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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 277, Number 1, May 1983

 ON LEXICOGRAPHICALLY SHELLABLE POSETS

 BY

 ANDERS BJORNER AND MICHELLE WACHS1

 ABSTRACT. Lexicographically shellable partially ordered sets are studied. A new

 recursive formulation of CL-shellability is introduced and exploited. It is shown that
 face lattices of convex polytopes, totally semimodular posets, posets of injective and
 normal words and lattices of bilinear forms are CL-shellable. Finally, it is shown
 that several common operations on graded posets preserve shellability and CL-shel-
 lability.

 1. Introduction. A finite poset (partially ordered set) P is said to be shellable if all

 maximal chains have the same length r and can be ordered mi1, m2,. . , mt in such a
 way that if 1 < i <j < t then there exist 1 < k <j and x E m1 such that mi n mj c
 mk n mj = mj-{x}. A shellable poset enjoys several strong properties of a combi-
 natorial, topological and algebraic nature. Let it suffice here to mention that the

 order complex LA(P) has the homotopy type of a wedge of r-spheres and that a

 naturally associated commutative ring is Cohen-Macaulay if P is shellable. The

 papers [1, 2 and 8] and the further references mentioned there provide more details.

 In [1] a simple method was described for showing that a graded poset P is

 shellable. The method consists in labeling the covering relations of P in a certain

 favorable way. When this is possible P is said to be EL-shellable (or, "edge

 lexicographically shellable", cf. Definition 2.1). A slightly more general version of

 the method was formulated in [2] leading to the concept CL-shellable (or, "chain

 lexicographically shellable", cf. Definition 2.2). In this paper we continue the study

 of lexicographic shellability, the main result being a new recursive formulation of

 CL-shellability (?3). Using this tool we are able to prove that face lattices of convex

 polytopes (?4), totally semimodular posets (?5), posets of injective words (?6) and

 lattices of bilinear forms (?7) are CL-shellable.

 In [1] the question was raised, whether face lattices of convex polytopes are

 lexicographically shellable? It is shown in ?4 that a polyhedral complex is shellable

 (in a certain recursive sense, which is essentially that of Bruggesser and Mani [3]) if

 and only if the dual of its face lattice is CL-shellable. Hence, somewhat surprisingly,

 asking for the CL-shellability of a polytope's face lattice turns out to be equivalent

 to asking for the shellability of the dual polytope's boundary complex.

 In a final section (?8) we prove that a number of common poset operations on

 graded posets preserve shellability and CL-shellability. The results complement
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 324 ANDERS BJORNER AND MICHELLE WACHS

 those of [1, ?4]. For instance, it is shown that rank-selection preserves CL-shellabil-

 ity. This fact, together with [2], implies that rank-selected infinite Bruhat orders and

 posets of normal words are CL-shellable (?6).

 2. Preliminaries. Let P be a finite poset. We say that P is bounded if there exist a
 A~~~~ ~ ~~~~ A A

 top element 1 E P and a bottom element 0 E P such that 0 < x < 1 for all x E P.

 Given any poset P, let P denote the bounded poset obtained from P by adjoining a

 bottom element 0 and a top element 1. P is said to be pure if all maximal chains

 X0 < xl < ... < xr have the same length r. A finite poset P is said to be graded if it
 is bounded and pure. Any element x of a graded poset P has a well-defined rank

 p(x) equal to the common length of all unrefinable chains from 0 to x. By the length

 of P we mean p(l). We say that y covers x in P and write x -*y if x <y and
 x < z < y implies that z = y. The set of all chains of a poset P will be denoted by

 C(P) and the set of all maximal chains by 9%(P). The dual of a poset P will be
 denoted by P*.

 Let A be a finite simplicial complex. The maximal faces of A are called facets. We

 say that A is pure d-dimensional if all facets are of dimension d; that is, they contain

 d + 1 vertices. A pure d-dimensional simplicial complex A is said to be shellable if its

 facets can be ordered Fl, F2,.. .,JF in such a way that Fj n U11 I Fi is a pure
 (d - 1)-dimensional complex for j = 2, 3,... , t (Fj denotes the set {G G C Fj).
 Such an ordering of facets is called a shelling. The following equivalent formulation

 of shellability will be used throughout this paper: A linear ordering Q of the facets of

 a pure simplicial complex is a shelling if and only if Q satisfies the following

 property.

 Property S. For all facets F and F' of A such that F' <s F there is a facet F" with

 F" < OFsuch that F' n F C F" n Fand IF" F Ff =I Fl -1.
 To a finite poset P one can associate the simplicial complex 1\(P) of all chains of

 P, called the order complex of P. Clearly, the facets of 1\(P) are the maximal chains

 of P. Also, if P is a graded poset of length n then 1\(P) is pure n-dimensional. We

 say that a finite pure poset P is shellable if its order complex 1\(P) is shellable. Note

 that a finite poset P is shellable if and only if P is shellable.

 The cardinality of a finite set A will be denoted by I A . For a positive integer n,
 let [n] = {1, 2,..., n}.

 Let us now review the notion of lexicographic shellability, starting with the

 simpler and original version defined in [1]. Let P be a graded poset of length n, and
 let S(P) be the set of edges of the Hasse diagram of P, i.e., S(P) = {(x, y) E P X

 P x- y}. An edge labeling of P is a map X: S(P) -1 A where A is some poset
 (usually the integers). Given an edge labeling X, each unrefinable chain c = (xO -x
 ... -* xk) of length k can be associated with a k-tuple a(c) = (X(xo, xl),
 X(xI, x2),... ,X(xkl, Xk)). We say that c is an increasing chain if the k-tuple a(c) is
 increasing; that is, if X(xO, xI) < X(xI, x2) < * * * < X(xkl, Xk). The edge labeling
 allows us to order the maximal chains of any interval of P by ordering the

 corresponding k-tuples lexicographically. If a(cl) lexicographically precedes a(c2)
 then we say that cl lexicographically precedes c2 and we denote this by cl <L C2.
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 LEXICOGRAPHICALLY SHELLABLE POSETS 325

 DEFINITION 2.1. An edge labeling is called an EL-labeling (edge lexicographical

 labeling) if for every interval [x, y] in P,

 (i) there is a unique increasing maximal chain c in [x, y], and

 (ii) c <L C' for all other maximal chains c' in [x, y].

 A graded poset that admits an EL-labeling is said to be EL-shellable (edge lexico-

 graphically shellable).

 An example of an integer EL-labeling of the face lattice of a square is given in

 Figure 2.1.

 1

 12~~~~~~~~

 FIGURE 2.1

 For a graded poset P of length n let &*(P) be the set of edges of maximal chains

 of P, i.e., &*(P) = {(c, x, y) I c E 6%h(P), x, y E c, x -3 y}. A chain-edge labeling of
 P is a map X: &*(P) -1 A, where A is some poset (usually the integers), that satisfies
 the following condition.

 Condition L. If two maximal chains c = (O = x- xI ** = 1) and c'
 (O = xx* -* .x* x' = 1) coincide along their first d edges then their labels
 also coincide along these edges; that is, if x = x' for i = O,...,d then X(c, xi_1, xi)
 -X(c',x1_, x') for i = 1,. . .,d.

