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INTEGER INVARIANTS OF ABELIAN CAYLEY GRAPHS

JOSHUA E. DUCEY AND DEELAN M. JALIL

Abstract. Let G be a finite abelian group, let E be a subset of G, and form the Cayley
(directed) graph of G with connecting set E. We explain how, for various matrices asso-
ciated to this graph, the spectrum can be used to give information on the Smith normal
form. This technique is applied to several interesting examples, including matrices in the
Bose-Mesner algebra of the Hamming association schemeH(n, q). We also recover results
of Bai and Jacobson-Niedermaier-Reiner on the critical group of a Cartesian product of
complete graphs.

1. Introduction

Throughout this paper G will denote a finite abelian group (written multiplicatively)
and E will denote a subset of G. We can then define a directed graph C with vertex set
G, and an edge from h to g if and only if gh−1 ∈ E. We will refer to C as the Cayley
graph of G with respect to the connecting set E. Note that C will be an undirected graph
precisely when E = E−1, where E−1 = {e−1 | e ∈ E}.

The purpose of this paper is to apply results of MacWilliams-Mann [12] and Sin [15] in
order to obtain the Smith normal form of various matrices attached to many examples of
these Cayley graphs. The structure of the paper is as follows. In the second section we ex-
plain basic terminology related to graphs and the Smith normal form of an integer matrix.
In the third section we present and prove the results that motivate our computations. In
the final section we apply these results to numerous examples.

2. Preliminaries

Generally speaking, when studying a graph one technique is to encode the information
into a matrix, and then study certain numerical and algebraic properties of this matrix.
Properties that remain the same up to isomorphism of graphs are called invariants. We
now recall some popular matrices and invariants.

Ordering the vertices of a graph in some fixed (but arbitrary) manner, we can form the
adjacency matrix, A, of the graph:

A(i, j) =

{

1, if there is an edge from vertex i to vertex j

0, otherwise,
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where the symbol A(i, j) denotes the entry of the matrix A corresponding to row i and
column j.

We can also consider the Laplacian matrix, L, defined by

L = D −A,

where D is the degree matrix :

D(i, j) =

{

the (out) degree of vertex i, if i = j

0, otherwise.

The most well-known invariant of each of these associated matrices is the spectrum;
that is, the eigenvalues and their multiplicities [4]. Even more fundamental is the Smith

normal form, which can be defined more generally for (possibly nonsquare) incidence
matrices. We say that two m× n integer matrices M and N are equivalent, and write

M ∼ N,

if there exist integer matrices P and Q with determinants ±1 so that

PMQ = N.

Such matrices P and Q are called unimodular, and the condition on their determinants
simply forces their inverses to also be integer matrices.

It is well-known that each integer matrix M is equivalent to a matrix S such that

(1) S(i, j) = 0 if i 6= j, and
(2) S(i, i) divides S(i+ 1, i+ 1) for 1 ≤ i < min{m,n}.

The matrix S is unique up to the sign of the S(i, i) and is called the Smith normal form of
M . The integers S(i, i) are known as the invariant factors of the matrixM , for reasons we
now explain. Viewing the matrix M as defining a homomorphism of free abelian groups

M : Zn → Zm,

the cokernel Zm/ Im(M) of this map has as its invariant factor decomposition [6, Chap.
12, Theorem 5]

∏

Z/S(i, i)Z.

We can further decompose this cokernel into cyclic groups of prime power order–its ele-
mentary divisor decomposition–and for this reason the prime power factors of the invariant
factors of M are known as the elementary divisors of M . The purpose of going through
this terminology is to stress that when one tries to find the Smith normal form of an
integer matrix, one is really seeking a description of this cokernel, and this is a problem
that can be solved one prime at a time.

Returning now to graphs, we remark that when we are looking at the adjacency matrix
this cokernel goes by the name of the Smith group of the graph [13]. The torsion subgroup
of the Laplacian cokernel has many names in the literature [11], one of which is the critical
group of the graph. The critical group of a graph is especially interesting because it has
geometric and combinatorial interpretations: the order of the critical group is the number
of spanning forests in the graph, a connected graph is a tree if and only if its Laplacian
is ‘unimodularly congruent’ to its Smith normal form [10], etc.
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3. Eigenvalues as Character Sums

We return to the situation described in the introduction. Thus G is a finite abelian
group, E is a subset of G, and C is the corresponding Cayley graph. Denote by AE the
adjacency matrix of this graph.

In what follows we will require some basic familiarity with characters. Most of what
we need can be found in, for example, [7, Chaps. 2 and 3]. The following is a well-known
result expressing the eigenvalues of AE in terms of the irreducible complex characters of
G, and was first observed in [12]. For completeness we provide a short proof.

