
CHAPTER 5

The Pla
ti
 Monoid

5.0. Introdu
tion

Young tableaux have had a long history sin
e their introdu
tion by A. Young at

the turn of the 
entury. It is only in the sixties that 
ame to the fore a monoid

stru
ture on them, a stru
ture taking into a

ount most of their 
ombinato-

rial properties, and having appli
ations to the di�erent �elds in whi
h Young

tableaux were used.

Summarizing what had been his motivation to spend so mu
h time on the

pla
ti
 monoid, M.P. S
h�utzenberger deta
hed three reasons: (1) it allows to

embed the ring of symmetri
 polynomials into a non
ommutative ring; (2) it is

the synta
ti
 monoid of a fun
tion on words generalizing the maximal length

of a nonin
reasing subword; (3) it is a natural generalization to alphabets with

more than two letters of the monoid of parentheses.

The starting point of the theory is an algorithm, due to C. S
hensted, for

the determination of the maximal length of a nonde
reasing subword of a given

word. The output of this algorithm is a tableau, and if one de
ides to identify

the words leading to the same tableau, one arrives at the pla
ti
 monoid, whose

de�ning relations were determined by D. Knuth.

The �rst signi�
ant appli
ation of the pla
ti
 monoid was to provide a 
om-

plete proof of the Littlewood-Ri
hardson rule, a 
ombinatorial algorithm for

multiplying S
hur fun
tions (or equivalently, to de
ompose tensor produ
ts of

representations of unitary groups, a fundamental issue in many appli
ations,

e.g., in parti
le physi
s), whi
h had been in use for almost 50 years before being

fully understood. In fa
t, as will be shown in Se
tion 5.4, the algebra of S
hur

fun
tions 
an be lifted to the pla
ti
 algebra, and even to the free asso
iative

algebra. On
e this 
ru
ial step is realized, all the proofs be
ome straightforward.

Subsequent appli
ations, also 
onne
ted with group theory, physi
s and ge-

ometry, in
lude a 
ombinatorial des
ription of the Kostka-Foulkes polynomials,

whi
h arise as entries of the 
hara
ter table of the �nite linear groups GL

n

(F

q

),

as Poin
ar�e polynomials of 
ertain algebrai
 varieties, or in the solution of 
er-

tain latti
e models in statisti
al me
hani
s. One 
an also mention a non
om-

mutative version of the Demazure 
hara
ter formula, and the 
onstru
tion of

keys, leading to a better understanding of the standard bases of Lakshmibai

and Seshadri, and to a 
ombinatorial des
ription of the S
hubert polynomials.
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Quite re
ently, the 
ombinatori
s of Young tableaux has been illuminated by

the theory of quantum groups, and espe
ially by Kashiwara's theory of 
rystal

bases. Roughly speaking, quantum groups are deformations depending on a

parameter q of 
ertain algebras 
lassi
ally asso
iated with a Lie group G, whi
h

give ba
k the 
lassi
al obje
t for q = 1. With some 
are, it is possible to take the

limit q ! 0 in 
ertain formulas, and to re
over in this way 
lassi
al bije
tions

su
h as the Robinson-S
hensted 
orresponden
e.

From a group-theoreti
 point of view, the 
ombinatori
s of Young tableaux

is asso
iated with root systems of type A. By means of quantum groups, it is

now possible to de�ne pla
ti
 monoids for other root systems, and to use them

for des
ribing the 
orresponding Littlewood-Ri
hardson rules. There is also a

similar 
onstru
tion taking into a

ount the 
ombinatori
s of quasi-symmetri


fun
tions (the hypopla
ti
 monoid).

Conventions. In this 
hapter, A will denote a totally ordered alphabet of

n letters a

1

< a

2

< : : : < a

n

. In the examples, we shall usually take A =

f1; 2; : : : ; ng.

5.1. S
hensted's algorithm

Consider the following problem: given a word w 2 A

�

on the totally ordered

alphabet A, �nd the length of the longest nonde
reasing subwords of w.

C. S
hensted has given an elegant algorithmi
 solution, whi
h does not

require the a
tual determination of a maximal nonde
reasing subword. His

method relies on the notion of Young tableau, a 
ombinatorial stru
ture issued

from group theory.

A nonde
reasing word v 2 A

�

is 
alled a row. Let u = x

1

� � �x

r

and v =

y

1

� � � y

s

be two rows (x

i

; y

j

2 A). We say that u dominates v (u . v) if r � s

and for i = 1; : : : ; r, x

i

> y

i

. Clearly, every word w has a unique fa
torization

w = u

1

� � �u

k

as a produ
t of rows of maximal length. A tableau is a word w

su
h that u

1

.u

2

. : : :.u

k

. It is 
ustomary to think of tableaux as planar obje
ts

and to represent w as the left justi�ed superposition of its rows. For instan
e,

taking A = f1 < 2 < : : : g,

t = 68 4556 223357 1112444

is a tableau whose planar representation is

6 8

4 5 5 6

2 2 3 3 5 7

1 1 1 2 4 4 4

Similarly, a stri
tly de
reasing word is 
alled a 
olumn. Reading from bottom to

top the lengths of the rows of a tableau t, one obtains a nonin
reasing sequen
e
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� = (�

1

� �

2

� : : : � �

k

) whi
h is 
alled the shape of t. Su
h a sequen
e is 
alled

a partition of the integer j�j = �

1

+ � � � + �

k

. On our example, � = (7; 6; 4; 2).

The graphi
al representation of a partition by a planar diagram of boxes is


alled its Ferrers (or Young) diagram. Thus, the Ferrers diagram of (7; 6; 4; 2)

is

The 
onjugate partition �

0

of � is obtained by reading the heights of the 
olumns

of the diagram of �. For example, the 
onjugate partition of (7; 6; 4; 2) is

(4; 4; 3; 3; 2; 2; 1).

S
hensted's algorithm asso
iates to ea
h w 2 A

�

a tableau t = P (w). The

elementary step of the algorithm 
onsists in the insertion of a letter into a row.

Given a row v = y

1

� � � y

s

and a letter x, the insertion of x into v is P (vx) = vx

if vx is a row, and P (vx) = y

i

v

0

otherwise, where y

i

is the leftmost letter of v

whi
h is stri
tly greater that x, and v

0

is obtained from v through repla
ing y

i

by x. To insert a letter x into a tableau t = v

1

� � � v

k

, one �rst inserts x into

the bottom row v

k

. Then, if v

k

x is not a row, P (v

k

x) = yv

0

k

and one inserts y

into v

k�1

, and so on. The pro
ess terminates when one rea
hes the top row v

1

,

or when a letter has been inserted at the right end of a row. For example, the

insertion of 3 in the tableau t above goes through the following steps:

P (1112444 � 3) = 4 � 1112344 ;

P (223357 � 4) = 5 � 223347 ;

P (4556 � 5) = 6 � 4555 ;

P (68 � 6) = 8 � 66 ;

and the result is

P (t � 3) = 8 � 66 � 4555 � 223347 � 1112344 :

In a more formal way, the map P is de�ned re
ursively by

P (tx) =

�

tx if v

k

x is a row

P (v

1

� � � v

k�1

y)v

0

k

if P (v

k

x) = yv

0

k

for a tableau t with row de
omposition t = v

1

� � � v

k

, and for an arbitrary word

w 2 A

�

, P (wx) = P (P (w)x).

As an example of the general 
ase, the su

essive steps of the 
al
ulation of

P (132541) are

1 1 3

3

1 2

3

1 2 5

3 5

1 2 4

3

2 5

1 1 4
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Theorem 5.1.1. The maximal length of a nonde
reasing subword of w is equal

to the length of the bottom row of P (w).

Similarly, the maximal length of a de
reasing subword of w is equal to the

height of the �rst 
olumn of P (w).

For example, the maximal nonde
reasing subwords of w = 132541 are 125,

124, 135 and 134. Note that 114, the bottom row of P (w) is not a subword of

w.

S
hensted's theorem will be proved in the forth
oming se
tion. A
tually, we

will prove a more general result due to C. Greene, whi
h gives an interpretation

of the lengths of all rows and the heights of all 
olumns of P (w).

5.2. Greene's invariants and the pla
ti
 monoid

For w 2 A

�

, let l

k

(w) be the maximum of the sum of the lengths of k disjoint

nonde
reasing subwords of w. Similarly, let l

0

k

(w) be the maximum of the sum

of the lengths of k de
reasing subwords of w.

Let � = (�

1

; : : : ; �

r

) be the shape of P (w), and let �

0

= (�

0

1

; : : : ; �

0

s

) be the


onjugate partition.

Theorem 5.2.1. For k = 1; : : : ; r, �

k

= l

k

(w)� l

k�1

(w), and for k = 1; : : : ; s,

�

0

k

= l

0

k

(w) � l

0

k�1

(w) (where l

0

(w) = l

0

0

(w) = 0).

