 equal to the number
of factorizations in P1(A) of any tableau t € Tab (v, A) as a product t't" with
t' € Tab (X, A) and t" € Tab (u, A).

Proof. We first work in the free associative algebra Z(A) and consider a product
St (A)Sy(A) where t',t" are arbitrary standard tableaux of respective shapes
A and p, with p = |A|, ¢ = |u|. We identify as above a word w' of length p with
a monomial in commutative biletters:

o — (1..I.p> .
w

Then, by reordering biletters, we can write in view of Proposition 5.3.9

o X ()5 ()

Q(w')=t' P(u)=t'
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where the notation means that the second sum is over all words u and r’ such

that the biword :f, is increasing for the lexicographic order with bottom

priority, and that P(u) = t'. Similarly, using for w" of length ¢ the identification

W' — <(p+1)---(p+q)>

wll

we can express S as
—
v
S¢r = § (,,,,II) )
P(v)=t"[p]

where t"[p] denotes the tableau obtained from ¢’ by adding p to all its en-
tries. Now sorting lexicographically (with bottom priority) any of the biwords

[:,] [ﬁ,}, one gets a biword [1:} such that w occurs in u W v. Conversely,

all increasing biwords , such that w occurs in w v arise in this way from

the sorting of a unique product [:,] [ﬁ,} of increasing biwords. Thus, by
Theorem 5.4.5,
— w
Sy Sy :Z Z <r> ,
t P(w)=t

where the outer sum is over all standard tableaux ¢ which occur in the shuffle
of ¢ and a of a word congruent to ¢"[p]. Hence

Sy S = Z S,, (5.4.2)
t

sum over the same tableaux ¢, and taking the plactic image we obtain

SaSu =Y X, (5.4.3)

where ¢f, is the number of standard tableaux of shape v which occur in the
shuffle of ¢’ and of a word in the class of ¢'[p]. Taking the commutative image
of (5.4.3), we see that the c}, are the same as in (5.4.1), which implies that
the plactic Schur functions span a subalgebra of Z[P1(A)] isomorphic to the
commutative algebra spanned by the ordinary Schur functions. Finally the
interpretation of ¢, in terms of factorizations in P1(A) follows directly from
the definition of plactic Schur functions. m

As an illustration of (5.4.2), one can check that for

3
= = 1|2
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the product Sy S;» is equal to Zt S; where t ranges over the following tableaux:

6] (4]
6 1]6 3 36
1]2]4]5] [1]2]5 1[2]4]5] [1]2]s
6| 6|
6| 4l6] [4] 4|
3[4 5] [3] 3[5
1[2]5] [1]2 1[2]5] [1]2

COROLLARY 5.4.6. Let R(\ k) (resp. C(A,k)) be the set of partitions whose
diagram is obtained by adding k boxes to the diagram of \, no two of them
being added in the same column (resp. in the same row). Then,

HNSw = D S

vER(\ k)

SxSamy = Y. S,.

veC(A\k)

Proof. Let m = |A|. To calculate S; - S12...x, we have to look for the standard
tableaux in the shuffle of the plactic class of ¢ with the one element class

(m+1D(m+2)---(m+k).

Clearly, these tableaux can only be obtained by dispatching at the periphery
of t the letters (m + 1),...,(m + k) from left to right and in this order, and
the resulting shapes are exactly those of R(\, k). The second formula is proved
similarly. m

To recover the classical formulation of Littlewood and Richardson, we need
the notion of a Yamanouchi word. We say that w is a Yamanouchi word on
A={1,2,...,n} if any right factor v of w satisfies |[v|; > |[v]2 > ... > |v],.

LEMMA 5.4.7. The Yamanouchi words of a given evaluation p = (g1, ..., in)
form a single plactic class whose representative tableau is the Yamanouchi
tableau

’

that is, the unique tableau with shape and evaluation p.