Theorem 3.1. Let Irred(G) denote the set of irreducible complex characters of G. Let

M denote the character table of G, with rows indexed by Irred(G) and columns indexed

by G in the same order as for AE. Then

(3.1)
1

|G|
MAt

EM
t
= diag

(

∑

e∈E

χ(e)

)

χ∈Irred(G)

.

Thus the eigenvalues of AE take the form
∑

e∈E χ(e), for χ ∈ Irred(G).

Proof. Observe that

MAt
E(χ, g) =

∑

h∈G
hg−1∈E

χ(h)

=
∑

e∈E

χ(eg).

Thus we have

MAt
EM

t
(χ, ψ) =

∑

g∈G

∑

e∈E

χ(eg)ψ(g)

=
∑

e∈E

χ(e) ·
∑

g∈G

χ(g)ψ(g)

=

{

|G|
∑

e∈E χ(e), if χ = ψ

0, otherwise

where the last equality follows from the orthogonality relations. This proves equation

(3.1). Again by the orthogonality relations we have that 1
|G|
MM

t
= I; from this the final

statement follows. �

Thus finding the spectrum of AE is reduced to computing the character sums
∑

e∈E χ(e).
Generally speaking, the spectrum of an integer matrix has little connection to its elemen-
tary divisors. See [14, 15] for a discussion in the context of the adjacency matrix, and [11]
for what can be said about the Laplacian. For abelian Cayley graphs the connection to
the Smith normal form of AE is made by an important observation of Sin [15, p. 1364],
which we paraphrase in the following two theorems.

Observe that since AE is a zero-one matrix, we can view its entries as coming from any
commutative ring. In what follows K will denote an algebraic closure of the field of p-adic
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numbers, Qp. We let ζ ∈ K denote a primitive |G|-th root of unity. The ring of p-adic
integers is denoted Zp and we set R = Zp[ζ ]. Recall that a prime element π ∈ R is said
to lie over the prime p ∈ Zp if πR ∩ Zp = pZp.

Theorem 3.2. Let p be a prime integer that does not divide |G|, let i be a positive integer.

Let π ∈ R be a prime lying over p ∈ Zp. Then the multiplicity of pi as an elementary

divisor of AE is equal to the number of eigenvalues of AE exactly divisible by πi in R.

Proof. Our preliminary facts and terminology about the Smith normal form carry over
with very slight modification when one replaces the integers with any principal ideal
domain. It is clear that the multiplicity of pi as an elementary divisor of AE remains the
same when one views the matrix entries as coming from the ring of p-adic integers Zp.
Now let ζ be a primitive |G|-th root of unity in an algebraic closure K of the field of
p-adic numbers, Qp, and consider the ring R = Zp[ζ ]. The prime p is unramified in the
extension Zp ⊂ R since p ∤ |G|, hence the multiplicity of pi as an elementary divisor of
AE over Zp is the same as the multiplicity of πi as an elementary divisor of AE over R
for any prime π of R lying over p. Since M(χ, g) = M(χ, g−1), the matrices in Theorem

3.1 can be viewed as having entries from R, and since 1
|G|
MM

t
= I we see that equation

(3.1) defines an equivalence of matrices over R. The theorem follows. �

Remarks.

(1) It is obvious that the conclusion of Theorem 3.2 remains true if we replace AE

by any matrix diagonalized by M . This includes linear combinations of the AE

and the identity matrix; in particular, the Laplacian, signless Laplacian, Seidel
adjacency matrix, etc.

(2) See an example in Section 4.5 below of when AE has non-integer eigenvalues. How-
ever, the most common situation we will encounter is when all of the eigenvalues
of AE are integers. In this case we have the following useful result.

Theorem 3.3. Let p be a prime integer that does not divide |G|, let i be a positive

integer. Suppose that the eigenvalues of AE are all integers. Then the multiplicity of pi

as an elementary divisor of AE is the same as the number of eigenvalues of AE exactly

divisible by pi.

Proof. An integer not divisible by p becomes a unit in Zp, hence will also not be divisible
by any π ∈ R lying over p ∈ Zp. The result now follows from Theorem 3.2. �

We now apply these theorems in conjunction to obtain strong results about elementary
divisors for a variety of examples.