To prove this theorem, it is natural to investigate the relationship between

two words having the same S
hensted tableau. Therefore, we introdu
e an

equivalen
e relation � on A

�

de�ned by

u � v () P (u) = P (v) :

For words of length � 2, one has u � v , u = v, sin
e ea
h su
h word is either

a row or a 
olumn. The �rst nontrivial relations o

ur in length 3, and 
ome

from the tableaux of shape (2; 1). With three letters x < y < z we have four

non monotoni
 words whose P -symbols are

P (xzy) = P (zxy) =

z

x

y

; P (yzx) = P (yxz) =

y

x z

; (5.2.1)

and similarly, with two distin
t letters x < y

P (xyx) = P (yxx) =

y

x x

; P (yxy) = P (yyx) =

y

x

y

: (5.2.2)

We will prove in the sequel that � is in fa
t the 
ongruen
e on A

�

generated by

the relations implied by (5.2.1), (5.2.2). It is the quotient of the free monoid by

these relations that will be the main obje
t of this 
hapter.
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Definition 5.2.2. The pla
ti
 monoid on the alphabet A is the quotient

Pl (A) = A

�

= �, where � is the 
ongruen
e generated by the Knuth relations

xzy � zxy (x � y < z) ; (5.2.3)

yxz � yzx (x < y � z) : (5.2.4)

The �rst step in proving Greene's theorem is

Proposition 5.2.3. Every word is 
ongruent to its S
hensted tableau, that

is,

w � P (w) :

Proof. By de�nition of �, the proposition is true for jwj � 3. We pro
eed by

indu
tion on jwj. Assume that for a word w we have P (w) � w, and let x be a

letter. We have to show that P (wx) � wx, or equivalently P (wx) � P (w) � x.

The de�nition of the map P allows us to redu
e this veri�
ation to the 
ase

where w is a row. Assuming this, if wx is a row then P (wx) = wx, and

otherwise, P (wx) = yw

0

where y is the leftmost letter in w whi
h is > x, and

w

0

is obtained from w by repla
ing y by x. Then, writing w = uyv, we have

wx � uyxv by a sequen
e of appli
ations of (5.2.4), and uyxv � yuxv by a

sequen
e of appli
ations of (5.2.3).

Next, we show that

Proposition 5.2.4. If w � w

0

, then l

k

(w) = l

k

(w

0

) for all k.

Proof. We 
an assume that w

0

is obtained from w by a single Knuth transfor-

mation. Let us write, for instan
e,

w = uxzyv ; w

0

= uzxyv (x � y < z) :

Clearly, all nonde
reasing subwords of w

0

are also subwords of w. Hen
e,

l

k

(w) � l

k

(w

0

). Conversely, let (w

1

; : : : ; w

k

) be a k-tuple of disjoint nonde-


reasing subwords of w. Then, w

i

is also a subword of w

0

, unless w

i

= u

0

xzv

0

,

where u

0

and v

0

are subwords of u and v. If y does not o

ur in any of the

remaining w

j

, then w

i


an be repla
ed by w

0

i

= u

0

xyv

0

, whi
h is a nonde
reas-

ing subword of w

0

. Otherwise, if some w

j

= u

00

yv

00

, then, one repla
es the pair

(w

i

; w

j

) by w

0

i

= u

0

xyv

00

and w

0

j

= u

00

zv

0

. The 
ase of a Knuth transformation

of type (5.2.4) is similar. Therefore, we have l

k

(w) � l

k

(w

0

).

Thus the integers l

k

(w) are not modi�ed by Knuth's transformations (5.2.3)

(5.2.4). They are 
alled Greene's pla
ti
 invariants. Two other important pla
-

ti
 invariants, the 
harge and 
o
harge, will be studied in Se
tion 5.6.

Proof of Theorem 5.2.1. Using Propositions 5.2.3 and 5.2.4, the only thing

to prove is that for a tableau t of shape �, l

k

(t) = �

1

+ � � � + �

k

. Taking for

w

1

; : : : ; w

k

the k longest rows of t, we see that l

k

(t) � �

1

+ � � �+�

k

. Conversely,

a nonde
reasing subword w of t uses at most one letter from ea
h 
olumn of the



5.3. The Robinson-S
hensted-Knuth 
orresponden
e 149

planar representation of t, therefore k disjoint nonde
reasing subwords 
an use

at most �

1

+ � � �+ �

k

letters of t.

We are now in a position to prove the 
ross-se
tion theorem:

Theorem 5.2.5. The equivalen
e � 
oin
ides with the pla
ti
 
ongruen
e. In

parti
ular, ea
h pla
ti
 
lass 
ontains exa
tly one tableau.

Proof. Let us assume that w � w

0

. Then, by Proposition 5.2.3,

w � P (w) = P (w

0

) � w

0

:

Conversely, suppose that w � w

0

. Then, from Proposition 5.2.4 and Theo-

rem 5.2.1 we see that P (w) and P (w

0

) have the same shape. Now, let z be

the greatest letter of w and w

0

, and write w = uzv, w

0

= u

0

zv

0

, where z does

not o

ur neither in v nor in v

0

. Then, we 
laim that uv � u

0

v

0

. Indeed, we


an assume that w and w

0

di�er by a single Knuth transformation. If z is not

involved in this transformation, then either u � u

0

and v = v

0

, or u = u

0

and

v � v

0

. And if z is involved, erasing z in (5.2.3) or (5.2.4) leaves us with xy = xy

or yx = yx, so that uv = u

0

v

0

.

By indu
tion on the length of w, we 
an assume that P (uv) = P (u

0

v

0

).

From the des
ription of S
hensted's algorithm, sin
e z is the greatest letter, it

is 
lear that after erasing z in P (uzv), one is left with P (uv). Therefore, P (w)

is obtained from P (uv) by adding a box z at a pla
e imposed by the shape of

P (w), and sin
e the same is true for w

0

, we 
on
lude that P (w) = P (w

0

).

5.3. The Robinson-S
hensted-Knuth 
orresponden
e

We have seen in the pre
eding se
tion that the set Tab (A) of all tableaux over

the alphabet A is a 
ross-se
tion of the 
anoni
al proje
tion � : A

�

! Pl (A) =

A

�

= �. It is now a natural question to investigate the stru
ture of the pla
ti



lasses �

�1

(t), t 2 Tab (A). As we will see, the elements of �

�1

(t) are also

parametrized by 
ertain tableaux.

Let us say that a tableau is standard if its entries are the integers 1; 2; : : : ; n,

ea
h of them o

urring exa
tly on
e. The set of standard tableaux is denoted

by STab . For a partition �, we denote by Tab (�;A) (resp. STab (�)) the set of

tableaux over A (resp. of standard tableaux) of shape �.

By keeping tra
k of the su

essive steps of the insertion algorithm, one 
an

de�ne a map Q : A

�

! STab su
h that w 7! (P (w); Q(w)) is one-to-one. More

pre
isely, let w = y

1

� � � y

m

. Observe that a standard tableau t is nothing but

a 
hain of partitions �

(1)

� �

(2)

� : : : � �

(m)

su
h that the diagram of �

(i+1)

is obtained from that of �

(i)

by adding one box, whi
h is the one labelled i+ 1

in t. Now, Q(w) is by de�nition the standard tableau en
oding the 
hain of

shapes of P (y

1

); P (y

1

y

2

); : : : ; P (w). For example, the 
hain of insertions seen
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above gives

Q(132541) =

6

3 5

1 2 4

:

Clearly, Q(w) has the same shape as P (w).

Theorem 5.3.1. The map

� : A

�

�!

`

�

Tab (�;A)� STab (�)

w 7�! (P (w) ; Q(w))

is a bije
tion, 
alled the Robinson-S
hensted 
orresponden
e.

Proof. The inverse map �

�1


an be expli
itly 
onstru
ted. The idea is that,

given a row v and a letter y, there exists a unique row v

0

and letter x su
h

that yv � v

0

x. This shows that the insertion pro
ess des
ribed in Se
tion 5.1


an be reversed, provided that one spe
i�es the box to be erased. Given a

pair (t; t

0

) 2 Tab (�;A) � STab (�), one 
onstru
ts w = �

�1

(t; t

0

) by deleting

su

essively in t the boxes labelled n; n� 1; : : : ; 1 in t

0

.

Corollary 5.3.2. Q indu
es a bije
tion between the pla
ti
 
lass of ea
h

tableau t and STab (�), where � is the shape of t. In parti
ular, the 
ardinality

of the 
lass of t is equal to

f

�

:= jSTab (�)j :

Restri
ting � to the set of standard words on A = f1; 2; : : : ; ng, whi
h 
an

be identi�ed with the symmetri
 group S

n

, one obtains a bije
tion

S

n

 !

a

�

STab (�)� STab (�) : (5.3.1)

It provides in parti
ular a bije
tive proof of an identity of Frobenius:

n! =

X

j�j=n

f

2

�

;

a spe
ial 
ase of the fa
t that the 
ardinality of a �nite group is equal to the

sum of the squares of the dimensions of its irredu
ible representations (over C ).

As shown by the next theorem, there is some 
ompatibility between the

Robinson-S
hensted map and the group stru
ture of S

n

.

Theorem 5.3.3. For � 2 S

n

, Q(�) = P (�

�1

).
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The original proof of S
h�utzenberger pro
eeded by indu
tion on n. We give

below a simple derivation based on Greene's theorem.