Proof. Tt is immediate to check that if w is a Yamanouchi word, and if w' is
obtained from w by a single Knuth transformation, then w' is also a Yamanouchi
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word. Therefore, a plactic class which contains a Yamanouchi word contains
only Yamanouchi words. Now, a tableau is a Yamanouchi word if and only if its
bottom row contains only 1’s, the next row contains only 2’s, and so on. Hence
there is a unique Yamanouchi tableau, namely, the unique tableau of shape u
and evaluation u, and the lemma follows from Theorem 5.2.5. m

We can now see that the classical version of the Littlewood -Richardson rule
is a direct consequence of (5.4.2). Indeed, to calculate x> We can choose for
t’ and t" the standard tableaux of respective shapes A and p in which each
row consists of consecutive integers. These tableaux are the standardized of the
Yamanouchi tableaux of the same shapes, so that the words w" in the plactic
class of ¢''[p] are precisely the shifted standardized of the Yamanouchi words y"’
of evaluation p. Hence, if one erases in the tableaux ¢ the entries of ', which
are irrelevant, and replaces the word w' by the unique Yamanouchi word y”
of which it is the standardized, one obtains the classical Littewood-Richardson
tableaux, i.e., the skew Yamanouchi tableaux of shape v/\ and evaluation u.
Continuing the preceding example, one would obtain

<]
-

1]1] 1 [1]1] 1

~[v]

- 2]
1]

L [ 1]

Another useful formulation of the rule is the following;:

COROLLARY 5.4.8. Let y, denote the unique Yamanouchi tableau of shape p.
Then cf, is equal to the number of tableaux ¢ of shape A such that t -y, is a
Yamanouchi word of evaluation v.

Proof. By Theorem 5.4.5, ¢, is the number of factorizations y, = t-t'in P1(A),
with ¢ € Tab (A, A) and ¢’ € Tab (u, A). Equivalently, by Lemma 5.4.7, X is
the number of Yamanouchi words w of weight v such that w = ¢-¢' in A*, for
some t € Tab (A, A) and ¢ € Tab(u, A). Then the right factor ¢ must be a
Yamanouchi tableau, that is t' = y,,. "

(4,3,1)

For example, the coefficient C(3.2),(2,1)

following two tableaux t:

is equal to 2, corresponding to the
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5.5. Coplactic operations

The set of words w having a given insertion tableau t = Q(w) is called a coplactic
class. In the preceding section we have seen that the sum S; of the elements
of a coplactic class is a pertinent lifting of a Schur function to the free algebra
Z(A). In this section, we show that coplactic classes can be endowed with a
structure of colored graph.

We introduce linear operators e;, f;,0i, @ = 1,...,n — 1, acting on Z(A)
in the following way. Consider first the case of the two-letters subalphabet
A; ={ai,ai41}. Let w = 1 - -z, be a word on A;. Bracket every factor a;+1a;
of w. The letters which are not bracketed constitute a subword w; of w. Then
bracket every factor a;;1a; of wi. There remains a subword ws. Continue this
procedure until it stops, giving a word wy, of type wy = ajaf,, = xj, - -z .
The image of wy, under e;, f; or o; is given by

ar"+1 s—1

r s _ i Qi (s>1)
ei(aiai+1) - { 0 + (s — 0)

r—1_s+1 ( > 1

fi(aga?+l) = {ai 0ai+1 (: z 0;

r_ S __ 8,8
Ui(aiai+1) =Q; ;44

Let wy, = a7}, -~ denote the image of wi. The image of the initial word w

is then w' = yy -+ - ym, where y; = o} if i € {j1,...,jr+s} and y; = z; otherwise.
For example, if w = (a2a1)a1a1a2(aza;)arararasz, we have

w1 = ara1(azar)araras  and  we = a1a1a1a1as -

Thus,
e1(w) = a2a1 8,4, a2a2a101 A10,0,

fi(w) = azay a0, azazaiar a;aya,
o1 (W) = as01 418y A2020101 Q30505

where the underlined letters are those of the subword w). Finally, the general
action of the operators e;, f;, o; on w is defined by the previous rules applied to
the subword w4, the other letters remaining unchanged.

THEOREM 5.5.1. Let h be anyone of the operators e;, f;, 0;.
(i) Let w € A* and suppose that h(w) # 0. Then Q(h(w)) = Q(w).
(ii) Let w' be congruent to w. Then h(w) = h(w").