4. Applications

Since G is a finite abelian group, it is isomorphic to a direct product of cyclic groups.
We will form interesting Cayley graphs by using a fixed cyclic decomposition of G to
define our connecting set. One construction will be used so often that we define it now.
Under the identification

G = Zq1 × Zq2 × · · · × Zqn,



ABELIAN CAYLEY GRAPHS 5

where Zq denotes the (multiplicative) cyclic group of order q, define the connecting sets
Ek, for 0 ≤ k ≤ n:

Ek := {g ∈ G | exactly k components of g are not equal to the identity}.

When we are dealing with a Cayley graph defined by a connecting set Ek, we will write
Ak instead of AEk

for the adjacency matrix. We denote by [n] the set {1, 2, . . . , n} and

we denote by
(

[n]
k

)

the collection of subsets of [n] of size k.
We can provide a reasonable description of the eigenvalues

∑

e∈Ek
χ(e) of Ak. Let

χ ∈ Irred(G). Then, for g = (g1, g2, . . . , gn) ∈ G, χ takes the form

χ(g) = χ1(g1)χ2(g2) · · ·χn(gn)

for some χi ∈ Irred(Zqi).
We have that

(4.1)

∑

e∈Ek

χ(e) =
∑

(e1,e2,...,en)∈Ek

χ1(e1)χ2(e2) · · ·χn(en)

=
∑

K∈([n]
k )

∏

i∈K

∑

ei∈Zqi
ei 6=1

χi(ei)

and by considering the inner product of χi with the principal character of Zqi we see that

∑

ei∈Zqi
ei 6=1

χi(ei) =

{

qi − 1, if χi is principal

−1, otherwise.

4.1. The Hamming association scheme. LetH(n, q) denote the Hamming association
scheme; that is, H(n, q) consists of n-tuples with coordinates coming from an alphabet of
size q. Two such tuples are k-th associates if they differ in exactly k coordinate positions.
Setting G = Zq × Zq × · · · × Zq (n times), we see that the distance k association matrix
of H(n, q) is precisely Ak. We remark again that our approach applies not just to the
adjacency matrices but to any matrix in the Bose-Mesner algebra [5, p. 9] of H(n, q).

In this case the value of (4.1) depends only on the number of χi that are principal.
Explicitly, if exactly ℓ of the χi are principal, (4.1) collapses to express the eigenvalues in
their usual form as integer values of the Krawtchouk polynomials [5, p. 38]:

(4.2)
∑

(e1,e2,··· ,en)∈Ek

χ1(e1)χ2(e2) · · ·χn(en) =
k
∑

j=0

(

ℓ

j

)(

n− ℓ

k − j

)

(q − 1)j(−1)k−j.

The number of χ ∈ Irred(G) consisting of exactly ℓ copies of the principal character of
Zq is

(

n
ℓ

)

(q − 1)n−ℓ, and we can apply Theorem 3.3 to (4.2) to compute the p-elementary
divisor multiplicities of Ak, for primes p not dividing q.

It is often the case that many of the terms in (4.2) are equal to zero. In particular,
consider the maximal distance association matrix An. From (4.2) we see that the eigen-
values of An are (q − 1)ℓ(−1)n−ℓ occurring with multiplicity

(

n
ℓ

)

(q − 1)n−ℓ. Since a prime
that divides q will not divide q − 1, we see that all of the elementary divisors of An can
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be obtained from the spectrum in this case; and, in fact, the invariant factors of An are
equal to its eigenvalues. This fact was conjectured in [2] and first proved in [15].

If we restrict ourselves to the binary Hamming scheme H(n, 2), then the situation
becomes simpler. The association matrices Ak and An−k are the same up to row permu-
tation, hence they share the same Smith normal form. The distance 1 matrix is then the
adjacency matrix for the well-studied n-cube graph.

4.2. The n-cube graph. Here G = Z2 × Z2 × · · · × Z2 (n times), E = E1, and A = A1

is the adjacency matrix of the n-cube graph. Thus Theorem 3.3 applies to give us the
p-elementary divisors of A for odd primes p. Here (4.2) collapses to give us eigenvalues

(4.3) − n+ 2ℓ

occurring with multiplicity
(

n
ℓ

)

, for 0 ≤ ℓ ≤ n. These eigenvalues have come up in many
applications [17, Chap. 7], [16]. We see that when n is odd, all of the eigenvalues of A
are odd (and A is nonsingular). Thus A has only odd elementary divisors and so the
complete structure of the Smith group of the n-cube can be deduced from the eigenvalues
in this case. When n is even, however, the 2-primary component of the Smith group will
be nontrivial. We will return to the 2-part of A in our discussion of Laplacians below.