To this aim, it will be 
onvenient to represent a permutation � by a biword

(or word in biletters, that is, pairs of letters (a; b) 2 A � B in the produ
t of

two alphabets, denoted here for 
onvenien
e by

�

a

b

�

).

� $

�

i

1

: : : i

n

j

1

: : : j

n

�

where ea
h j

k

= �(i

k

). Among the biwords representing �, we have two distin-

guished ones

�

id

�

�

and

�

�

�1

id

�

, whi
h are obtained by sorting one of them using

the lexi
ographi
 order on biletters with priority on the top or bottom row.

More generally, for a biword

�

u

v

�

where u; v 2 A

�

are not ne
essarily stan-

dard, we denote by

�

u

0

v

0

�

the nonde
reasing rearrangement of

�

u

v

�

for the lex-

i
ographi
 order with priority on the top row, and by

�

u

00

v

00

�

the nonde
reasing

rearrangement for the lexi
ographi
 order with priority on the bottom row.

Thus, for

�

u

v

�

=

�

21335424

13652414

�

;

we have

�

u

0

v

0

�

=

�

12233445

31156442

�

and

�

u

00

v

00

�

=

�

22514433

11234456

�

:

The 
ru
ial property is the following:

Lemma 5.3.4. For any biword

�

u

v

�

, the tableaux P (v

0

) and P (u

00

) have the

same shape.

Proof. Let

�

u

v

�

=

�

u

1

� � �u

m

v

1

� � � v

m

�

and 
onsider a nonde
reasing subword � =

v

i

1

� � � v

i

r

of v

0

. Then, by de�nition of

�

u

0

v

0

�

, � = u

i

1

� � �u

i

r

is also nonde
reasing,

and

�

u

i

1

v

i

1

�

� : : : �

�

u

i

r

v

i

r

�

for both lexi
ographi
 orders. Therefore, � is also a nonde
reasing subword of

u

00

. From this remark, we see that there is a bije
tion between the k-tuples of

disjoint nonde
reasing subwords of v

0

and those of u

00

. By Theorem 5.2.1 the


on
lusion follows.
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Proof of Theorem 5.3.3. Let � 2 S

n

and

�

u

0

v

0

�

=

�

id

�

�

,

�

u

00

v

00

�

=

�

�

�1

id

�

. The

left fa
tors of � are en
oded by the biwords

�

u(k)

0

v(k)

0

�

=

�

1 2 � � � k

�

1

�

2

� � � �

k

�

for whi
h we have

�

u(k)

00

v(k)

00

�

=

�

�

�1

j

[1;k℄

(�

1

� � ��

k

) "

�

where (�

1

� � ��

k

) " is the in
reasing rearrangement of the left fa
tor �

1

� � ��

k

,

and for a word w 2 A

�

and a subset B of A, wj

B

denotes the subword of w

obtained by erasing the letters whi
h are not in B. From Lemma 5.3.4, at ea
h

step of the insertion algorithm, we have that P (�

1

� � ��

k

) and P (�

�1

j

[1;k℄

) have

the same shape. So at the end, P (�

�1

) = Q(�).

In fa
t, Theorem 5.3.3 
an be readily generalized to give a similar result for

the insertion tableau Q(w) of an arbitrary word w 2 A

�

. To do this, we need

the notion of standardization.

Let x

1

< x

2

< : : : < x

r

be the letters o

urring in w, with respe
tive

multipli
ities m

1

; : : : ;m

r

. By labelling from 1 to m

1

the o

urren
es of x

1

,

reading from left to right, then from m

1

+ 1 to m

1

+m

2

the o

urren
es of x

2

,

and so on, we get a standard word, denoted by std (w). For example

std (31156442) = 41278563 :

This de�nes in parti
ular the standardization of a tableau. It is immediate to


he
k from Knuth's relations that

Lemma 5.3.5. If w � w

0

, then std (w) � std (w

0

). In parti
ular, P (std (w)) =

std (P (w)).

It is also 
lear from the des
ription of the Robinson-S
hensted algorithm

that

Lemma 5.3.6. Q(w) = Q(std (w)).

We 
an now state:

Corollary 5.3.7. For any w 2 A

�

, Q(w) = P (std (w)

�1

).

Proof. By Theorem 5.3.3, P (std (w)

�1

) = Q(std (w)), whi
h is equal to Q(w)

by Lemma 5.3.6.

In the Robinson-S
hensted 
orresponden
e for non standard words, there is a

dissymmetry between the left tableau P (w) and the right tableau Q(w). Lemma

5.3.4 shows the way to restore the symmetry, by extending the 
orresponden
e

to 
ommutative 
lasses of biwords, i.e. monomials in 
ommutative biletters
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�

x

y

�

. Given two words u = u

1

: : : u

m

and v = v

1

: : : v

m

of the same length, we

denote by

�

u

v

�

=

�

u

1

v

1

�

� � �

�

u

m

v

m

�

the asso
iated monomial in 
ommutative

biletters (not to be 
onfused with the biword

�

u

v

�

).

Definition 5.3.8. Let

�

u

v

�

be a monomial, and

�

u

0

v

0

�

,

�

u

00

v

00

�

be the two

biwords asso
iated as above to the biword

�

u

v

�

. The Knuth 
orresponden
e �

is de�ned by

�

�

u

v

�

= (P (v

0

); P (u

00

)) :

By 
orollary 5.3.7, we re
over the Robinson-S
hensted 
orresponden
e by

en
oding w = y

1

� � � y

m

as the monomial

�

1

y

1

�

� � �

�

m

y

m

�

. By Lemma 5.3.4,

we know that P (v

0

) and P (u

00

) have the same shape. It will follow from the

alternative des
ription given below that � is a bije
tion between monomials in

biletters and pairs of tableaux of the same shape. Re
all that the evaluation of

a word is the ve
tor ev (w) = (jwj

a

1

; jwj

a

2

; : : : ; jwj

a

n

), where A = fa

1

; : : : ; a

n

g.

Proposition 5.3.9. P (u

00

) is the unique tableau of evaluation ev (u

00

) su
h

that std (P (u

00

)) = Q(v

0

).

Proof. By lexi
ographi
 sorting of

�

std (u)

std (v)

�

we have (std (v)

0

)

�1

= std (u)

00

.

Sin
e lexi
ographi
 sorting obviously 
ommutes with standardization, it follows

that (std (v

0

))

�1

= std (u

00

). Hen
e,

Q(v

0

) = P ((std (v

0

)

�1

) (Corollary 5.3.7)

= P (std (u

00

))

= std (P (u

00

)) (Lemma 5.3.5) :

Therefore, to 
ompute the inverse image of a pair of tableaux (t; t

0

) under

the Knuth 
orresponden
e, we 
an apply the inverse Robinson-S
hensted map

to (t; std (t

0

)) to get v

0

= �

�1

(t; std (t

0

)). Then, �

�1

(t; t

0

) =

�

t

0

"

v

0

�

.

Note that the symmetry

�

�

u

v

�

= (t; t

0

)() �

�

v

u

�

= (t

0

; t) ;

whi
h generalizes Theorem 5.3.3 is in
orporated in the de�nition of �. In par-

ti
ular, taking t

0

= t, � establishes a bije
tion between Tab (A) and the set of



154 The Pla
ti
 Monoid 5.4

symmetri
 monomials in biletters, i.e. those su
h that

�

u

v

�

=

�

v

u

�

(whi
h

amounts to say that for any x; y 2 A,

�

x

y

�

and

�

y

x

�

o

ur with the same mul-

tipli
ity). As an immediate 
onsequen
e of this observation, we 
an 
ompute

the generating series of the numbers

d

�

:= jft 2 Tab (A) j ev (t) = �gj (� 2 N

A

)

whi
h are the 
ardinalities of the multihomogeneous 
omponents of the pla
ti


monoid.

Theorem 5.3.10. Let �

1

; �

2

; : : : be 
ommuting indeterminates. Then,

X

�2N

A

d

�

�

�

=

Y

i

1

1� �

i

Y

i<j

1

1� �

i

�

j

:

Proof. The 
ommutative image t of a tableau t under a

i

7! �

i

is obtained

from

�

u

v

�

= �

�1

(t; t) by mapping ea
h biletter

�

i

j

�

to (�

i

�

j

)

1=2

. Now, the

generating series of all symmetri
 monomials in biletters is 
learly

Y

i

1

1�

�

i

i

�

Y

i<j

1

1�

�

i

j

��

j

i

�

:

Corollary 5.3.11. For jAj = n, the 
ardinality of the homogeneous 
ompo-

nent of degree k of Pl (A) is equal to the 
oeÆ
ient of z

k

in

1

(1� z)

n

�

1

(1� z

2

)

n(n�1)=2

:

5.4. S
hur fun
tions and the Littlewood-Ri
hardson rule

Let �

1

; �

2

; : : : ; �

n

be 
ommuting indeterminates as in the pre
eding se
tion, and

retain the notation w 7! w for the 
ommutative image a

i

7! �

i

of a word w 2 A

�

.