Proof (i) Suppose first that A = {a;1,a2}, and let us give the proof in the case
h = fi. Let w € A* be such that fiw # 0. This means that w = ua,v where
u = (aza1)*al™ (r > 1), v = a§(aza;)" and that we have f; (w) = uayv. Clearly,

Q(uaz) = Q(uay). Next, the insertion of v into P(uas) will produce the same
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sequence of shapes as the insertion of v into P(ua;). Indeed, write v = vy - - - vy,
and assume by induction that P(uayv; - - -v,_1) and P(uasv; - - - v,_1) have the
same shape. If v, = ao, then clearly P(uajvy---v,.) and P(uasvy -+ v.) will
also have the same shape. If v, = ay, then since v = a$(aza;)’, we see that
r > 2 and that the tableau P(uajv; ---v,.—1) has at least one as in its bottom
row. Thus the insertion of a; in both tableaux will produce again two tableaux
of the same shape.

The proof is similar in the case h = e, and this also implies the case h = oy
since oy w is either of the form ffw or efw.

Consider now the general case A = {a1,...,a,}, and suppose that h =
fiyei or o;. By Corollary 5.3.7, we have to prove that P(std (h(w))™!) =
P(std (w)™1). Recall that std (w)~! is the word u" obtained from the repre-

sentation of w as the biword [Z] = [15] (see Section 5.3). Set wy = h(w) and

U1 id .
[v ] = [w ] Then, we can write v" = aajaj, 3 where a; and a;y; do not
1 1
r
S

occur in o and 3, v} = aa;”aiﬂﬁ (r+s=r'+s"), u" =~ed where |a| = |y| and
|B] = 19|, and finally u{ = ~ye14. By the above proof for a two letter alphabet,
g1 = €. Therefore, u} = u" as required.

(ii) Suppose that w’ differs from w by a single Knuth transformation, and
let us take for example h = f;. Write w = azzyf and w' = azzyfS, where we
assume that < y < z. Let a (resp. a') be the letter a; of w which is changed
into a;+1 by f;. We claim that if a is a letter of a (resp. ), then a' is the letter
occupying the same position in w'. This is clear because the transformation
xzy — zxy does not modify the relative positions of consecutive letters a; and
ai+1. Therefore, f;(w) = f;(w') trivially if a is a letter of a or of 8. Otherwise, a
is one of the letters x,y, z of w and a’ is the same letter in w’. Hence, according
to a = z,y or z, we have

aa;+12yp azai1ypB
filw) =< azzai 18 = fi(w') =< azra; 18 .
axaip1yf aaipzyf

Note that in the case a = y, we must have z > a;;2, because if z = a;y1,
y = a;, then zy would be put between brackets. In the case w = azxyzf and
w' = ayzz, the reasoning given above remains unchanged, except when z = a;,
Yy = a;+1, and a does not belong to « or . In this case, we have

filw) = fi(aaiairiaifB) = aaiprai10:8,
and
fi(w") = filaai1a:0:8) = aairra:0i416 = fi(w) .

The case of a Knuth transformation yzz = yzz (z < u < 2) is treated similarly.
|

We shall now make use of the operators e;, f; to define a graph I on A*.
The vertices of this graph are all the words w € A*, and we put labelled arrows
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between words according to the following rule:
(w -5 w) = (fiw=uw).

Note that if fyw = w' # 0, then e;w’ = w, hence at each vertex w there is at
most one incident arrow of color i (and also, by definition, at most one outgoing
arrow of color 7). Hence the subgraph obtained by erasing all arrows of color
j # i is extremely simple: it is just a collection of disjoint i-strings

w1—1>w2—>---—z>wk

of various lengths k > 0. However, when all the colors are considered simulta-
neously, a rich combinatorial structure emerges. Let us call “connected com-
ponents of I'” the connected components of the underlying non-oriented non-
labelled graph.

PROPOSITION 5.5.2. (i) The connected components of ' are the coplactic
classes.

(ii) Two coplactic classes are isomorphic as subgraphs of I' if and only if
they are indexed by two standard tableaux of the same shape.