4.3. Cartesian products of complete graphs. Generalizing the n-cube graph we now
set G = Zq1 ×Zq2 × · · ·×Zqn but continue to use connecting set E = E1. We again write
A = A1 for the adjacency matrix. Cayley graphs of this form are precisely the Cartesian
products of complete graphs.

To describe the eigenvalues corresponding to χ = (χ1, χ2, · · · , χn) ∈ Irred(G), we need
to know not just how many of the χi are principal but their locations as well. Say
χi1 , χi2, · · · , χiℓ are the principal ones. Then (4.1) simplifies to

(4.4) − n +

ℓ
∑

j=1

qij

and there are
∏

i/∈{i1,i2,··· ,iℓ}
(qi−1) characters χ ∈ Irred(G) of this form. From this we can

deduce the p-elementary divisors of A for primes p that divide none of the qi, 0 ≤ i ≤ n.

4.4. The Laplacian and the critical group. As the Cayley graph is regular with
valency |E|, the adjacency spectrum determines the Laplacian spectrum. We now recover
some powerful results on the critical group of some of the Cayley graphs above.

4.4.1. The critical group of the n-cube. Let L denote the Laplacian matrix of the n-cube.
Then equation (4.3) implies that the eigenvalues of L are 2ℓ occurring with multiplicity
(

n
ℓ

)

, for 0 ≤ ℓ ≤ n. It follows that, for odd primes p, the Sylow p-subgroup of the critical
group of the n-cube is isomorphic to

(4.5)

n
∏

ℓ=1

Sylp(Zℓ)
(nℓ).

This is the main result of [1].
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In general, the full structure of the 2-primary component of both the critical group and
the Smith group of the n-cube remain unknown. In [1, Theorem 1.3],the 2-rank of L is
shown to be equal to 2n−1, and the multiplicity of 2 as an elementary divisor of L is also
determined. As we mentioned earlier, for odd n the 2-rank of the adjacency matrix A is
2n. For even n, note that by definition of the Laplacian we have that L ≡ A (mod 2).
Hence, for even n, the 2-rank of A is also 2n−1. More generally, if L ≡ A (mod 2i) then
the multiplicity of 2j, 0 ≤ j < i, as an elementary divisor is the same for both A and L
[3, Lemma 3.3]. Computer calculations seem to indicate that the 2-primary component of
the Smith group may be easier to understand. We conjecture that the multiplicity of 2i

as an elementary divisor of A is equal to the number of eigenvalues of A exactly divisible
by 2i+1.

4.4.2. The critical group of a Cartesian product of complete graphs. The previous result
on the p-primary component of the critical group of the n-cube, for odd primes p, was
generalized to the critical group of a Cartesian product of complete graphs [8, Theorem
1.2].Recall that such a graph is the Cayley graph C of G = Zq1 × Zq2 × · · · × Zqn with
connecting set E = E1. Let A = A1 denote the adjacency matrix and let L denote
the Laplacian. From equation (4.4) we deduce that each subset {i1, i2, · · · , iℓ} of [n]
determines

∏

i/∈{i1,i2,··· ,iℓ}
(qi − 1) eigenvalues of L of the form

n−
ℓ
∑

j=1

qij +
n
∑

i=1

(qi − 1) =
∑

i/∈{i1,i2,··· ,iℓ}

qi.

It follows that, for a prime p not dividing any of the qi, 1 ≤ i ≤ n, the Sylow p-subgroup
of the critical group of C is isomorphic to

∏

S⊆[n]
S 6=[n]

Sylp(Z∑
i/∈S qi)

∏
i/∈S(qi−1).

This result was proved in [8]. It is worth mentioning that the proof in [8] relies heavily
on keeping track of integral row and column operations on L. Our proof of (4.5) is also
of a very different nature than the proof in [1].

4.5. Non-integer eigenvalues. It was observed in [9, Example 4.1] that if we take our
connecting set E to be any union of the Ei then the eigenvalues of AE are all integers.
We conclude with a small non-integer example.

Let G = Z7 = 〈x〉 and use connecting set E = {x4, x5, x6}. Following the notation
preceding Theorem 3.2, ζ ∈ K is a primitive 7-th root of unity and set α = ζ5+ ζ2+ ζ+1
and β = ζ5 + ζ4 + ζ3 + 1. Notice that in the ring R = Z2[ζ ] we have 2 = ζ2 · α · β. The
adjacency matrix AE has seven distinct eigenvalues:

3, −α, −ζ2α, −ζ3β, −ζ6α, −β, −ζ2β.

From Theorem 3.2 we deduce that 3 is an elementary divisor of AE with multiplicity 1
and 2 is an elementary divisor of AE with multiplicity 3.
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