Definition 5.4.1. Let � be a partition. The generating fun
tion

s

�

(�

1

; : : : ; �

n

) =

X

t2Tab (�;A)

t

is 
alled a S
hur fun
tion.
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Although not obvious from this de�nition, s

�

is a symmetri
 polynomial in

�

1

; : : : ; �

n

(this will be proved in Se
tion 5.6). Most of the 
ombinatorial 
on-

stru
tions of Se
tion 5.3 imply interesting and 
lassi
al S
hur fun
tion identities.

For example, S
hur's identity 5.3.10 
an be rewritten as

X

�

s

�

(�

1

; : : : ; �

n

) =

Y

i

1

1� �

i

Y

i<j

1

1� �

i

�

j

:

From Theorem 5.3.1 we get

1

1� (�

1

+ � � �+ �

n

)

=

X

�

f

�

s

�

(�

1

; : : : ; �

n

) :

Indeed, the left-hand side is 
learly the generating fun
tion of A

�

.

Finally, from the bije
tivity of Knuth's 
orresponden
e, we obtain a 
lassi
al

and fundamental identity whi
h 
an be tra
ked ba
k to Cau
hy. To state it, we

need a se
ond set �

1

; : : : ; �

n

of 
ommuting variables. Sending the biletter

�

a

i

a

j

�

onto �

i

�

j

and the pair (t; t

0

) to the produ
t of the 
ommutative image of t in

the variables � and of t

0

in the variables �, we get

Theorem 5.4.2.

Y

i;j

1

1� �

i

�

j

=

X

�

s

�

(�)s

�

(�) :

Group theoreti
al arguments show that a produ
t of S
hur fun
tions is equal

to a positive sum of S
hur fun
tions:

s

�

(�)s

�

(�) =

X

�




�

��

s

�

(�) (5.4.1)

where 


�

��

2 N. The 
al
ulation of the 
oeÆ
ients 


�

��

is of interest in many

�elds. A 
ombinatorial interpretation of these numbers implying an eÆ
ient

algorithm for their 
omputation has been given without proof by Littlewood

and Ri
hardson.

The most illuminating proof of this rule pro
eeds by lifting the 
al
ulus of

S
hur fun
tions to the algebra Z[Pl(A)℄ of the pla
ti
 monoid, introdu
ing the

pla
ti
 S
hur fun
tion

S

�

(A) =

X

t2Tab (�;A)

t ;

where tableaux are evaluated in the pla
ti
 monoid. This pla
ti
 S
hur fun
tion


an be seen as the proje
tion in Z[Pl(A)℄ of anyone of the free S
hur fun
tions

S

t

(A) =

X

Q(w)=t

w 2 ZhAi

indexed by t 2 STab (�). In fa
t the Littlewood-Ri
hardson rule will be dedu
ed

from a statement in the free algebra ZhAi.
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Theorem 5.4.3. Let A

0

and A

00

be two subalphabets su
h that a

0

< a

00

, for

all a 2 A

0

, a

00

2 A

00

. For t

0

2 Tab (A

0

) and t

00

2 Tab (A

00

) we have

0

�

X

P (w

0

)=t

0

w

0

1

A

0

�

X

P (w

00

)=t

00

w

00

1

A

=

X

t2Sh (t

0

;t

00

)

X

P (w)=t

w

where Sh (t

0

; t

00

) is the set of all tableaux t su
h that tj

A

0

= t

0

and P (tj

A

00

) = t

00

,

that is, of all tableaux t o

urring in the shu�e produ
t of t

0

and a word in the

pla
ti
 
lass of t

00

.

Thus the shu�e of a pla
ti
 
lass of A

0

and a pla
ti
 
lass of A

00

is a union

of pla
ti
 
lasses of A (identifying a 
lass and the sum of its elements). It is in

fa
t a dire
t 
onsequen
e of the following

Lemma 5.4.4. Let I be an interval of A. Then

w � w

0

) wj

I

� w

0

j

I

Proof. It is enough to 
he
k the lemma in the 
ase when w

0

di�ers from w by a

single Knuth transformation, and this amounts to the observation that erasing

x or z in 5.2.3 or 5.2.4, we are left with xy = xy or yz = yz.

Proof of Theorem 5.4.3. The words o

urring in the shu�e are exa
tly those

w su
h that wj

A

0

� t

0

and wj

A

00

� t

00

. By Lemma 5.4.4 , this set of words is

saturated with respe
t to the pla
ti
 
ongruen
e, hen
e is a union of pla
ti



lasses.

We 
an now state the pla
ti
 version of the Littlewood-Ri
hardson rule.

Theorem 5.4.5. The pla
ti
 S
hur fun
tions span a 
ommutative subalgebra

of Z[Pl(A)℄ and we have

S

�

(A)S

�

(A) =

X

�




�

��

S

�

(A) ;

where the 


�

��

are the same as in (5.4.1). In parti
ular 


�

��

is equal to the number

of fa
torizations in Pl (A) of any tableau t 2 Tab (�;A) as a produ
t t

0

t

00

with

t

0

2 Tab (�;A) and t

00

2 Tab (�;A).

Proof. We �rst work in the free asso
iative algebra ZhAi and 
onsider a produ
t

S

t

0

(A)S

t

00

(A) where t

0

; t

00

are arbitrary standard tableaux of respe
tive shapes

� and �, with p = j�j, q = j�j. We identify as above a word w

0

of length p with

a monomial in 
ommutative biletters:

w

0

=

�

1 � � � p

w

0

�

:

Then, by reordering biletters, we 
an write in view of Proposition 5.3.9

S

t

0

=

X

Q(w

0

)=t

0

�

1 � � � p

w

0

�

=

�!

X

P (u)=t

0

�

u

r

0

�

;
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where the notation means that the se
ond sum is over all words u and r

0

su
h

that the biword

�

u

r

0

�

is in
reasing for the lexi
ographi
 order with bottom

priority, and that P (u) = t

0

. Similarly, using for w

00

of length q the identi�
ation

w

00

=

�

(p+ 1) � � � (p+ q)

w

00

�

we 
an express S

t

00

as

S

t

00

=

�!

X

P (v)=t

00

[p℄

�

v

r

00

�

;

where t

00

[p℄ denotes the tableau obtained from t

00

by adding p to all its en-

tries. Now sorting lexi
ographi
ally (with bottom priority) any of the biwords

�

u

r

0

� �

v

r

00

�

, one gets a biword

�

w

r

�

su
h that w o

urs in u v. Conversely,

all in
reasing biwords

�

w

r

�

su
h that w o

urs in u v arise in this way from

the sorting of a unique produ
t

�

u

r

0

� �

v

r

00

�

of in
reasing biwords. Thus, by

Theorem 5.4.5,

S

t

0

S

t

00

=

X

t

�!

X

P (w)=t

�

w

r

�

;

where the outer sum is over all standard tableaux t whi
h o

ur in the shu�e

of t

0

and a of a word 
ongruent to t

00

[p℄. Hen
e

S

t

0

S

t

00

=

X

t

S

t

; (5.4.2)

sum over the same tableaux t, and taking the pla
ti
 image we obtain

S

�

S

�

=

X

�




�

��

S

�

(5.4.3)

where 


�

��

is the number of standard tableaux of shape � whi
h o

ur in the

shu�e of t

0

and of a word in the 
lass of t

00

[p℄. Taking the 
ommutative image

of (5.4.3), we see that the 


�

��

are the same as in (5.4.1), whi
h implies that

the pla
ti
 S
hur fun
tions span a subalgebra of Z[Pl(A)℄ isomorphi
 to the


ommutative algebra spanned by the ordinary S
hur fun
tions. Finally the

interpretation of 


�

��

in terms of fa
torizations in Pl (A) follows dire
tly from

the de�nition of pla
ti
 S
hur fun
tions.

As an illustration of (5.4.2), one 
an 
he
k that for

t

0

= t

00

=

3

1 2

;
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the produ
t S

t

0

S

t

00

is equal to

P

t

S

t

where t ranges over the following tableaux:

3 6

1 2 4 5

3 4 6

1 2 5

6

3

1 2 4 5

4

3 6

1 2 5

6

3 4

1 2 5

4 6

3 5

1 2

6

4

3

1 2 5

6

4

3 5

1 2

Corollary 5.4.6. Let R(�; k) (resp. C(�; k)) be the set of partitions whose

diagram is obtained by adding k boxes to the diagram of �, no two of them

being added in the same 
olumn (resp. in the same row). Then,

S

�

S

(k)

=

X

�2R(�;k)

S

�

S

�

S

(1

k

)

=

X

�2C(�;k)

S

�

:

Proof. Let m = j�j. To 
al
ulate S

t

� S

12���k

, we have to look for the standard

tableaux in the shu�e of the pla
ti
 
lass of t with the one element 
lass

(m+ 1)(m+ 2) � � � (m+ k) :

Clearly, these tableaux 
an only be obtained by dispat
hing at the periphery

of t the letters (m + 1); : : : ; (m + k) from left to right and in this order, and

the resulting shapes are exa
tly those of R(�; k). The se
ond formula is proved

similarly.

To re
over the 
lassi
al formulation of Littlewood and Ri
hardson, we need

the notion of a Yamanou
hi word. We say that w is a Yamanou
hi word on

A = f1; 2; : : : ; ng if any right fa
tor v of w satis�es jvj

1

� jvj

2

� : : : � jvj

n

.