Proof. (i) By Theorem 5.5.1 (i), any connected component of I' is contained in
a coplactic class. Conversely, let w be a a non-Yamanouchi word. Then there
exists an index ¢ such that e;w # 0. If w' = e;w is not a Yamanouchi word,
we can again find j such that ejw’ = w" # 0. Iterating this procedure, we
construct a chain of arrows connecting w to the unique Yamanouchi word in its
coplactic class. Hence any two words of the same coplactic class are connected
by a sequence of arrows going through the same Yamanouchi word.

(ii) It follows from Theorem 5.5.1 (ii) that two coplactic classes indexed by
standard tableaux of the same shape are isomorphic as subgraphs. Conversely, if
two coplactic classes C, C’ correspond to two standard tableaux ¢, ¢’ of respective
shapes A # X, then the Yamanouchi words of these classes have evaluation A
and ). It is easy to check from the definition of f; that for a Yamanouchi word
of evaluation A = (A1,...,Ax), one has

max{p | f{y # 0} = X\i — Aiy1 -

Hence the unique vertices of C' and C' with no incident arrows have outgoing
strings of different lengths, and C' and C" are not isomorphic. m

As an illustration Figure 5.1 shows the graph structure of the coplactic class
of t = 2211 for A = {1,2,3,4}. These graphs are examples of crystal graphs in
the sense of Kashiwara.

5.6. Cyclage and canonical embeddings

In this section we investigate the behavior of the previous constructions under
circular permutations on words. We denote by ( the bijection on A* defined by
(w122 Ty) = @2 -+ - xpwy (x; € A).
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Figure 5.1. The graph structure of the coplactic class of t = 2211.

PROPOSITION 5.6.1. The cyclic shift ( commutes with the maps o;.

Proof. We have to prove that (o;(w) = 0;((w), w € A*. If the first letter
x1 of w is different from a; and a;y1 there is nothing to prove. Otherwise we
distinguish 4 cases. Let us say that a letter z of w is free if it does not occur
inside a pair of mutually closing brackets at the end of the bracketing procedure
described in Section 5.5. We then have the following cases: (i) 1 = a; and no
a;t1 18 free; (i) ©1 = a; and at least one a;11 is free; (4#4) 1 = a;41 is free; (iv)
1 = a;41 is not free. In each case, the verification is immediate. n

LEMMA 5.6.2. Lett € A* be a tableau and o be any product of ;. Then the
following conditions are equivalent:

(i) oft) =t

(i) o(P(C(1))) = P(C(2)).
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Proof. Since ( is bijective,

o(t) =t & ((o(t)) = ((1).

By Proposition 5.6.1, {(o(t)) = ({(t)), which has the same @-symbol as ((t)
by Theorem 5.5.1 (i). Thus

o(t) =t P(o(C(t)) = P(C(?))

because of Theorem 5.3.1. Now, again by Theorem 5.5.1, P(o(w)) = o(P(w))
for any w € A* and the statement follows. n

THEOREM 5.6.3. The operators o; satisfy the Moore-Coxeter relations

o} =1, (5.6.1)
0i0j = 0;0; (|Z —_]| > ].), (562)
0i0i+10; = 041040441 - (563)

In other words, the map p sending the elementary transposition (i, + 1) onto
o; is a linear representation of the symmetric group &,, in Z(A).

Proof. Relations (5.6.1) and (5.6.2) are obviously satisfied. To prove (5.6.3), we
have to show that (0;0;11)%(w) = w for any w € A*. From Theorem 5.5.1, it is
enough to check this when w =t is a tableau. Let t = uv where v is the bottom
row of t. By Lemma 5.6.2, it is equivalent to show that (0;0;41)3P(uv) = P(vu).
Now, in the tableau ¢ = P(vu) all the letters a;, a2 lie in the bottom row.
Writing ¢ = w'v" and #" = P(v'u'), and iterating, we construct a sequence t(*)
of tableaux such that all the letters a, ..., a1 of t*%) are in its first row, and
such that
(0i0i41)°(t) = t <= (03051 (t W) =)

But t(»~Y is a row, and (o30441)%(t®~Y) has to be a row with the same evalu-
ation, hence (0;0;41)% (") = t(n=1), .

COROLLARY 5.6.4. The free Schur functions S; are invariant under the above
action of &,,. As a consequence, the commutative Schur functions sy (§) are
symmetric in the usual sense.