 An example of a chain-edge labeling is given in Figure 2.2.

 3 21 2

 2 2 1 3

 3

 FIGURE 2.2

 Let X be a chain-edge labeling of P. Each maximal chain m (O = Xi
 Xn = 1) of P can be associated with a unique n-tuple

 a(m) = ((m, xO, x), X(m, xI, x2),. .. ,A(m, xn_ , XJ)
 Unrefinable chains of length k < n cannot however be directly associated with

 unique k-tuples as in the edge labeling case. If c is an unrefinable chain of length

 k < n, then each maximal chain containing c induces a k-tuple to be associated with

 c. We overcome the problem of uniqueness by extending the concept of interval. If
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 326 ANDERS BJORNER AND MICHELLE WACHS

 [x, y] is an interval and r is an unrefinable chain from 0 to x, then the pair ([x, y], r)

 will be called a rooted interval with root r, and will be denoted [x, Y]r. If c is any
 maximal chain of [x, y] then r U c is a maximal chain of [0, y]. By Condition L if m

 and m' are maximal chains that contain r U c, then the first d entries of a(m) and

 a(m') coincide, where d is the length of the chain r U c. Hence all maximal chains

 that contain r and c induce the same k-tuple to be associated with c. This implies

 that every maximal chain c in a rooted interval [x, YIr has a unique k-tuple ar(c)

 associated with it.

 We say that a maximal chain c in a rooted interval [x, Y]r is increasing if the

 k-tuple ar(c) is increasing. If cl and c2 are maximal chains of [x, Y]r then cl is said to
 lexicographically precede c2 in [x, Y]r if ar(CI) lexicographically precedes ar(c2). We
 denote this by cl <L C2 in [x, YIr-

 DEFINITION 2.2. A chain-edge labeling X is called a CL-labeling (chain lexico-

 graphical labeling) if for every rooted interval [x, YIr in P,

 (i) there is a unique increasing maximal chain c in [x, YIr, and

 (ii) c <L C' for all other maximal chains c' in [x, YIr.

 A graded poset is said to be CL-shellable (chain lexicographically shellable) if it

 admits a CL-labeling.

 Figure 2.2 shows an example of a CL-labeling. The notion of CL-shellability was

 first used in [2]. For emphasis we will state the logical relationship between the three

 notions of shellability for a graded poset. The first implication is obvious, the second

 is proved in [2, Theorem 3.3]. See ?9 for some additional remarks.

 PROPOSITION 2.3. EL-shellable =X CL-shellable =X shellable.

 Some examples of EL-shellable posets are semimodular lattices (including all

 modular and geometric lattices) and supersolvable lattices (see [1]). A class of

 CL-shellable posets that are not in general known to be EL-shellable are the duals of

 Bruhat order on finite Coxeter groups (see [2]).

 We will call a poset P dual EL-shellable [CL-shellable] if its dual poset P* is

 EL-shellable [CL-shellable]. Thus the Bruhat order on a finite Coxeter group is dual

 CL-shellable.

 In the next section we will see that the concept of CL-shellability is not made

 more general by allowing A to be an arbitrary poset rather than the set of integers. It

 is however useful in proving some results to allow A to be an arbitrary poset. It is

 not known to us whether the concept of EL-shellability would be affected by

 restricting the poset A to the integers.

 3. Recursive atom orderings. The fact that every interval of a CL-shellable poset is

 CL-shellable leads to the question of whether CL-shellability can be formulated

 recursively. It turns out that the following recursive property is equivalent to

 CL-shellability. Recall that the atoms of a graded poset are the elements which cover

 0. Dually, the coatoms are the elements which are covered by 1.

 DEFINITION 3.1. A graded poset P is said to admit a recursive atom ordering if the

 length of P is 1 or if the length of P is greater than 1 and there is an ordering

 a,, a2,... ,at of the atoms of P which satisfies:
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 LEXICOGRAPHICALLY SHELLABLE POSETS 327

 (i) For allj= 1,2,...,t, [aj, I] admits a recursive atom ordering in which the
 atoms of [aj, 1] that come first in the ordering are those that cover some ai where
 i<j.

 (ii) For all i < j, if ai, aj < y then there is a k < j and an element z such that ak,

 a. -* z < y.

 If a,, a2, ... , at is an ordering of the atoms of P that satisfies (i) and (ii) then
 a,, a2,... . at is said to be a recursive atom ordering.

 An example of a poset which admits a recursive atom ordering is given in Figure

 3.1(a). It is easy to see that (i) and (ii) of Definition 3.1 are satisfied if the atoms are

 ordered from left to right in the Hasse diagram. Figure 3.1(b) gives an example of a

 poset that does not admit a recursive atom ordering, since for any ordering of the

 atoms, (ii) cannot be satisfied.

 (a) (b)

 FIGuRE 3.1

 We will also be considering recursive coatom orderings. A poset admits a recursive

 coatom ordering if its dual admits a recursive atom ordering.

 THEOREM 3.2. A graded poset P admits a recursive atom ordering if and only if P is

 CL-shellable.

 PROOF. We begin with the "only if' part. We will prove the following statement

 by induction on the length of P: Any integer labeling X of the bottom edges of a

 graded poset P which admits a recursive atom ordering a,, a2,... , a, extends to an
 integer CL-labeling of P if A(O, ai) < X(O, aj) for all i <j. This clearly holds for
 posets of length 1.

 Now assume that P has length greater than 1. For eachj, let F(aj) be the set of all

 atoms of [aj, I] that cover some ai where i <j. By (i) of Definition 3.1, the atoms of
 F(a1) come first in some recursive atom ordering of [aj, 1]. We can thus label the
 bottom edges of [aj, 1] consistently with the atom ordering of [aj, i] and satisfying,

 x C F(aj) X(aj, x) <x(O, a),

 x (y F(aj) X (aj , x) 0 (, aj),

 where X denotes the labeling of the bottom edges of [aj, 1] as well as the original
 labeling of the bottom edges of P.
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 328 ANDERS BJORNER AND MICHELLE WACHS

 By the induction hypothesis this labeling extends to an integer CL-labeling of

 [aj, 11. Choosing such an extension at each aj we obtain a chain-edge labeling X of P
 which is a CL-labeling of [aj, 1] for all j = 1,... ,t, and hence for every rooted
 interval whose bottom element is not 0, and which extends the original labeling of

 the bottom edges of P.

 We need only show now that the unique lexicographically first maximal chain in

 any interval [0, y] is the only increasing maximal chain in that interval. Let

 c = (O x --* x * ... -* Xk = y) be the lexicographically first maximal chain in

 [0, y]. Then (xI x* * -* XXk) is the lexicographically first maximal chain in
 [xi, y] and is therefore increasing. It is also true that X2 l F(xl) since c is
 lexicographically first. Thus, by (3.3), X(O, xI) < X(x1, x2) and hence c is increasing.