Lemma 5.4.7. The Yamanou
hi words of a given evaluation � = (�

1

; : : : ; �

n

)

form a single pla
ti
 
lass whose representative tableau is the Yamanou
hi

tableau

� � �

2 2

� � �

2

1 1

� � � � � �

1

;

that is, the unique tableau with shape and evaluation �.

Proof. It is immediate to 
he
k that if w is a Yamanou
hi word, and if w

0

is

obtained from w by a single Knuth transformation, then w

0

is also a Yamanou
hi



5.4. S
hur fun
tions and the Littlewood-Ri
hardson rule 159

word. Therefore, a pla
ti
 
lass whi
h 
ontains a Yamanou
hi word 
ontains

only Yamanou
hi words. Now, a tableau is a Yamanou
hi word if and only if its

bottom row 
ontains only 1's, the next row 
ontains only 2's, and so on. Hen
e

there is a unique Yamanou
hi tableau, namely, the unique tableau of shape �

and evaluation �, and the lemma follows from Theorem 5.2.5.

We 
an now see that the 
lassi
al version of the Littlewood -Ri
hardson rule

is a dire
t 
onsequen
e of (5.4.2). Indeed, to 
al
ulate 


�

��

, we 
an 
hoose for

t

0

and t

00

the standard tableaux of respe
tive shapes � and � in whi
h ea
h

row 
onsists of 
onse
utive integers. These tableaux are the standardized of the

Yamanou
hi tableaux of the same shapes, so that the words w

00

in the pla
ti



lass of t

00

[p℄ are pre
isely the shifted standardized of the Yamanou
hi words y

00

of evaluation �. Hen
e, if one erases in the tableaux t the entries of t

0

, whi
h

are irrelevant, and repla
es the word w

00

by the unique Yamanou
hi word y

00

of whi
h it is the standardized, one obtains the 
lassi
al Littewood-Ri
hardson

tableaux, i.e., the skew Yamanou
hi tableaux of shape �=� and evaluation �.

Continuing the pre
eding example, one would obtain

2

1 1

1 2

1

2

1 1

1

2

1

2

1

1

1 2

1

2

1

1

2

1

1

Another useful formulation of the rule is the following:

Corollary 5.4.8. Let y

�

denote the unique Yamanou
hi tableau of shape �.

Then 


�

��

is equal to the number of tableaux t of shape � su
h that t � y

�

is a

Yamanou
hi word of evaluation �.

Proof. By Theorem 5.4.5, 


�

��

is the number of fa
torizations y

�

= t �t

0

in Pl (A),

with t 2 Tab (�;A) and t

0

2 Tab (�;A). Equivalently, by Lemma 5.4.7, 


�

��

is

the number of Yamanou
hi words w of weight � su
h that w = t � t

0

in A

�

, for

some t 2 Tab (�;A) and t

0

2 Tab (�;A). Then the right fa
tor t

0

must be a

Yamanou
hi tableau, that is t

0

= y

�

.

For example, the 
oeÆ
ient 


(4;3;1)

(3;2);(2;1)

is equal to 2, 
orresponding to the

following two tableaux t:

2 3

1 1 2

2 2

1 1 3
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5.5. Copla
ti
 operations

The set of words w having a given insertion tableau t = Q(w) is 
alled a 
opla
ti



lass. In the pre
eding se
tion we have seen that the sum S

t

of the elements

of a 
opla
ti
 
lass is a pertinent lifting of a S
hur fun
tion to the free algebra

ZhAi. In this se
tion, we show that 
opla
ti
 
lasses 
an be endowed with a

stru
ture of 
olored graph.

We introdu
e linear operators e

i

; f

i

; �

i

, i = 1; : : : ; n � 1, a
ting on ZhAi

in the following way. Consider �rst the 
ase of the two-letters subalphabet

A

i

= fa

i

; a

i+1

g. Let w = x

1

� � �x

m

be a word on A

i

. Bra
ket every fa
tor a

i+1

a

i

of w. The letters whi
h are not bra
keted 
onstitute a subword w

1

of w. Then

bra
ket every fa
tor a

i+1

a

i

of w

1

. There remains a subword w

2

. Continue this

pro
edure until it stops, giving a word w

k

of type w

k

= a

r

i

a

s

i+1

= x

j

1

� � �x

j

r+s

.

The image of w

k

under e

i

, f

i

or �

i

is given by

e

i

(a

r

i

a

s

i+1

) =

�

a

r+1

i

a

s�1

i+1

(s � 1)

0 (s = 0)

f

i

(a

r

i

a

s

i+1

) =

�

a

r�1

i

a

s+1

i+1

(r � 1)

0 (r = 0)

�

i

(a

r

i

a

s

i+1

) = a

s

i

a

s

i+1

Let w

0

k

= x

0

j

1

� � �x

0

j

r+s

denote the image of w

k

. The image of the initial word w

is then w

0

= y

1

� � � y

m

, where y

i

= x

0

i

if i 2 fj

1

; : : : ; j

r+s

g and y

i

= x

i

otherwise.

For example, if w = (a

2

a

1

)a

1

a

1

a

2

(a

2

a

1

)a

1

a

1

a

1

a

2

, we have

w

1

= a

1

a

1

(a

2

a

1

)a

1

a

1

a

2

and w

2

= a

1

a

1

a

1

a

1

a

2

:

Thus,

e

1

(w) = a

2

a

1

a

1

a

1

a

2

a

2

a

1

a

1

a

1

a

1

a

1

f

1

(w) = a

2

a

1

a

1

a

1

a

2

a

2

a

1

a

1

a

1

a

2

a

2

�

1

(w) = a

2

a

1

a

1

a

2

a

2

a

2

a

1

a

1

a

2

a

2

a

2

;

where the underlined letters are those of the subword w

0

2

. Finally, the general

a
tion of the operators e

i

; f

i

; �

i

on w is de�ned by the previous rules applied to

the subword wj

A

0

i

, the other letters remaining un
hanged.

Theorem 5.5.1. Let h be anyone of the operators e

i

; f

i

; �

i

.

(i) Let w 2 A

�

and suppose that h(w) 6= 0. Then Q(h(w)) = Q(w).

(ii) Let w

0

be 
ongruent to w. Then h(w) � h(w

0

).

Proof (i) Suppose �rst that A = fa

1

; a

2

g, and let us give the proof in the 
ase

h = f

1

. Let w 2 A

�

be su
h that f

1

w 6= 0. This means that w = ua

1

v where

u � (a

2

a

1

)

k

a

r�1

1

(r � 1), v � a

s

2

(a

2

a

1

)

l

and that we have f

1

(w) = ua

2

v. Clearly,

Q(ua

2

) = Q(ua

1

). Next, the insertion of v into P (ua

2

) will produ
e the same
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sequen
e of shapes as the insertion of v into P (ua

1

). Indeed, write v = v

1

� � � v

k

and assume by indu
tion that P (ua

1

v

1

� � � v

r�1

) and P (ua

2

v

1

� � � v

r�1

) have the

same shape. If v

r

= a

2

, then 
learly P (ua

1

v

1

� � � v

r

) and P (ua

2

v

1

� � � v

r

) will

also have the same shape. If v

r

= a

1

, then sin
e v � a

s

2

(a

2

a

1

)

l

, we see that

r � 2 and that the tableau P (ua

1

v

1

� � � v

r�1

) has at least one a

2

in its bottom

row. Thus the insertion of a

1

in both tableaux will produ
e again two tableaux

of the same shape.

The proof is similar in the 
ase h = e

1

, and this also implies the 
ase h = �

1

sin
e �

1

w is either of the form f

p

1

w or e

q

1

w.

Consider now the general 
ase A = fa

1

; : : : ; a

n

g, and suppose that h =

f

i

; e

i

or �

i

. By Corollary 5.3.7, we have to prove that P (std (h(w))

�1

) =

P (std (w)

�1

). Re
all that std (w)

�1

is the word u

00

obtained from the repre-

sentation of w as the biword

�

u

v

�

=

�

id

w

�

(see Se
tion 5.3). Set w

1

= h(w) and

�

u

1

v

1

�

=

�

id

w

1

�

. Then, we 
an write v

00

= �a

r

i

a

s

i+1

� where a

i

and a

i+1

do not

o

ur in � and �, v

00

1

= �a

r

0

i

a

s

0

i+1

� (r+s = r

0

+s

0

), u

00

= 
"Æ where j�j = j
j and

j�j = jÆj, and �nally u

00

1

= 
"

1

Æ. By the above proof for a two letter alphabet,

"

1

� ". Therefore, u

00

1

� u

00

as required.