We next investigate which transformations on tableaux arise when the map
P is applied to circular permutations of words. Let Row (A4) denote the subset
of Tab (A) consisting of rows.

DEFINITION 5.6.5. Let t be a tableau which is not a row. We put

The map C : Tab (A) \ Row (4) — Tab (A) is called cyclage.
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12 20

2 3 42

ol lo

2 4 31
ol 12 1o

Figure 5.2. The calculation of the cocharge of w = 23141213142 (labels
are written in small type)

To describe properties of the cyclage map, we need to use a plactic invariant on
words called cocharge. Let w be a word. Let o be any permutation such that
v = o(w) has a dominant evaluation, that is

[V]ay > [V]ay > > |V]a, -

Write v on a circle, adding a “point at infinity” * (see Figure 5.2). Then label
each letter of v according to the following algorithm, reading the word clockwise.

1. start at * and label the first unlabelled a; with 0.

2. after labelling an a; with the number ¢, label the first unlabelled a;y;
with ¢+ 1 if it is obtained without crossing *, and with ¢ otherwise. If
there is no unlabelled a;41, go to the first step again, while there are still
unlabelled letters.

The sum of all labels is called the cocharge of w, and is denoted by coch (w).
The complementary statistic ch (w) = max{coch (v) | ev (v) = ev (w)} —coch (w)
is called the charge of w. For example, the cocharge of w = 23141213142 (whose
evaluation is dominant) is equal to 9, as shown in Figure 5.2.

LeEMMA 5.6.6. (i) IfC(t) = t', then for any o € &(A), C(o(t)) = o(t').
(ii) If w = w' then coch (w) = coch (w').
(iii) For t € Tab (A) \ Row (A), we have coch (C(t)) = coch (t) — 1.
(iv) IfC(t) = C(t') and t # t', then t and t' must have different shapes.

Proof. (i) results clearly from Theorem 5.5.1 and Proposition 5.6.1.
As to (i), we note that by definition coch (o(w)) = coch (w) for o € G(A),
hence using Theorem 5.5.1 (ii) we can assume that w and w' have a dominant
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evaluation. For such words, the above calculation of the charge proceeds by
extracting from w a sequence of standard subwords w(® such that

coch (w) = Z coch (w;) .

Now, it is clear that replacing a factor a;a; by aja; when |i — j| # 1, does not
change these subwords, and thus does not change the cocharge. Similarly, one
checks that replacing a factor a;yia;a; (resp. airiair10;) by a;a;41a; (resp.
@i+10;a;+1) does not modify these standard subwords. Hence, cocharge is in-
variant under plactic relations.

Let now ¢t = zw, ¢ € A, be a tableau of dominant evaluation, which is not
arow. Then = # a;, and the order in which letters are labelled in the word zw
is the same as in wz. Thus, all labels are preserved except the label of x which
is decreased by 1, and

coch (P(wz)) = coch (wz) = coch (zw) — 1

which proves (iii).

To prove (iv), assume that ¢ and ¢ are two different tableaux of the same
shape, and write t = zw, ' = z'w’ with z,2’ € A. Then w and w’ also are two
tableaux of the same shape, say A. By Corollary 5.4.6, S) S(1) is a multiplicity-
free sum of tableaux in Z[P1(A)], hence wz # w'a’, that is, C(t) # C(t'). "

We shall now use the map C to define a graph structure on the set Tab (A4).
Namely, consider the oriented graph with set of vertices Tab (A) and edges
defined by:

t—t' = Cit)y=t".

Since the cyclage map does not change the evaluation of tableaux this graph de-
composes into the disjoint union of the subgraphs with sets of vertices Tab (-, u)
for all evaluations pu. The following theorem describes these subgraphs and
shows how they can all be naturally embedded into the subgraph of standard
tableaux.

THEOREM 5.6.7. (i) The subgraph Tab (-, ) is a rooted-tree with root the
unique row-tableau of evaluation pu. Two evaluations which differ by a permu-
tation give rise to isomorphic trees.

(ii) Let p and v be two evaluations such that

pr =vi fork #1437,

i > g,
Vl':ll’i_]-a
I/j:,u.j-i-]..