 If c' = (O -x -x* X * X* 4X = y) is another increasing maximal chain in
 [0, y] then xl =# xl because there is only one increasing maximal chain in [xi, y]. It
 also follows that xl x* -* X* 4X is the lexicographically first maximal chain in
 [xl, y]. Consequently, x2 is the first atom in the recursive atom ordering of [xl, 1]

 that is less than y. Since 0 -xl - x2 is increasing X2 4 F(x-) by (3.3), and hence
 F(xl) has no elements which lie below y. This contradicts (ii) of Definition 3.1, since

 xl precedes xl in the given recursive atom ordering of P. Therefore c is the only
 increasing maximal chain in [0, y], and hence P is CL-shellable.

 To prove the converse we let X: &*(P) -1 A be a CL-labeling of P, where A is an
 arbitrary poset. If X is applied to the bottom edges of P, a partial ordering of the

 atoms of P is. induced. We say that an atom ordering a1, a2,... ., a, is compatible with

 the CL-labeling X if a,, a2,.. 2 , at is a linear extension of the partial ordering induced

 by X, i.e., a,, a2, . . ., at is compatible with X if X(O, ai) < X(O, aj) implies that i <j.
 We prove that if the atom ordering a1, a2,... , at is compatible with X then

 a1, a2,.. ., a t is a recursive atom ordering. The proof is by induction on the length of
 P. The statement holds trivially if the length of P is 1. Let P have length greater than

 1. For eachj = 1, 2,... , t, [aj, 1] is CL-shellable with CL-labeling X inherited from
 the CL-labeling of P. Hence by induction any atom ordering of [aj, 1] that is
 compatible with X is a recursive atom ordering. We must now find an atom ordering

 of [aj, II that is both compatible with X and satisfies Definition 3.1(i).

 If x E F(aj) then 0 -O a1 -* x is not the lexicographically first maximal chain in
 [0, x], since a1, a2,... ,at is compatible with X. Hence, 0 -O a1 - x is not increasing

 and X(O, aj) $ X(a., x). If y 4 F(aj) then O -* aj -* y is the lexicographically first
 maximal chain in [0, y] and hence is increasing. Thus X(O, aj) < X(aj, y). The two
 inequalities combine to X(aj, x) + X(aj, y). Therefore the atoms of [aj, 1] can be
 ordered compatibly with X and satisfying (i) of Definition 3.1. By induction this
 ordering is recursive.

 To verify Definition 3.1(ii) we take i <j and ai, aj <y and let c be the lexico-
 graphically first maximal chain in [aj, y]. Since the atoms a1, a2,... ,a t are ordered
 compatibly with X, 0 U c cannot be the lexicographically first maximal chain in
 [0, y], and hence 0 U c has a descent which can occur only at a1. Let z be the

 element on c that covers aj. Since there is a descent at aj, z covers some ak where
 k <j, and (ii) of Definition 3.1 follows.
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 LEXICOGRAPHICALLY SHELLABLE POSETS 329

 In the last two paragraphs we have tacitly used the fact that if ai, aj < z, ai =# aj,
 and the lexicographically first maximal chain in [0, z] contains ai, then X(O, ai) <
 X(0, aj). This simple property of CL-shellability can be verified as in [1, Proposition
 2.5]. D

 A consequence of the preceding proof is that the labeling poset A for a CL-shella-

 ble poset can always without loss of generality be taken to be the totally ordered set

 of integers. This is because in the first part of the proof we produced an integer

 labeling.

 4. Face lattices of complexes. The recursive formulation of CL-shellability is well

 suited to deal with posets which seem to lack natural (chain-) edge labelings but do

 exhibit good recursive properties. The face lattices of simplicial and polyhedral

 complexes illustrate this point. Other examples will be given in later sections.

 By a (convex) polytope is meant the convex hull of a finite set of points in

 Eucidean space. A polyhedral complex is defined to be a finite set of polytopes in

 some Euclidean space such that a face of a member is a member (including the

 empty face) and the intersection of any two members is a face of each. The maximal

 faces of a polyhedral complex are called facets. If the dimension of all the facets of a

 polyhedral complex A is d then A will be called simply a d-complex. Note that if all

 the facets of a d-complex are simplices then we have (a geometric realization of) a

 usual simplicial complex. The d-complex consisting of a d-dimensional polytope P

 and all its faces will be denoted by P. The boundary complex aP is the (d - 1)-complex

 aP = P - {(}.
 DEFINITION 4.1. An ordering Fl, F2,.. .,Ft of the facets of a d-complex A is said to

 be a shelling if d = 0 or if d > 0 and forj = 2,3,..., t, Fjn Uni=I Fi is a (d- 1)-
 complex having a shelling which extends to a shelling of aFj (i.e., aFj has a shelling in

 which the facets of Fj n Uji' F-i come first). A is said to be shellable if it admits a
 shelling.

 It is easy to see that when A is simplicial this recursive definition reduces to the

 usual nonrecursive definition of shellability stated in ?2. Similar but slightly less

 restrictive versions of shellability for d-complexes have been proposed by Bruggesser

 and Mani [3] and Danaraj and Klee [5].

 PROPOSITION 4.2 (BRUGGESSER AND MANI). The boundary complex of a polytope is

 shellable.

 Although in [3], Bruggesser and Mani present this result using a less restrictive

 version of shellability, their proof carries through for our version.

 The face lattice L(A) of a d-complex A is obtained by ordering the faces of A by

 inclusion and adjoining a greatest element 1.

 THEOREM 4.3. Let A be a d-complex. The face lattice L(A) admits a recursive

 coatom ordering if and only if A is shellable.

 PROOF. We will prove for all d by induction that a recursive ordering of the

 coatoms of L(A) is a shelling order of the facets of A, and conversely. This is clearly
 true for d = 0.
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 330 ANDERS BJORNER AND MICHELLE WACHS

 Assume that d > 1. Observe first that if Fl, F2,...,JF is any ordering of the
 coatoms of L(A) (i.e., the facets of 1) then Definition 3.1(ii) applied to the coatoms

 is equivalent to saying that Fj n Uii I Fi is a (d - 1)-complex for j = 2,... , t.
 Now suppose that Fl, F2,.. ., F, is a recursive coatom ordering. For any j = 2,. . ., t,

 the facets of Fjn U?i=_7 FJi are precisely those coatoms of [0, Fj] which are covered by
 some Fi, i <j. It follows from Definition 3.1(i) that these coatoms come first in a
 recursive coatom ordering of [0, Fj]. Since by induction this recursive coatom
 ordering of [0, Fj] is a shelling order of aFj, we can conclude that Fj n UJL4 Fi has a

 shelling which extends to a shelling of aFj.
 Conversely, let F1, F2,...,JF be a shelling of A. For any j = 2,...,t, since

 Fj n UJ1_ Fi has a shelling which extends to a shelling of aFj, we can conclude by
 induction that [0, Fj] admits a recursive coatom ordering in which the facets of
 Fj n UJ_=l, Fi are the coatoms that come first. These coatoms are precisely those that
 are covered by some Fi, i < j. Hence, part (i) of Definition 3.1 holds for j = 2,. . ., t.
 It follows from Proposition 4.2 that VF1 is shellable, so also [0, F I] admits a recursive
 coatom ordering. O

 COROLLARY 4.4. The face lattice of a d-complex A is dual CL-shellable if and only if

 A is shellable. O

 Since there are several classes of simplicial complexes which are known to be

 shellable, Corollary 4.4 provides a wide variety of CL-shellable posets. For instance,

 finite Coxeter complexes, Tits buildings and matroid complexes are all examples of

 shellable simplicial complexes. Hence the face lattices of these complexes are dual

 CL-shellable. O

 THEOREM 4.5. The face lattice of a polytope is both CL-shellable and dual CL-shella-

 ble.