(ii) Suppose that w

0

di�ers from w by a single Knuth transformation, and

let us take for example h = f

i

. Write w = �xzy� and w

0

= �zxy�, where we

assume that x < y < z. Let a (resp. a

0

) be the letter a

i

of w whi
h is 
hanged

into a

i+1

by f

i

. We 
laim that if a is a letter of � (resp. �), then a

0

is the letter

o

upying the same position in w

0

. This is 
lear be
ause the transformation

xzy ! zxy does not modify the relative positions of 
onse
utive letters a

i

and

a

i+1

. Therefore, f

i

(w) � f

i

(w

0

) trivially if a is a letter of � or of �. Otherwise, a

is one of the letters x; y; z of w and a

0

is the same letter in w

0

. Hen
e, a

ording

to a = x; y or z, we have

f

i

(w) =

8

<

:

�a

i+1

zy�

�xza

i+1

�

�xa

i+1

y�

� f

i

(w

0

) =

8

<

:

�za

i+1

y�

�zxa

i+1

�

�a

i+1

xy�

:

Note that in the 
ase a = y, we must have z � a

i+2

, be
ause if z = a

i+1

,

y = a

i

, then zy would be put between bra
kets. In the 
ase w = �xyx� and

w

0

= �yxx�, the reasoning given above remains un
hanged, ex
ept when x = a

i

,

y = a

i+1

, and a does not belong to � or �. In this 
ase, we have

f

i

(w) = f

i

(�a

i

a

i+1

a

i

�) = �a

i+1

a

i+1

a

i

� ;

and

f

i

(w

0

) = f

i

(�a

i+1

a

i

a

i

�) = �a

i+1

a

i

a

i+1

� � f

i

(w) :

The 
ase of a Knuth transformation yxz � yzx (x < u � z) is treated similarly.

We shall now make use of the operators e

i

; f

i

to de�ne a graph � on A

�

.

The verti
es of this graph are all the words w 2 A

�

, and we put labelled arrows
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between words a

ording to the following rule:

(w

i

�! w

0

) () (f

i

w = w

0

) :

Note that if f

i

w = w

0

6= 0, then e

i

w

0

= w, hen
e at ea
h vertex w there is at

most one in
ident arrow of 
olor i (and also, by de�nition, at most one outgoing

arrow of 
olor i). Hen
e the subgraph obtained by erasing all arrows of 
olor

j 6= i is extremely simple: it is just a 
olle
tion of disjoint i-strings

w

1

i

�! w

2

�! � � �

i

�! w

k

of various lengths k � 0. However, when all the 
olors are 
onsidered simulta-

neously, a ri
h 
ombinatorial stru
ture emerges. Let us 
all \
onne
ted 
om-

ponents of �" the 
onne
ted 
omponents of the underlying non-oriented non-

labelled graph.

Proposition 5.5.2. (i) The 
onne
ted 
omponents of � are the 
opla
ti



lasses.

(ii) Two 
opla
ti
 
lasses are isomorphi
 as subgraphs of � if and only if

they are indexed by two standard tableaux of the same shape.

Proof. (i) By Theorem 5.5.1 (i), any 
onne
ted 
omponent of � is 
ontained in

a 
opla
ti
 
lass. Conversely, let w be a a non-Yamanou
hi word. Then there

exists an index i su
h that e

i

w 6= 0. If w

0

= e

i

w is not a Yamanou
hi word,

we 
an again �nd j su
h that e

j

w

0

= w

00

6= 0. Iterating this pro
edure, we


onstru
t a 
hain of arrows 
onne
ting w to the unique Yamanou
hi word in its


opla
ti
 
lass. Hen
e any two words of the same 
opla
ti
 
lass are 
onne
ted

by a sequen
e of arrows going through the same Yamanou
hi word.

(ii) It follows from Theorem 5.5.1 (ii) that two 
opla
ti
 
lasses indexed by

standard tableaux of the same shape are isomorphi
 as subgraphs. Conversely, if

two 
opla
ti
 
lasses C;C

0


orrespond to two standard tableaux t; t

0

of respe
tive

shapes � 6= �

0

, then the Yamanou
hi words of these 
lasses have evaluation �

and �

0

. It is easy to 
he
k from the de�nition of f

i

that for a Yamanou
hi word

of evaluation � = (�

1

; : : : ; �

k

), one has

maxfp j f

p

i

y 6= 0g = �

i

� �

i+1

:

Hen
e the unique verti
es of C and C

0

with no in
ident arrows have outgoing

strings of di�erent lengths, and C and C

0

are not isomorphi
.

As an illustration Figure 5.1 shows the graph stru
ture of the 
opla
ti
 
lass

of t = 2211 for A = f1; 2; 3; 4g. These graphs are examples of 
rystal graphs in

the sense of Kashiwara.

5.6. Cy
lage and 
anoni
al embeddings

In this se
tion we investigate the behavior of the previous 
onstru
tions under


ir
ular permutations on words. We denote by � the bije
tion on A

�

de�ned by

�(x

1

x

2

� � �x

n

) = x

2

� � �x

n

x

1

(x

i

2 A).
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Figure 5.1. The graph stru
ture of the 
opla
ti
 
lass of t = 2211.

Proposition 5.6.1. The 
y
li
 shift � 
ommutes with the maps �

i

.

Proof. We have to prove that ��

i

(w) = �

i

�(w), w 2 A

�

. If the �rst letter

x

1

of w is di�erent from a

i

and a

i+1

there is nothing to prove. Otherwise we

distinguish 4 
ases. Let us say that a letter x

k

of w is free if it does not o

ur

inside a pair of mutually 
losing bra
kets at the end of the bra
keting pro
edure

des
ribed in Se
tion 5.5. We then have the following 
ases: (i) x

1

= a

i

and no

a

i+1

is free; (ii) x

1

= a

i

and at least one a

i+1

is free; (iii) x

1

= a

i+1

is free; (iv)

x

1

= a

i+1

is not free. In ea
h 
ase, the veri�
ation is immediate.

Lemma 5.6.2. Let t 2 A

�

be a tableau and � be any produ
t of �

i

. Then the

following 
onditions are equivalent:

(i) �(t) = t

(ii) �(P (�(t))) = P (�(t)).
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Proof. Sin
e � is bije
tive,

�(t) = t, �(�(t)) = �(t) :

By Proposition 5.6.1, �(�(t)) = �(�(t)), whi
h has the same Q-symbol as �(t)

by Theorem 5.5.1 (i). Thus

�(t) = t, P (�(�(t))) = P (�(t))

be
ause of Theorem 5.3.1. Now, again by Theorem 5.5.1, P (�(w)) = �(P (w))

for any w 2 A

�

and the statement follows.

Theorem 5.6.3. The operators �

i

satisfy the Moore-Coxeter relations

�

2

i

= 1 ; (5.6.1)

�

i

�

j

= �

j

�

i

(ji� jj > 1) ; (5.6.2)

�

i

�

i+1

�

i

= �

i+1

�

i

�

i+1

: (5.6.3)

In other words, the map � sending the elementary transposition (i; i+ 1) onto

�

i

is a linear representation of the symmetri
 group S

n

in ZhAi.

Proof. Relations (5.6.1) and (5.6.2) are obviously satis�ed. To prove (5.6.3), we

have to show that (�

i

�

i+1

)

3

(w) = w for any w 2 A

�

. From Theorem 5.5.1, it is

enough to 
he
k this when w = t is a tableau. Let t = uv where v is the bottom

row of t. By Lemma 5.6.2, it is equivalent to show that (�

i

�

i+1

)

3

P (uv) = P (vu).

Now, in the tableau t

0

= P (vu) all the letters a

1

; a

2

lie in the bottom row.

Writing t

0

= u

0

v

0

and t

00

= P (v

0

u

0

), and iterating, we 
onstru
t a sequen
e t

(k)

of tableaux su
h that all the letters a

1

; : : : ; a

k+1

of t

(k)

are in its �rst row, and

su
h that

(�

i

�

i+1

)

3

(t) = t() (�

i

�

i+1

)

3

(t

(k)

) = t

(k)

:

But t

(n�1)

is a row, and (�

i

�

i+1

)

3

(t

(n�1)

) has to be a row with the same evalu-

ation, hen
e (�

i

�

i+1

)

3

(t

(n�1)

) = t

(n�1)

.

Corollary 5.6.4. The free S
hur fun
tions S

t

are invariant under the above

a
tion of S

n

. As a 
onsequen
e, the 
ommutative S
hur fun
tions s

�

(�) are

symmetri
 in the usual sense.

We next investigate whi
h transformations on tableaux arise when the map

P is applied to 
ir
ular permutations of words. Let Row (A) denote the subset

of Tab (A) 
onsisting of rows.

Definition 5.6.5. Let t be a tableau whi
h is not a row. We put

C(t) = P (�(t)) :

The map C : Tab (A) nRow (A)! Tab (A) is 
alled 
y
lage.
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Figure 5.2. The 
al
ulation of the 
o
harge of w = 23141213142 (labels

are written in small type)

To des
ribe properties of the 
y
lage map, we need to use a pla
ti
 invariant on

words 
alled 
o
harge. Let w be a word. Let � be any permutation su
h that

v = �(w) has a dominant evaluation, that is

jvj

a

1

� jvj

a

2

� � � � � jvj

a

n

:

Write v on a 
ir
le, adding a \point at in�nity" � (see Figure 5.2). Then label

ea
h letter of v a

ording to the following algorithm, reading the word 
lo
kwise.

1. start at � and label the �rst unlabelled a

1

with 0.