Then there exists a unique embedding Z,,,, of Tab (-, 1) into Tab (-, v) commuting
with C and such that 7, (t) has the same shape as t for all t.

(ili) Similarly, for any evaluation p there exists a unique embedding I, of
Tab (-, ) into STab preserving shapes and commuting with C.
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Cocharge N Charge
3
4 2 |2 0
1
3]
2|2 2
3 1
1]1]3] 1]1]2]
23 (2]
2 2
1]1]2] 1]1]2]3]

1]2]2]

|

0 ;

-

Figure 5.3. The tree structure of Tab (-, (2,2,1))

Proof By Lemma 5.6.6 (iii), the map C decreases cocharge by 1. Hence, the
cyclage graph has no cycle and is a union of trees. It is clear from the definition
of cocharge that row-tableaux are the only words with cocharge 0. Therefore,
the subgraph Tab (-, u) is a rooted-tree with root the unique row of evaluation
p. If v = o(p) for some o € &(A), then, by Lemma 5.6.6 (i), Tab (-, x) and
Tab (-,v) are isomorphic as trees, which proves (i).

Let 0 € 6(A) be any permutation such that o(a;) = a1 and o(a;) = as.
Let p' = o(p) and v' = o(v). Given ¢t = zw in Tab (-, u') its image under f;
is non-zero and is the tableau in Tab (-, 2') obtained by changing the rightmost
a1 into as. This operation clearly commutes with C, since the letter « which is
cycled does not interfere, in the computation of P(wz), with the subtableau of
w consisting of the occurrences of a; and as. Therefore, the image of Tab (-, ')
under f; is a subtree of Tab (-,»'). Moreover, if two tableaux of the same
shape have the same image under cyclage, then they are identical according to
Lemma 5.6.6 (iv). Hence there can be only one map from Tab (-, u') to Tab (-,v")
preserving shape and commuting with C. Finally, using 0!, one obtains from
this embedding of Tab (-, u’) in Tab (-,»') an embedding of Tab (-, x) in Tab (-, v)
with the same properties, and (ii) is proved.

Composing the preceding embeddings, one obtains for each evaluation p at
least one embedding of Tab (-, u) into Tab (-, (1,...,1)) preserving shapes and
commuting with C. The unicity of such an embedding is again ensured by
Lemma 5.6.6 (iv). n
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s3]
22|
a0
n
2]2]
1]1]3]
B B |
23 2 3] 2 |2
1]1]1] 1lil2] [a]1]s]s]
2 23 233 2 23 233
1fafafs] [ifafafs]  [afa]q] tfifafs]  [ilaf2[s]  [2]a]e]
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Figure 5.4. The embedding of Tab (-, (3,1,2)) in Tab (-, (2,2, 2))

Figure 5.3 and Figure 5.4 illustrate Theorem 5.6.7 by displaying the tree
structure of Tab (-, (2,2,1)) and the canonical embedding of Tab (+, (3,1,2)) in

Tab (-,

(2,2,2)).

The main motivation for studying cyclage and the related plactic invariants
given by charge and cocharge is to develop a combinatorial approach to the
Kostka-Foulkes polynomials Ky, (¢) which arise in many contexts, ranging from
the character theory of the finite linear groups GLy,(F,) to the geometry of flag

varieties or the solution of certain models in statistical mechanics. Actually, one
has the following important result:

THEOREM 5.6.8.

The Kostka polynomial is equal to the generating function

of the charge on the set Tab (\, u) of tableaux of shape \ and weight p:

>

teTab (A,n)

¢ = Ky,(q).

The proof of this theorem is out the scope of this chapter.
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Problems

Section 5.1

5.1.1 (The Erdos-Szekeres theorem). Prove that any permutation of n? + 1
elements contains a monotonic subsequence of length n + 1. Show that
there exist permutations of n? elements with no monotonic subsequence
with length greater than n.

Section 5.2

5.2.1 Let w denote the mirror image of a word w. Let w be a standard word,
and t = P(w). Show that P(w) = t*, the transposed tableau of .

5.2.2 Let w be a standard word. Show that the sequence w™ stabilizes in
P1(A), in the following sense: for n sufficiently large, w"*! = ¢ - w",
where ¢ is the column such that ev (c) = ev (w).