 PROOF. Dual CL-shellability is an immediate consequence of Corollary 4.4 and

 Proposition 4.2. The (order) dual of the face lattice of a polytope is isomorphic to

 the face lattice of the (polar) dual polytope. Hence, the face lattice is also CL-shella-

 ble. O

 5. Totally semimodular posets. A finite poset P is said to be semimodular if it is

 bounded and whenever two distinct elements u, v E P both cover x C P there is a

 z E P which covers both u and v. Semimodular posets are graded but not necessarily

 shellable. P is said to be totally semimodular if it is bounded and all intervals [x, y]

 are semimodular. Totally semimodular posets are known to be shellable [1, ?6], and
 will now be shown to be CL-shellable. Semimodular lattices are actually EL-shella-

 ble [1, ?3], but the question of EL-shellability for nonlattice totally semimodular

 posets remains open.

 THEOREM 5.1. A graded poset P is totally semimodular if and only if for every

 interval [x, y] of P, every atom ordering in [x, y] is a recursive atom ordering.

 PROOF. We prove this by induction on the length of P. For posets of length 1, the
 result is trivial.
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 LEXICOGRAPHICALLY SHELLABLE POSETS 331

 Let P be totally semimodular with length greater than 1. If [x, y] =# P then [x, y]

 is totally semimodular and by induction every atom ordering in [x, y] is a recursive

 atom ordering.

 Let a, I2 a 2 *at be any atom ordering in P. Since every atom ordering in [aj, 1] is
 recursive, order the atoms of [aj, 1] so that those that cover some a , i < j, come first.
 Let y > ai, aj, i < j. Since P is totally semimodular there is an element z - y which
 covers ai and aj. Thus (i) and (ii) of Definition 3.1 are satisfied by a,, a2,... ,at, so
 this atom ordering is recursive.

 Conversely, to show that P is totally semimodular we must show that if u, v, x, y

 E P where x -- u, x -- v and u, v < y then there is an element z - y which covers u
 and v. Order the atoms of [x, y] so that u and v come first. Since every atom

 ordering of [x, y] is recursive, it follows from Definition 3.1(ii) that u and v are

 covered by an element z < y. D

 COROLLARY 5.2. A totally semimodular poset is CL-shellable. D

 6. Linguistic posets. Let A be a finite alphabet, I A I 2. By a word of length k 0 0
 is meant a string of k letters drawn from A. Given two words w, and w2 we say that

 wI is a subword of w2, written w <- w2, if w2 = aIa2 ... aq and w, = ailai2 ... aik,
 1 < i1 < i2 < ... < ik < q. Any set of words is partially ordered by the subword
 relation. A word is said to be injective if no letter occurs more than once, and normal

 if no two consecutive letters are equal. Let IA and NA denote the posets of all

 injective and normal words, respectively, and let NA,k denote the poset of all normal
 words of length at most k. NA is infinite but IA and NAk are finite. By convention we

 exclude the empty word from these posets. Thus, IA and NA,k are graded posets of
 length I A I + 1 and k + 1, respectively, and the word length l(w) coincides with the
 poset rank. The posets I{a bc } and N{a b} 3 are depicted in Figure 6.1.

 abc acb bac bca cab cba aba bab

 ab ac ba bc ca cb ab ba

 a b c a b

 FIGuRE 6.1

 The linguistic posets IA and NA k were introduced and studied by F. Farmer in [7].

 THEOREM 6.1. (i) IA is dual CL-shellable.

 (ii) NA,k is dual CL-shellable, for all k > 1.

 The two parts of this result will be proved by quite different methods. For part (i)

 we will exhibit an explicit recursive coatom ordering, while part (ii) will be dealt with

 using Coxeter group methods. Before we turn to the proofs, let us briefly discuss
 some connections with Farmer's work.
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 332 ANDERS BJORNER AND MICHELLE WACHS

 Suppose that IA n, and let S C [n]. Define IA5, {w E IA I1(w) E S), i.e.,
 IA,s is the poset of injective words of length prescribed by S. We will derive an
 expression for the Mobius function Iu(IA,s), i.e., ,.(O, 1) computed on IAS,' and discuss

 the homotopy type of IA's. For some basic facts concerning Mobius functions, see
 e.g. [8,?5] and the further references found there. Given a sequence of integers

 1 < k, < k2 < ... < ki, let 6D(kj, k12,..., ki) denote the set of permutations of [ki]
 having descent set {k1, k2,. . . ,ki 1}. In other words,

 6D(kl, k2,.. .,ki) = &T E S[kj |j > T> 'j+H I ]j E {kl, k2,....ki- }.

 Thus, 16D(kj)I= 1 and 1I6D(1,2,...,i)I= 1. Using the natural EL-labeling of the
 Boolean lattice q3J(ki) of rank ki, one sees from Stanley's formula [1, Theorem 2.7]

 that (-1)' I 6D(kj, k2, . . ,ki) I equals the Mobius function of the {kl, k2, . ... ki-1}
 rank-selected subposet of ffi(ki). Rank-selected subposets are defined in ?8 below.
 Now, clearly every lower interval [0, w], w =# 1, in IA is Boolean. Thus, if S =

 {kl, k2,. .. ,ksj, 1 < k, < k2 < ...< k < n, we derive the following expression:

 (6.2) u(IA s) = -1 + 2 (-1)i?l(n)ki I 6D(kj, k2,...,k1) ki.
 i=lI

 Here, (n)ki = n(n - 1) ... (n - ki + 1) is the number of injective words of length
 ki.

 Since rank-selection preserves shellability (cf. Theorem 8.1 below or [1, Theorem

 4.1]) it follows from Theorem 6.1 that IA, s is shellable. A shellable poset is known to
 be homotopy Cohen-Macaulay (cf. [1, Appendix]). In particular, we may conclude

 that (the order complex of) IA's has the homotopy type of a wedge of

 2:i=o(-I)s+i(n)kjI 6D(kj, k2,. . .-,k) I (s -)-spheres.This was shown by Farmer for
 the case S = {1,2,.. . ,s}, s < n, cf. [7, Theorem 5 and Remark].

 A similar discussion applies to the poset of normal words. Let S be any finite set

 of positive integers and define NA,s = {w C NA I I(w) C S). In the same way it
 follows from Theorem 6.1 that NA's is shellable, and hence has the homotopy type of
 a wedge of (I S I- )-spheres. Again, the S = { 1, 2, ... ,s} case is due to Farmer [7,
 Theorem 41. He also obtains in [7, Remark, p. 61 1]:

 k

 (6.3) JU(NA,k) = -1 + z (-1)'ln(n - 1)11 = (,)k1 l(n - k
 i=lI

 We will later derive a slight generalization of this.