2. after labelling an a

i

with the number 
, label the �rst unlabelled a

i+1

with 
 + 1 if it is obtained without 
rossing �, and with 
 otherwise. If

there is no unlabelled a

i+1

, go to the �rst step again, while there are still

unlabelled letters.

The sum of all labels is 
alled the 
o
harge of w, and is denoted by 
o
h (w).

The 
omplementary statisti
 
h (w) = maxf
o
h (v) j ev (v) = ev (w)g�
o
h (w)

is 
alled the 
harge of w. For example, the 
o
harge of w = 23141213142 (whose

evaluation is dominant) is equal to 9, as shown in Figure 5.2.

Lemma 5.6.6. (i) If C(t) = t

0

, then for any � 2 S(A), C(�(t)) = �(t

0

).

(ii) If w � w

0

then 
o
h (w) = 
o
h (w

0

).

(iii) For t 2 Tab (A) nRow (A), we have 
o
h (C(t)) = 
o
h (t)� 1.

(iv) If C(t) = C(t

0

) and t 6= t

0

, then t and t

0

must have di�erent shapes.

Proof. (i) results 
learly from Theorem 5.5.1 and Proposition 5.6.1.

As to (ii), we note that by de�nition 
o
h (�(w)) = 
o
h (w) for � 2 S(A),

hen
e using Theorem 5.5.1 (ii) we 
an assume that w and w

0

have a dominant
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evaluation. For su
h words, the above 
al
ulation of the 
harge pro
eeds by

extra
ting from w a sequen
e of standard subwords w

(i)

su
h that


o
h (w) =

X

i


o
h (w

i

) :

Now, it is 
lear that repla
ing a fa
tor a

i

a

j

by a

j

a

i

when ji� jj 6= 1, does not


hange these subwords, and thus does not 
hange the 
o
harge. Similarly, one


he
ks that repla
ing a fa
tor a

i+1

a

i

a

i

(resp. a

i+1

a

i+1

a

i

) by a

i

a

i+1

a

i

(resp.

a

i+1

a

i

a

i+1

) does not modify these standard subwords. Hen
e, 
o
harge is in-

variant under pla
ti
 relations.

Let now t = xw, x 2 A, be a tableau of dominant evaluation, whi
h is not

a row. Then x 6= a

1

, and the order in whi
h letters are labelled in the word xw

is the same as in wx. Thus, all labels are preserved ex
ept the label of x whi
h

is de
reased by 1, and


o
h (P (wx)) = 
o
h (wx) = 
o
h (xw) � 1

whi
h proves (iii).

To prove (iv), assume that t and t

0

are two di�erent tableaux of the same

shape, and write t = xw, t

0

= x

0

w

0

with x; x

0

2 A. Then w and w

0

also are two

tableaux of the same shape, say �. By Corollary 5.4.6, S

�

S

(1)

is a multipli
ity-

free sum of tableaux in Z[Pl(A)℄, hen
e wx 6� w

0

x

0

, that is, C(t) 6= C(t

0

).

We shall now use the map C to de�ne a graph stru
ture on the set Tab (A).

Namely, 
onsider the oriented graph with set of verti
es Tab (A) and edges

de�ned by:

t �! t

0

() C(t) = t

0

:

Sin
e the 
y
lage map does not 
hange the evaluation of tableaux this graph de-


omposes into the disjoint union of the subgraphs with sets of verti
es Tab (�; �)

for all evaluations �. The following theorem des
ribes these subgraphs and

shows how they 
an all be naturally embedded into the subgraph of standard

tableaux.

Theorem 5.6.7. (i) The subgraph Tab (�; �) is a rooted-tree with root the

unique row-tableau of evaluation �. Two evaluations whi
h di�er by a permu-

tation give rise to isomorphi
 trees.

(ii) Let � and � be two evaluations su
h that

�

k

= �

k

for k 6= i; j;

�

i

> �

j

;

�

i

= �

i

� 1;

�

j

= �

j

+ 1:

Then there exists a unique embedding I

��

of Tab (�; �) into Tab (�; �) 
ommuting

with C and su
h that I

��

(t) has the same shape as t for all t.

(iii) Similarly, for any evaluation � there exists a unique embedding I

�

of

Tab (�; �) into STab preserving shapes and 
ommuting with C.
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1 1 2 3

Cocharge

4

3

2

1

0

Charge

0

1

2

3

Figure 5.3. The tree stru
ture of Tab (�; (2; 2; 1))

Proof By Lemma 5.6.6 (iii), the map C de
reases 
o
harge by 1. Hen
e, the


y
lage graph has no 
y
le and is a union of trees. It is 
lear from the de�nition

of 
o
harge that row-tableaux are the only words with 
o
harge 0. Therefore,

the subgraph Tab (�; �) is a rooted-tree with root the unique row of evaluation

�. If � = �(�) for some � 2 S(A), then, by Lemma 5.6.6 (i), Tab (�; �) and

Tab (�; �) are isomorphi
 as trees, whi
h proves (i).

Let � 2 S(A) be any permutation su
h that �(a

i

) = a

1

and �(a

j

) = a

2

.

Let �

0

= �(�) and �

0

= �(�). Given t = xw in Tab (�; �

0

) its image under f

1

is non-zero and is the tableau in Tab (�; �

0

) obtained by 
hanging the rightmost

a

1

into a

2

. This operation 
learly 
ommutes with C, sin
e the letter x whi
h is


y
led does not interfere, in the 
omputation of P (wx), with the subtableau of

w 
onsisting of the o

urren
es of a

1

and a

2

. Therefore, the image of Tab (�; �

0

)

under f

1

is a subtree of Tab (�; �

0

). Moreover, if two tableaux of the same

shape have the same image under 
y
lage, then they are identi
al a

ording to

Lemma 5.6.6 (iv). Hen
e there 
an be only one map from Tab (�; �

0

) to Tab (�; �

0

)

preserving shape and 
ommuting with C. Finally, using �

�1

, one obtains from

this embedding of Tab (�; �

0

) in Tab (�; �

0

) an embedding of Tab (�; �) in Tab (�; �)

with the same properties, and (ii) is proved.

Composing the pre
eding embeddings, one obtains for ea
h evaluation � at

least one embedding of Tab (�; �) into Tab (�; (1; : : : ; 1)) preserving shapes and


ommuting with C. The uni
ity of su
h an embedding is again ensured by

Lemma 5.6.6 (iv).
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3

1 1 2 2 3

1 1 2 2 3

Figure 5.4. The embedding of Tab (�; (3; 1; 2)) in Tab (�; (2; 2; 2))

Figure 5.3 and Figure 5.4 illustrate Theorem 5.6.7 by displaying the tree

stru
ture of Tab (�; (2; 2; 1)) and the 
anoni
al embedding of Tab (�; (3; 1; 2)) in

Tab (�; (2; 2; 2)).

The main motivation for studying 
y
lage and the related pla
ti
 invariants

given by 
harge and 
o
harge is to develop a 
ombinatorial approa
h to the

Kostka-Foulkes polynomials K

��

(q) whi
h arise in many 
ontexts, ranging from

the 
hara
ter theory of the �nite linear groups GL

n

(F

q

) to the geometry of 
ag

varieties or the solution of 
ertain models in statisti
al me
hani
s. A
tually, one

has the following important result:

Theorem 5.6.8. The Kostka polynomial is equal to the generating fun
tion

of the 
harge on the set Tab (�; �) of tableaux of shape � and weight �:

X

t2Tab (�;�)

q


h (t)

= K

��

(q) :

The proof of this theorem is out the s
ope of this 
hapter.
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Problems

Se
tion 5.1

5.1.1 (The Erd�os-Szekeres theorem). Prove that any permutation of n

2

+ 1

elements 
ontains a monotoni
 subsequen
e of length n+ 1. Show that

there exist permutations of n

2

elements with no monotoni
 subsequen
e

with length greater than n.

Se
tion 5.2

5.2.1 Let w denote the mirror image of a word w. Let w be a standard word,

and t = P (w). Show that P (w) = t

T

, the transposed tableau of t.

5.2.2 Let w be a standard word. Show that the sequen
e w

n

stabilizes in

Pl (A), in the following sense: for n suÆ
iently large, w

n+1

� 
 � w

n

,

where 
 is the 
olumn su
h that ev (
) = ev (w).

5.2.3 Let w be a standard word. Let V (w) be the set of words v su
h that

wv � vr, where r is a row. Show that the set of words of minimal length

in V (w) is a pla
ti
 
lass.

5.2.4 The 
olumn reading C(t) of a tableau t is the word obtained by reading

the planar representation of t 
olumn-wise, from left to right and from

top to bottom. Show that for any tableau, C(t) � t.

5.2.5 (Pla
ti
 monoid and quantum matri
es). Let A be the asso
iative unital

Q[q; q

�1

℄-algebra generated by elements x

11

; x

12

; x

21

; x

22

subje
t to the

relations:

x

12

x

11

= qx

11

x

12

x

21

x

11

= qx

11

x

21

x

22

x

21

= qx

21

x

22

x

22

x

12

= qx

12

x

22

x

12

x

21

= x

21

x

12

x

22

x

11

= x

11

x

22

+ (q � q

�1

)x

12

x

21

1) Show that D = x

11

x

22

� q

�1

x

12

x

21


ommutes with the x

ij

, hen
e is


entral in A.