5.2.3 Let w be a standard word. Let V(w) be the set of words v such that
wv = vr, where r is a row. Show that the set of words of minimal length
in V(w) is a plactic class.

5.2.4 The column reading C(t) of a tableau t is the word obtained by reading
the planar representation of ¢ column-wise, from left to right and from
top to bottom. Show that for any tableau, C(t) = t¢.

5.2.5 (Plactic monoid and quantum matrices). Let A be the associative unital

Q[g, ¢ ']-algebra generated by elements w11, ¥12, T21, T22 subject to the
relations:

L1211 = qT11X12
L21T11 = qT11%21
T22T21 = T21T22
T22T12 = T12T22
T12T21 = T21T12

-1
ToaT11 =TT + (@ — ¢7 ) T1272

1) Show that D = x11295 — g 71271 commutes with the Z;j, hence is
central in A.

2) Introduce the Z[g]-lattice £ in A spanned by the elements Dz}, z
(k,I,m € N).

(i) Show that every diagonal monomial x;,;, - - ®iip, (4,5 € {1,2}) be-
longs to £. (Hint: prove that z2s71; = (1 — ¢*)D + ¢*z11722.)

(ii) Let w =4y ---ig, w' = j1---jr € {1,2}*. Prove that

o _
W=W <= Tiyig " Tigie = Tjrjr " Tigji modq/:
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5.4.1

5.4.2

5.4.3

Section

5.5.1

The Plactic Monoid

5.8

Show that the number a,, of involutions in &,, is equal to the number
of standard tableaux of weight n. Show that

n
Z z 2
a/n,_' == ez+ 2,
n.

n>0

5.4

Show that if A = (k') and p = (r®) are partitions of rectangular shapes,
all the coefficients 5, are 0 or 1, and give a simple graphical description
of the partitions v such that g, =1

For an integer k, let hy = s() be the Schur function indexed by the
one-part partition (k), and for a partition pu = (p1,-..,pr), set by, =
hyy by - - hy,.. The Kostka numbers K, are defined as the coefficients
of the expansion h, = >, Ky,sx. Show that Ky, is equal to the
number of tableaux of shape A and evaluation pu.

Let X = {z1,22,...,2,} be a set of commuting indeterminates, and
let E(t) = [[,(L+tz;) = X, enth, HEt) = [[,(1 — ta;)t = 3, hat*
be the generating functions of the elementary and complete symmetric
functions of X. Let pp = >, z¥ be the power sums symmetric functions.

1) Show that Y-, pit"~" = H'(t)E(—t).
2) Deduce from 1) that p,, = 21:701(—1)’68(,”’_197119).

3) The character table of the symmetric group &,, is a square matrix Xf}
indexed by pairs of partitions of n, in which Xﬁ is equal to the coefficient
of sy in the product of power sums p,, = Py, Py, - - - Pp,.- Using 2) and the
Littlewood-Richardson rule, compute the character tables of the groups
6, for n <6.

5.9

Let w = x1 - - -z, € A*. One says that the integer i < m is a descent of
w if z; > x;41. The major index maj (w) of w is the sum of its descents.
We denote by Des (w) the descent set of w.

A recoil of a standard tableau t is an entry i of ¢ such that i + 1 occurs
in a higher row. Let Rec (¢) be the set of recoils of t. The indez of a
tableau is ind (¢) 3 cpec (1) -

It is customary to encode a subset E = {ey,...,e,_1} C {1,2,...,m—1}
by a composition of m, i.e. a vector I = (i1,...,1,) of positive integers
with sum |I| = m. The encoding I = C(E) of E is specified by e =
i1 +i2+ -+ ik. The composition I = C'(Des (w)) is called the descent
composition of w. Conversely, the set E defined in this way from a



Notes 171

composition I is called the descent set of I and denoted by Des (I). As
above, on sets maj (I) = >, ex.

1) Show that for any word, Des (w) = Rec Q(w).
2) For a composition I, define the noncommutative ribbon Schur func-

tion Ry € Z(A) by
R[ = Z w .