 PROOF OF THEOREM 6. 1 (i). We will show that IA admits a recursive coatom

 ordering. It is clear that the maximal words of IA are the permutations of A. Choose

 an ordering of A and order the permutations lexicographically. We claim that this is
 a recursive coatom ordering of IA

 We need only establish part (ii) of Definition 3.1 since the intervals below the

 maximal words are Boolean, and by Theorem 5.1 every coatom ordering of a

 Boolean lattice is recursive. For each w = aIa2 ... ak let w' be the word formed by
 the letters not in w arranged in increasing order. There is a unique maximal word

 S(w) above w and w' such that if x is any letter in w' then x is greater than all its
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 predecessors and less than its immediate successor in S(w). For example, if

 A = {1,2,...,9} and w = 4285 then w'= 13679 and S(w) = 134267859. It is not
 difficult to verify that S(w) is the lexicographically first maximal word above w.

 Now, suppose that w < mi, mj, where mi and m1 are maximal words and mi
 precedes m1 lexicographically. Then m1 =# S(w). Thus there is a letter x of m1 and
 not in w such that x is less than a predecessor or greater than its immediate

 successor. Remove such an x from m1 to get the word z > w. By letting mk = &(z)

 # m1 we obtain what is needed to satisfy Definition 3.1(ii). D

 In the sequel the notion of a Coxeter group (W, S), its Bruhat ordering and basic

 properties will be considered known. We adhere to the terminology and notation of

 [2, ?2], and readers desiring further details are advised to consult [2] and the

 references cited there.

 LEMMA 6.4. Let (W, S) be a Coxeter group, J C S. Then Wj is a directed poset, i.e.,

 every two elements have a common upper bound.

 PROOF. Our principal tool will be the following lifting property, due to Verma [10,

 p. 395]: if v, v' E W, s E S, and v < v', vs > v and v's < v', then vs < v' and

 v ? v's.

 Suppose first that w, w' E W. We will prove that UB(w, w') = {u E W I w, w' <
 u} # 0 by induction on l(w) + l(w').

 The case l(w) + l(w') < 1 is clear. In general, choose s E S so that ws < w. By

 induction there exists u E W such that ws, w' ? u. If us < u, then by the lifting
 property w - u. If us > u, then by the lifting property w ? us. Hence, in either case
 we are done.

 Now suppose that w, w' E Wj. Let u be a minimal element of UB(w, w'). If

 u M Wj we can find s E J such that us < u. Since ws > w, w's > w', the lifting

 property gives w, w' < us, which contradicts the minimality of u. Hence, u E WJ.

 C]

 When Wj is finite the lemma amounts to the known fact that WJ has a greatest

 element w0o. We will here however be primarily concerned with the case when WJ is
 infinite.

 Let (W, S) be a Coxeter group, I S I< 00, J C S, and let Y be a finite set of
 positive integers. Define (WJ)y = {w E Wj I (w) E Y}. Since S and Y are finite
 (WJ)y is finite, and (Wy')y is a graded poset.

 THEOREM 6.5. (WY)y is dual CL-shellable.

 PROOF. It follows from the lemma by induction that (WJ)y has an upper bound
 u E WJ. Hence, (Wiry is simply the rank-selected subposet [e, u]J. Since [e, u]J is
 dual CL-shellable [2, Theorem 4.2], and this property is preserved under rank-selec-

 tion (Theorem 8.1 below) the result follows. D

 PROOF OF THEOREM 6. 1(ii). Given the finite alphabet A, let (WA, A) be the Coxeter

 group whose Coxeter graph is the complete graph on vertex set A with all edges

 labeled "oo". Equivalently, WA is the group generated by A subject only to the

 relations a2 = e for all a E A. Then every w E WA clearly has a unique reduced
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 expression, and this expression is a normal word in the alphabet A. Conversely,

 every normal word in A is a reduced expression in WA. Hence, NA can be identified

 with WA, and because of the subword property (cf. [2, 2.3]) the subword ordering of

 NA coincides with the Bruhat ordering of WA. If W = WA, J = 0 and Y =

 {1,2,... ,k} then (WJ)Y = NA, k so the result follows as a special case of Theorem
 6.5. D

 The proof suggests the following generalization. Given a finite alphabet A and a

 nonempty subset J C A, let NA,J,k denote the poset of all normal words of length at
 most k which end in a letter from J.

 COROLLARY 6.6. NA,J,k is dual CL-shellable, for all k > 1.

 This follows because, in the notation of the preceding proof, NAJ k = (WA -J). If

 w E WAJ then by the Deodhar-Verma theorem ,u(e, w) = (-1)l(w) if [e, wIA-J is
 full, and = 0 otherwise (cf. [2, 5.3]). In the particular Coxeter group (WA, A) it is

 easy to see that [e, WIA-J is full if and only if all letters in the unique reduced

 expression for w come from J. Thus, if I= j, since there are j(1 - 1)'- l normal
 words in J of length i, we obtain

 k

 (6.7) ,I(NAJ,k) = -1 + 2 (_l)i 1j(j _ I)i1I = (_-Ik l(j _ Ik
 i=lI

 It can be shown that NJ,k is a strong deformation retract of NAJ,k, SO (6.7) can also
 be deduced from Farmer's formula (6.3).

 Finally we remark that the corresponding poset IA,J of injective words which end
 in a letter from J, 0 =# J c A, is not necessarily shellable when J 7# A. For instance,

 if A = {a, b, c} and J = {a, b}, then IA,J has the homotopy type of a circle.

 7. Lattices of bilinear forms. Let V and W be finite-dimensional vector spaces over

 GF(q). Consider the poset whose elements are {(A, f ) I A is a subspace of V and
 f: A -4 W is a linear mapping) and whose order relation is given by (A, f) < (B, g)
 if A C B and g restricted to A is f. This poset was suggested to us by D. Stanton,

 who calls it the (lower) semilattice of bilinear forms [9, p. 278]. Its definition goes

 back to work by Delsarte [6]. We adjoin a top element 1 to obtain a lattice Lq(V, W).

 The lattice of bilinear forms Lq(V, W) is clearly graded, and if x = (A, f ) then

 p(x) = dim A and the lower interval [0, x] is isomorphic to the lattice of subspaces
 of A. The crucial recursive property of Lq(V, W) is that the upper interval [x, 1] is

 itself isomorphic to a lattice of bilinear forms.

 LEMMA 7.1. Suppose x = (A, f ) E Lq(V, W), and let B be a complementary

 subspace to A, so that V = A ( B. Define a map PX9B: [XI 1] -4 Lq(B, W) by cp(C, g)
 = (C n B, g I cnB) and 9p(l) = 1. Then p is a poset isomorphism.

 PROOF. The verification is straightforward and will be omitted. D

 THEOREM 7.2. Lq(V, W) is CL-shellable.