2) Introdu
e the Z[q℄-latti
e L in A spanned by the elements D

k

x

l

11

x

m

22

(k; l;m 2 N).

(i) Show that every diagonal monomial x

i

1

i

1

� � �x

i

k

i

k

(i; j 2 f1; 2g) be-

longs to L. (Hint: prove that x

22

x

11

= (1� q

2

)D + q

2

x

11

x

22

.)

(ii) Let w = i

1

� � � i

k

, w

0

= j

1

� � � j

k

2 f1; 2g

�

. Prove that

w � w

0

() x

i

1

i

1

� � �x

i

k

i

k

� x

j

1

j

1

� � �x

j

k

j

k

mod qL
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Se
tion 5.3

5.3.1 Show that the number a

n

of involutions in S

n

is equal to the number

of standard tableaux of weight n. Show that

X

n�0

a

n

z

n

n!

= e

z+

z

2

2

:

Se
tion 5.4

5.4.1 Show that if � = (k

l

) and � = (r

s

) are partitions of re
tangular shapes,

all the 
oeÆ
ients 


�

��

are 0 or 1, and give a simple graphi
al des
ription

of the partitions � su
h that 


�

��

= 1.

5.4.2 For an integer k, let h

k

= s

(k)

be the S
hur fun
tion indexed by the

one-part partition (k), and for a partition � = (�

1

; : : : ; �

r

), set h

�

=

h

�

1

h

�

2

� � �h

�

r

. The Kostka numbers K

��

are de�ned as the 
oeÆ
ients

of the expansion h

�

=

P

�

K

��

s

�

. Show that K

��

is equal to the

number of tableaux of shape � and evaluation �.

5.4.3 Let X = fx

1

; x

2

; : : : ; x

n

g be a set of 
ommuting indeterminates, and

let E(t) =

Q

i

(1 + tx

i

) =

P

k

e

k

t

k

, H(t) =

Q

i

(1 � tx

i

)

�1

=

P

k

h

k

t

k

be the generating fun
tions of the elementary and 
omplete symmetri


fun
tions of X . Let p

k

=

P

i

x

k

i

be the power sums symmetri
 fun
tions.

1) Show that

P

k�1

p

k

t

k�1

= H

0

(t)E(�t).

2) Dedu
e from 1) that p

m

=

P

m�1

k=0

(�1)

k

s

(m�k;1

k

)

.

3) The 
hara
ter table of the symmetri
 group S

n

is a square matrix �

�

�

indexed by pairs of partitions of n, in whi
h �

�

�

is equal to the 
oeÆ
ient

of s

�

in the produ
t of power sums p

�

= p

�

1

p

�

2

� � � p

�

r

. Using 2) and the

Littlewood-Ri
hardson rule, 
ompute the 
hara
ter tables of the groups

S

n

for n � 6.

Se
tion 5.5

5.5.1 Let w = x

1

� � �x

m

2 A

�

. One says that the integer i < m is a des
ent of

w if x

i

> x

i+1

. The major index maj (w) of w is the sum of its des
ents.

We denote by Des (w) the des
ent set of w.

A re
oil of a standard tableau t is an entry i of t su
h that i+ 1 o

urs

in a higher row. Let Re
 (t) be the set of re
oils of t. The index of a

tableau is ind (t)

P

i2Re
 (t)

i.

It is 
ustomary to en
ode a subsetE = fe

1

; : : : ; e

r�1

g � f1; 2; : : : ;m�1g

by a 
omposition of m, i.e. a ve
tor I = (i

1

; : : : ; i

r

) of positive integers

with sum jI j = m. The en
oding I = C(E) of E is spe
i�ed by e

k

=

i

1

+ i

2

+ � � �+ i

k

. The 
omposition I = C(Des (w)) is 
alled the des
ent


omposition of w. Conversely, the set E de�ned in this way from a
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omposition I is 
alled the des
ent set of I and denoted by Des (I). As

above, on sets maj (I) =

P

k

e

k

.

1) Show that for any word, Des (w) = Re
Q(w).

2) For a 
omposition I , de�ne the non
ommutative ribbon S
hur fun
-

tion R

I

2 ZhAi by

R

I

=

X

Des (w)=Des (I)

w :

a) Show that R

I

=

P

Re
 (t)=Des (I)

S

t

.

b) Show that w 7! Q(w) de�nes a bije
tion between the set of Ya-

manou
hi words of evaluation � and STab (�).


) Let r

I

be the 
ommutative image of R

I

, and r

I

=

P

�




I

�

s

�

its ex-

pansion in the S
hur basis. Show that r

I

is equal to the number of

Yamanou
hi words of evaluation � with des
ent 
omposition I .

3) Prove the identity between formal series

�!

Y

k�0

Y

i�1

(1� q

k

a

i

)

�1

=

X

m�0

1

(q)

m

X

jwj=m

q

maj (w)

w ;

where (q)

m

= (1� q)(1� q

2

) � � � (1� q

m

).

4) By taking the 
ommutative image of the above identity, and applying

Cau
hy's identity to the alphabets Q = f1; q; q

2

; : : : g and X , show that

P

jIj=m




I

�

q

maj (I)

= (q)

m

s

�

(Q) and obtain the generating fun
tion of

the major index on the set of standard tableaux of a given shape:

X

t2STab (�)

q

maj (t)

= (q)

m

s

�

(Q) :

This is equal to the Kostka polynomial K

�;1

m

(q).

Se
tion 5.6

5.6.1 (Catabolism). Let k : Tab ! Tab be the map t = t

0

v 7! vt

0

where v is the bottom row of t. Let '(t) be the sequen
e of shapes

of t; k(t); k

2

(t); : : :.

1) Show that the restri
tion of ' to STab is one-to-one.

2) Show that ' is invariant under the a
tion of S(A) (i.e., '(�(t)) =

'(t)).

3) Show that ' is invariant under the 
anoni
al embeddings Tab (�) ,!

Tab (1

n

) = STab .

Notes

The name pla
ti
 monoid was 
oined by S
h�utzenberger with referen
e to the

te
tonique des plaques. The basi
 theory of the pla
ti
 monoid was systemati-


ally developed in Las
oux and S
h�utzenberger 1981.
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S
hensted's algorithm appeared in S
hensted 1961. It was realized later that

Robinson, in an attempt to prove the Littlewood-Ri
hardson rule, had already

formulated in Robinson 1938 the 
orresponden
e (5.3.1), whi
h is essentially

equivalent to S
hensted's result (Theorem 5.3.1).

Theorem 5.2.5 is due to Knuth 1970. Greene's invariants were introdu
ed

in Greene 1974. Theorem 5.3.3 appears in S
h�utzenberger 1963. It was already

stated, without proof, in Robinson 1938.

The left-hand side of 5.3.10 
an be interpreted as the sum of the 
hara
ters of

all irredu
ible polynomial representations of GL

n

(C ). Using this interpretation,

Theorem 5.3.10 is a 
lassi
al identity of S
hur (see Littlewood 1950).

For an a

ount of the theory of symmetri
 fun
tions see Littlewood 1950

or Ma
donald 1995. The proof of the Littlewood-Ri
hardson rule given in Se
-

tion 5.4 �rst appeared in S
h�utzenberger 1977. Corollary 5.4.6 is known by

geometers as the Pieri rule.

Las
oux and S
h�utzenberger 1988 is the basi
 referen
e for the material of

Se
tion 5.5, with emphasis on the operators �

i

. Our exposition here, whi
h

stresses the role played by the operators e

i

and f

i

, is strongly in
uen
ed by

Kashiwara's theory of 
rystal bases (see Kashiwara 1991, Kashiwara 1994, Las-


oux, Le
ler
, and Thibon 1995, Le
ler
 and Thibon 1996). The 
onne
tion

between Robinson-S
hensted 
orresponden
e and quantum groups was �rst ob-

served in Date, Jimbo, and Miwa 1990.

Con
erning the statisti
s 
harge and 
o
harge, the 
y
lage, and their appli-


ations to Kostka-Foulkes polynomials, see S
h�utzenberger 1978, Las
oux and

S
h�utzenberger 1980, Las
oux 1991. Another 
ombinatorial des
ription of the

Kostka-Foulkes polynomials in terms of the geometry of 
rystal graphs was given

in Las
oux et al. 1995.

The Littlewood-Ri
hardson rule and the pla
ti
 monoid have been gener-

alized to other root systems by Littelmann (see Littelmann 1994, Littelmann

1996). A monoid asso
iated in a similar way to Gessel's quasi-symmetri
 fun
-

tions has been introdu
ed in Krob and Thibon 1997.

Problem 5.1.1 is a 
lassi
al result that appears for instan
e in Knuth 1973.

Problem 5.2.5 is from Le
ler
 and Thibon 1996. More on 
hara
ter tables (Prob-

lem 5.4.3) 
an be found in Ma
donald 1995. Problem 5.5.1 is from Gelfand,

Krob, Las
oux, Le
ler
, Retakh, and Thibon 1995.