Des (w)=Des (I)

a) Show that Rr =3 gec (t)=pes (1) St-

b) Show that w — Q(w) defines a bijection between the set of Ya-
manouchi words of evaluation A and STab ()).

c) Let r; be the commutative image of Ry, and r; = ), c{\sA its ex-
pansion in the Schur basis. Show that r; is equal to the number of
Yamanouchi words of evaluation A with descent composition I.

3) Prove the identity between formal series

[1I10 - e =3 o 2, am,

E>04>1 m>0 M w|=

where (¢)m = (1 —¢)(1 - ¢*) - (1 —¢™).

4) By taking the commutative image of the above identity, and applying
Cauchy’s identity to the alphabets @ = {1,q,¢%, ...} and X, show that
2 ll=m chqm@ ) = (g),,5,(Q) and obtain the generating function of
the major index on the set of standard tableaux of a given shape:

> g™ = (@)msa(Q).

teSTab ())

This is equal to the Kostka polynomial K 1m (g).

Section 5.6

5.6.1 (Catabolism). Let k& : Tab — Tab be the map t = t'v — ot
where v is the bottom row of t. Let () be the sequence of shapes
of t,k(t), k*(t),.. ..

1) Show that the restriction of ¢ to STab is one-to-one.

2) Show that ¢ is invariant under the action of &(A4) (i.e., p(o(t)) =
o (1)),

3) Show that ¢ is invariant under the canonical embeddings Tab () <
Tab (1) = STab.

Notes

The name plactic monoid was coined by Schiitzenberger with reference to the
tectonique des plaques. The basic theory of the plactic monoid was systemati-
cally developed in Lascoux and Schiitzenberger 1981.
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Schensted’s algorithm appeared in Schensted 1961. It was realized later that
Robinson, in an attempt to prove the Littlewood-Richardson rule, had already
formulated in Robinson 1938 the correspondence (5.3.1), which is essentially
equivalent to Schensted’s result (Theorem 5.3.1).

Theorem 5.2.5 is due to Knuth 1970. Greene’s invariants were introduced
in Greene 1974. Theorem 5.3.3 appears in Schiitzenberger 1963. It was already
stated, without proof, in Robinson 1938.

The left-hand side of 5.3.10 can be interpreted as the sum of the characters of
all irreducible polynomial representations of GL,,(C). Using this interpretation,
Theorem 5.3.10 is a classical identity of Schur (see Littlewood 1950).

For an account of the theory of symmetric functions see Littlewood 1950
or Macdonald 1995. The proof of the Littlewood-Richardson rule given in Sec-
tion 5.4 first appeared in Schiitzenberger 1977. Corollary 5.4.6 is known by
geometers as the Pieri rule.

Lascoux and Schiitzenberger 1988 is the basic reference for the material of
Section 5.5, with emphasis on the operators ;. Our exposition here, which
stresses the role played by the operators e; and f;, is strongly influenced by
Kashiwara’s theory of crystal bases (see Kashiwara 1991, Kashiwara 1994, Las-
coux, Leclerc, and Thibon 1995, Leclerc and Thibon 1996). The connection
between Robinson-Schensted correspondence and quantum groups was first ob-
served in Date, Jimbo, and Miwa 1990.

Concerning the statistics charge and cocharge, the cyclage, and their appli-
cations to Kostka-Foulkes polynomials, see Schiitzenberger 1978, Lascoux and
Schiitzenberger 1980, Lascoux 1991. Another combinatorial description of the
Kostka-Foulkes polynomials in terms of the geometry of crystal graphs was given
in Lascoux et al. 1995.

The Littlewood-Richardson rule and the plactic monoid have been gener-
alized to other root systems by Littelmann (see Littelmann 1994, Littelmann
1996). A monoid associated in a similar way to Gessel’s quasi-symmetric func-
tions has been introduced in Krob and Thibon 1997.

Problem 5.1.1 is a classical result that appears for instance in Knuth 1973.
Problem 5.2.5 is from Leclerc and Thibon 1996. More on character tables (Prob-
lem 5.4.3) can be found in Macdonald 1995. Problem 5.5.1 is from Gelfand,
Krob, Lascoux, Leclerc, Retakh, and Thibon 1995.