 PROOF. Again we rely on the recursive formulation of CL-shellability (cf. ?3). We

 prove the following assertion by induction on n = dim V: In Lq(V, W) any atom
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 ordering in which all the atoms of the form (u>), 0) come first is a recursive atom
 ordering. Here and in the sequel, if ul, U2. . . , Uk E V then (ul, u2, . . ,uk ) denotes
 their linear span in V.

 The assertion is trivial for n = 1. Let n > 1 and assume that S is any atom

 ordering for which the atoms of the form (u>), 0) come first. For each atom x of
 Lq(V, W), let F(x) be the set of all atoms of [x, 1] which cover some atom of

 Lq(V, W) which precedes x in Q. Let G(x) be the set of atoms of [x, 1] whose image

 under PX,B iS of the form (<w), 0). The definition of G(x) depends on how B is
 chosen (cf. Lemma 7.1), but the following arguments are independent of that choice.

 We want to find an atom ordering of [x, 1] for which (i) the atoms in F(x) come

 before the atoms that are not in F(x) and (ii) the atoms in G(x) come before the

 atoms that are not in G(x).

 Case 1. Assume that x is of the form ((u), 0). We claim that in this case
 F(x) C G(x). If (C, g) C F(x) then C contains a vector v for which g(v) 0 O and

 (v>) # u). This implies that g= 0 since v and u generate C. Now we have that

 qPx,B(C, g) (C n B, 0) and hence (C, g) E G(x). Thus F(x) C G(x).
 Case 2. Assume that x is not of the form (K u), 0). This time we assert that

 G(x) C F(x). If (C, g) E G(x) then px,B(C, g) = (Kw),0) where Kw) C c B.
 Hence (K w ), 0) precedes x in &2. Since (K w ), 0) < (C, g) it follows that (C, g) E F(x).
 Thus G(x) C F(x).

 For Case 1, we can order the atoms of [x, 1] so that the atoms of F(x) come first,

 then the atoms of G(x) - F(x), and finally the remaining atoms. Similarly, for Case

 2, we can order the atoms so that G(x) comes first, then F(x) - G(x), and finally

 the remaining atoms. Therefore in both cases it is possible to order the atoms of

 [x, 1] so that those in F(x) precede those not in F(x) and those in G(x) precede

 those not in G(x). Consequently by the induction hypothesis and Lemma 7.1, this
 atom ordering is recursive and Definition 3.1 (i) is satisfied.

 To complete the proof that 2 is a recursive atom ordering it remains only to verify

 part (ii) of Definition 3.1. Let xi = ((u), f) and xj = ((u'), f') be atoms in
 Lq(V, W), and suppose that xi precedes xi in a.

 Case 1. u)= K u') and f =# f'. If xi, xj < y, then clearly y = 1. Since xi precedes
 x1, f' #0. Now let Xk = (Ku"),0) where Ku")# Ku') and let z = (Ku', u"), g)

 where g(u') f'(u') and g(u") = 0. Then Xk precedes xj in 2 and Xk, xj z ?y.
 Case 2. Ku)# Ku'). If xi, x< y = (C, h), then u, u' E C, h(u) = f(u) and

 h(u') f'(u'). Let z (Ku, u'), g) where g(u) f(u) and g(u')= f'(u'). Then
 xi, xj z ?y. D

 Let X and Y be finite nonempty sets, and consider the poset P = {(A, f) | 0 #

 A C X, f: A -4 Y} with order relation (A, f) < (B, g) ifA C B and gIA f. Then
 L(X, Y) = P is a lattice. A simple modification of the proof of Theorem 7.2 yields

 the following.

 THEOREM 7.3. L(X, Y) is CL-shellable.

 It is also possible to show that L(X, Y) is dual CL-shellable. We omit the details.

 Figure 7.1(a) shows the proper part of L([2], [2]). As an aside, consider the subposet
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 IL(X, Y) consisting of 0, 1 and all (A, f) in L(X, Y) such that f is injective.

 IL(X, Y) is a lattice, and actually a sub-lower-semilattice of L(X, Y). The lattices

 IL([n], [n]) have been investigated by Cameron and Deza [4] under the name of

 permutation geometries. Unfortunately, injectivity here seems to destroy the shellabil-

 ity property, as can be seen from IL([2], [2]), the proper part of which is depicted in

 Figure 7.1(b).

 (1,1) (1,2) (2,1) (2,2) (1,2) (2,1)

 (1, (2, 1 ( * 2) (,*) (2, 5) (*,) ( 2

 (a) (b)

 FIGuRE 7.1

 Suppose now that I X = n, I Y m, and let S ={kl, k2,...,ks}, 1 < k, < k2 <
 *< k < n. Consider ,u(L(X, Y)s), i.e., the Mobius function u(O, 1) computed on

 the rank-selected subposet L(X, Y)s = {(A, f ) E L(X, Y) I I A I E S} U {o, 1).
 Since there are (ni)mki elements of rank k1 in L(X, Y) and if x is one of them then

 ,U (0, x) (-1)' I 6D(k1, k2,. . . ,k1) I computed in L(X, Y)s (cf. the discussion preced-
 ing formula (6.2)), we obtain the following expression:

 (7.4) u(L(X, Y)s) = -1 + (-1)i ( )mki I6D(kl, k2,...,kj) I

 A similar formula exists for the lattice Lq(V, W) of bilinear forms. Suppose that

 dim V = n, dim W = m, and let S be as before. There are [i]qmki elements of rank

 k1 in Lq(V, W), where [niq denotes the Gaussian coefficient

 (qf - 1)(qn- - 1) I * (qn-kijl - 1)/ (q - 1)(q2 - 1) . .. (qki- 1)
 Furthermore, if p(x) = ki then [0, x] is isomorphic to the subspace lattice of a
 k -dimensional space over GF(q). Hence, by a formula of Stanley [8, p. 155] the

 Mobius function u (0, x) computed in Lq(V, W)s = {(A, f ) E Lq(V W) I dim A E
 S) U {O, I) is u(O, x)(- 1)i E4q1V(1), the sum extending over all permutations

 iT E 6D(kl, k2,.... ki) and inv(7r) denoting the number of inversions in 7T. We
 deduce

 (7.5) u(Lq(V, W)s) = -1 + k (-1) [ q mki qinv(7T)
 i=~~~~ q 7T v qE6iz(kj, k2,. -.. ki)

 8. Operations that preserve shellability. In [1, ?4] poset operations that preserve

 either shellability or EL-shellability are considered. In this section we extend all the
 results of [1, ?4] to both shellability and CL-shellability. The operations considered

 are rank-selection, direct products, ordinal sums, cardinal powers and interval
 posets.
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 Let P be a graded poset of length n and with rank function p. For any

 S C [n - Ithe rank-selected subposet, Ps, is defined to be Ps = {x E P p(x) E S
 U {O,n}}.

 Let P and Q be posets. The direct product P X Q is the poset defined on the

 product set by (x, y) < (x', y') if x < x' in P and y < y' in Q. The ordinal sum

 P (D Q is the poset defined on the disjoint union of P and Q by x < y in P (D Q if (i)

 x, y E P and x ?y inP, (ii) x, y E Q and x ?y in Q, or (iii) x E P andy E Q. The

 cardinal power Q P is the set of orderpreserving maps f: P -4 Q, partially ordered by
 f ? g if f(x) < g(x) for all x E P.

 The interval poset Int(P) of a poset P is the set of intervals (including the empty

 interval) ordered by containment.

 In [1, Theorem 4.11 it is shown that rank-selection preserves shellability. We will
 prove the corresponding result for CL-shellability. Whether rank-selection preserves

 EL-shellability remains open.

 THEOREM 8.1. If P is a CL-shellable poset of rank n then Ps is CL-shellable for all

 S C [n - 1].

 PROOF. We shall prove the result for S [n - 1]- {r} where r E [n - 1]. The

 general result follows by induction. Let X: &*(P) -4 A be a CL-labeling of P. Define

 a labeling X : S*(Ps) -4A X A as follows. If X O = xl* XI Xr_-
 Xr+?I * n= 1) is a maximal chain in Ps and if Xr is the element of rank r on
 the lexicographically first maximal chain in the rooted interval ([Xr_, Xr+ 1, 0 -x
 * *4 *Xr- 1) of P then let

 Xs(c, Xi-I, Xi) = (X(c U Xr Xi-I Xi), X(c U Xr, Xi- 1,x)) if i = 1,... ,r - 1,

 XS(C, Xr-I Xr+I) = (X(c U Xrg Xr-i Xr), X(C U Xr, Xr, Xr+l)),

 and

 Xs(c, Xi-, Xi) = (X(c U Xr, Xr_I Xr), X(c U Xr, Xil, Xi)) if i = r + 2, ... ,n.
 Now order A X A lexicographically (this ordering is stronger than direct product

 order). It is then straightforward to verify that Xsis a CL-labeling of Ps.
 Before considering the remaining operations we need to recall the following fact,

 whose proof can be found in [1, Proposition 4.2].

 PROPOSITION 8.2. If P is a shellable poset then all intervals of P are shellable.

 In [1, Theorem 4.3] it is shown that direct products preserve EL-shellability. The

 corresponding result is true also for CL-shellable and shellable bounded posets. For

 CL-shellable posets the proof in [1] requires no significant modification. For

 shellable posets we have the following.

 THEOREM 8.3. Let P and Q be bounded finite posets. Then P X Q is shellable if and

 only if both P and Q are shellable.

 PROOF. The product P X Q is clearly graded if and only if both P and Q are

 graded. By Proposition 8.2 since P _ [(O, 0), (1, 0)] and Q _ [(O, 0), (0, 1)], P and Q
 are shellable if P X Q is shellable.
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 Suppose that P and Q are bounded shellable posets of lengths m and n respec-

 tively. The length of P X Q is then m + n. A covering relation (x, y) -> (x', y')
 occurs in P X Q if and only if x = x' andy -_ y' or x x' andy = y'. The edges of
 P X Q can therefore be labeled as follows:

 X((x, y), (x, Y)) (0 ifi x '.
 1 if x x'.

 Now, corresponding to each maximal chain c = (O = Zo - Z * Zm+ )
 there is an (n + m)-tuple a(c) of m O's and n l's defined by

 a(C) (X(O, ZI), X(ZI, Z2),. ... 9X(Zm+n-1 Zm+n)).

 We define two projection maps lp: 9T(P X Q) ---* ?i(P) and IIQ: 9I(P X Q)
 -D(Q) by Hp(c) ={xj i= O, l,...,m + n} and IIQ(C) = {yi |j i = O m + n} for c = (O = xO, Yo) - (x, YI) * (Xm+n, Ym+n) 1).
 Each maximal chain c in P X Q can now be uniquely represented by the triple

 (a(c), UIp(c), HQ(C)). If Sp and 2Q are the shelling orders of P and Q, respectively,
 then the triples can be lexicographically ordered by using the lexicographical

 ordering, denoted by <L, on the (n + m)-tuples of O's and l's and the shelling

 orders Qp and QQ on {flp(c) I c E 9Th(P X Q)} = 9I(P) and {IIQ(C) I c E
 9T(P X Q)} = 9I(Q), respectively. Let 2 be the induced linear ordering of
 9T(P X Q).

 We now show that 2 is a shelling order of )1(P X Q) by establishing Property S.

 Suppose that c = (O = Zl * * * Z m+n = 1) and c = (O = z' -z
 Zm+n 1) are two maximal chains of P X Q such that c' <c. Let T= {t E
 [m + n] |z #74 zt}. There are two cases to consider.

 Case 1. Assume that a(c) has a descent at t E T, i.e., X(z,1I, Zt) > X(Zt, Zt+1). Let
 Zt-l = (a,, a2) and zt+, = (bl, b2). Since there is a descent at t, zt - (a,, b2). Let
 c c - {Zt} U {(bl, a2)}. Clearly c" is a chain of P X Q and a(c") <L cr(C),
 which implies that c" <Q c. It is also clear that c' n c c c" n c since t E T.

 Case 2. Assume that a(c) has no descents in T. It is not difficult to see that in this

 case a(c') = a(c), since c' <Q c. We will show that a(c) cannot have ascents in T

 either. (By having an ascent in T we mean that X(z,_1, Z,) < X(z,, z,+) for some
 t E T.)

 Suppose that a(c) has an ascent at t E T. Let / be the largest integer and u the
 smallest integer such that / < t < u and 1, u C [m + n] -T. Clearly, 0 ? / < u ? m

 + n since z' - zo and zm+,, = Zm+n* Let z, = (a,, a2) and zu = (bl, b2)* Since there
 are no descents in a(c) between / and u and there is an ascent at t, zt = (b1, a2).

 Since a(c') = a(c), z' - z,, and z' = zu, we also have that z' = (bl, a2). Hence
 t= Zt', which contradicts the assumption that t E T. Thus there are no ascents of

 a(c)in T.

 Since a(c) = a(c'), either Hp(c') <P UJp(c) or FIQ(C') <QQ IQ(C). Without loss
 of generality we can assume the former. Let y be a maximal chain of P such that

 y <P flp(c) and rlp(C) n Ip(c) C y n rip(c) = rip(c) - {x} where x E rlp(c).
 Let u be the element on rlp(c) that is covered by x and let t E [m + n] be such that
 Z = (x, y) and z,1 = (u, y) for somey E Q. Clearly z' #f zt since x i- p(c'). This
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 implies that t E T, which in turn implies that a(c) has no ascent (or descent) at t.

 Hence, by letting c" be the maximal chain of P X Q represented by the triple

 (a(c), y, TIQ(c)), we have that c" n c = c - {(x, y)) c - {zt. It follows that
 c'nfc Ccc A candc" <C. A

 Theorem 8.3 is not stated in maximum generality. For the proof to go through it

 suffices to assume merely that P has a greatest element and Q a least element. If we

 instead assume that both P and Q have least elements, then the "only if" part holds,

 and we expect that the "if' part also holds but leave this open. Notice that if P and

 Q are shellable posets, one of which is nonacyclic, then P X Q is in general not
 shellable for topological reasons. For instance, let P and Q be the two shellable
 posets of Figure 8.1(a) and (b). The direct product P X Q is depicted in Figure
 8.1(c), and its order complex iX(P X Q) triangulates the topological product of a
 circle and an interval, so it is a two-dimensional complex having the homotopy type

 of a circle. Such a complex cannot be shellable. Another quick way to see that this

 P X Q cannot be shellable is to compute the Mobius function t(O, x) in (P X Q)
 and see that it fails to satisfy the necessary condition (- l)P(x)(O, x) > 0 for x = 1.

 (a) (b) (c)

 FIGURE 8.1

 In [1, Theorem 4.5] it is shown that cardinal powers preserve EL-shellability of the

 base poset. Again, the extension of this result to CL-shellable posets is routine. We
 will prove the extension to shellable posets.

 THEOREM 8.4. Let Q be a finite poset. Then PQ is a shellable bounded poset if and

 only if P is a shellable bounded poset.

 PROOF. First note that PQ is graded if and only if P is graded. By Proposition 8.2,

 if PQ is shellable and bounded then P is shellable and bounded, since P [f, g] in
 PQ, where f(x) = 0 for all x E Q and g(x) = 0 for all x E Q with the exception of a
 maximal element q E Q for which g(q) = 1.

 We prove the converse by induction on the cardinality of Q. It clearly holds for

 Q l= 1. It is not difficult to verify that if q is any element of Q then pQ-(q) X P is
 isomorphic to the poset of maps from Q to P which are orderpreserving everywhere

 in Q except at q, ordered by f < g if f(x) - g(x) for all x E Q. Hence PQ is a
 subposet of pQ-{q} X P. By induction and Theorem 8.3 we have that pQ-{q} X P is
 shellable.

 Let q be a minimal element of Q and let Q be the shelling order of pQ-{q) X p
 described in the proof of Theorem 8.3. Clearly the maximal chains of PQ are
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 maximal chains of pQ-{q) X P. To show that PQ is shellable we will show that Q

 restricted to PQ is a shelling. To do this we need only show that if cl E I(IPQ),
 C2 E DTh(pQ-{q) X P), C2 < cl, and I cl nC2 1c= I -1, then c2 E 91ZPQ).

 Let cl = (O = fo -*fi-* * *fm = 1) be a maximal chain of PQ and let c2 = cI
 - {tf,} U {g} be a maximal chain of pQ-{q) X P such that C2 < Cl. We must show
 that g is orderpreserving on all of Q in order to show that c2 e 91(PQ). Since
 g E pQ-{q) X P and q is minimal we need only show that g(x) > g(q) for all x > q.

 Recall the labeling X of edges of pQ-{q) X P described in the proof of Theorem

 8.3: Ford einpQ-fq) X p

 X(d, e) = if d(q) e(q).

 Also, recall that a(cl) = (X(fo, fi), X(fi, f2),. ..,X(f,,-1, fi)). To show that g(q) ?
 g(x) for all x > q, we need to consider 2 cases.

 Case 1. Suppose X( f,, g) = 0. This means that f, (q) = g(q). Hence if g < x

 then g(q) = ft- I(q) -,- ft I(x) ? g(x), sinceft, is orderpreserving and is less than g.
 Case 2. Suppose X(f, 1, g) = 1. We will show that in this case X(g, ft+1) = 1 also.

 Assume X(g, ft+ l) = 0. It follows that f- I(q) -* g(q) = ft+ I(q). Consequently
 ft-I(q) = ft(q) -*ft+I(q). This means that X(f, 1, ft) = 0 which implies that a(cl)
 <L a(C2)- Since this contradicts C2 < Cl, we can conclude that X(g, ft+ ) = 1. Thus

 we now have that g(q) -*ft+I(q). Hence if q < x then g(q) < ft+I(q) : ft +(X) =
 g(x). D

 We now extend [1, Theorem 4.6] which deals with interval posets. Again, the

 extension to CL-shellable posets requires no significant modification.

 THEOREM 8.5. The poset Int(P) is a bounded shellable poset if and only if P is a

 bounded shellable poset.

 PROOF. Int(P) is clearly graded if and only if P is graded. Since P -[[O,0, [0, 1]],

 P is shellable if Int(P) is shellable by Proposition 8.2.

 To establish the converse, note that the elements of Int(P) of rank 1 are of the

 form [x, x] where x E P. We consider the intervals of Int(P) above the rank 1
 elements, [[x, x], [0, 1]]. Since these intervals are isomorphic to the direct product
 [0, x]* X [x, i], they are shellable by Theorem 8.3 and Proposition 8.2.

 The shelling of [[x, x], [0, 1]] induces an ordering Ox of yx, the set of maximal
 chains of Int(P) that contain [x, x]. By extending the partial ordering of P to a

 linear ordering, xl, x2,.. . ,Xk, and letting the chains of cyxi ordered by Uxi, precede

 the chains of 9, ordered by OM for all i <j, we obtain a linear ordering Q of
 9T(Int(P)).

 We now establish Property S for Q. Let c and c' be maximal chains of Int(P) such

 that c' <Q c. Let c E 9 and c' E 6xY. If x = x' then we are done since the
 restiction OX of Q to [x is a shelling.

 Now assume x # x'. Let [u, v] be the smallest common element of c and c' that is

 greater than 0, the empty interval. If c is not the first chain in the ordering Q that

 contains [x, x], [u, v] and every element of c greater than [u, v], then by the
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 shellability of [[x, x], [0, 1]] there is a c" e 'Xx such that c" <0 c and c' n c c c"f n
 c = c - z} wherez E [[x, x],[u, v]].

 Assume that c is the first chain in 69X1 that contains [u, v] and every element of c

 greater than [u, v]. Since [x', x'] < [u, v] and [x, x] < [u, v], it follows that u s x,

 x'. If u = x then x < x', which contradicts the fact that x' precedes x in the linear

 extension of P. Therefore, u < x. Recall that the ordering Rx of 'TXx corresponds to
 the shelling order of [0, x]* X [x, 1] which was described in the proof of Theorem

 8.3. This ordering and the fact that u < x implies that the element that covers [x, x]

 on c must be [y, x] where y x and y > u. Clearly the chains of 9Ty precede the
 chains of 'Xx in U. If c" c - ([x, x]} U ([y, y]} then c" E 9hY and hence
 C" <Q c. It is also clear that c' n c c f n c = c- {[x, x]}. o

 In [1, Theorem 4.4] it is shown that ordinal sums preserve shellability and

 EL-shellability. This result extends easily to CL-shellable posets. Because of Theo-

 rem 8.1 we can in fact state a more complete result for CL-shellable posets than for

 EL-shellable posets.

 THEOREM 8.6. The ordinal sum P E Q is CL-shellable if and only if both P and Q
 are CL-shellable. O

 9. Note added in proof. It is a consequence of Corollary 4.4 that if A is an

 unshellable complex whose barycentric subdivision is shellable, then the face lattice
 of A is shellable but not dual CL-shellable. Using this idea, A. Vince and M. Wachs

 and (independently) J. Walker have constructed shellable posets which are not
 CL-shellable. It is not known to us whether there exist CL-shellable posets which fail
 to be EL-shellable.
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