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Gröbner Basis Calculations

A Bound on the Largest Cyclic Factor Size

Analogous Bounds on Other Cayley Graphs

Higher Critical Groups

Sandpile Groups of Cubes August 1, 2016 2 / 27



Overview

Introduction

Definitions
Previous Results
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Introduction

Definitions

Definition

The n-cube is the graph Qn with V (Qn) = (Z/2Z)n and an edge between
two vertices v1, v2 ∈ V (Qn) if v1 and v2 differ in precisely one place.
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Introduction

Definitions

Definition

The Laplacian of a graph G , denoted L(G ), is the matrix

L(G )i ,j =

{
deg(vi ) if i = j

−#{edges from vi to vj} if i 6= j

Example

L(Q1) =

(
1 −1
−1 1

)
L(Q2) =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2


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Introduction

A Final Definition

Definition

Let G be a graph. Since L(G ) is an integer matrix, we may consider it as a
Z-linear map L(G ) : Z#V (G) → Z#V (G). The torsion part of the cokernel
of this map is the critical group (or sandpile group) of G , denoted K (G ).
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Introduction

Previous Results I

Theorem [Bai]

For every prime p > 2,

Sylp (K (Qn)) ∼= Sylp

(
n∏

k=1

(Z/kZ)(nk)

)
.

Remark

To understand K (Qn), it then remains to understand Syl2(K (Qn)).
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Introduction

Previous Results II

Lemma [Benkart, Klivans, Reiner]

For every u ∈ (Z/2Z)n, let χu ∈ Z2n be the vector with entry in position
v ∈ (Z/2Z)n equal to (−1)u·v . Then χu is an eigenvector of L(Qn) with
eigenvalue 2 · wt(u), where wt(u) is the number of non-zero entries in u.

Remark

Thus, we understand L(Qn) entirely as a map Q2n → Q2n . When
considering it as a map Z2n → Z2n , this leaves us with the task of
understanding the Z-torsion.

Theorem [Benkart, Klivans, Reiner]

There is an isomorphism of Z-modules

Z⊕ K (Qn) ∼= Z[x1, . . . , xn]/(x21 − 1, . . . , x2n − 1, n −
∑

xi ).
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Gröbner Basis Calculations

Gröbner Basis Background

Definition

Let R = T [x1, . . . , xn], where T is a commutative Noetherian ring. A
monomial order on R is a total order < on the set of monomials
xα1
1 · · · xαn

n of R. From now on, we implicitly assume a monomial order <
on R.

Notation

Let I ⊆ [n]. We write xI :=
∏

i∈I xi .

Definition

Let f ∈ R. Then the leading term of f , denoted `t(f ), is the term of f
greatest with respect to <.
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Gröbner Basis Background

Definition

Let R = T [x1, . . . , xn], where T is a commutative Noetherian ring. A
monomial order on R is a total order < on the set of monomials
xα1
1 · · · xαn

n of R. From now on, we implicitly assume a monomial order <
on R.

Notation

Let I ⊆ [n]. We write xI :=
∏

i∈I xi .

Definition

Let f ∈ R. Then the leading term of f , denoted `t(f ), is the term of f
greatest with respect to <.

Sandpile Groups of Cubes August 1, 2016 8 / 27



Gröbner Basis Calculations

Gröbner Basis Background

Definition

Let I / R be an ideal. Then the leading term ideal of I is

LT(I ) = ({`t(f ) | f ∈ I}).

Definition

Let I / R an ideal. A Gröbner basis of I is a generating set
S = {g1, . . . , gk} of I satisfying either of the following two properties:

For every f ∈ I , we can write `t(f ) = c1 `t(g1) + · · ·+ ck `t(gk) for
some ci ∈ R.

LT (I ) = (`t(g1), . . . , `t(gk)).

Theorem

When T is a PID, every ideal I / R has a Gröbner basis.
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Gröbner Basis Calculations

Relevance to Our Situation

Theorem

Let I / R be an ideal. Then, as T -modules,

R/I ∼= R/LT(I ).

Remark

By the isomorphism mentioned previously, to understand K (Qn) it suffices
to understand a Gröbner basis for the ideal

In := (x21 − 1, . . . , x2n − 1, n −
∑

xi )

in Z[x1, . . . , xn].

However, the Gröbner basis is very complicated.
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Gröbner Basis Calculations

Relevance to Our Situation

Lemma

Let Jn denote the ideal (x21 − 1, . . . , x2n − 1, n−
∑

xi ) in Z/2iZ[x1, . . . , xn].
Then the factors of Z/2Z, . . . ,Z/2i−1Z in Z[x1, . . . , xn]/In and
Z/2iZ[x1, . . . , xn]/Jn are the same.

Goal

Understand a Gröbner basis of Jn for i = 2, and thus understand the
number of Z/2Z-factors in Syl2 K (Qn).
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Gröbner Basis Calculations

The Case i = 2

Conjecture

For every odd integer m, let

Wm = {(2 + ε2, 4 + ε4, . . . ,m − 3 + εm−3,m − 1,m) | εi ∈ {0, 1}}.

Then
LT (Jn) = (x1) + (x22 , . . . , x

2
n ) +

∑
m≤n
m odd

∑
I∈Wm

(2xI ).
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A Bound on the Largest Cyclic Factor Size

An Observation

Observation

The highest cyclic factor has size equal to the highest additive order of an
element in

K (Qn) ∼= Z[x1, x2, . . . , xn]/(x21 − 1, . . . , x2n − 1, n − x1 − x2 − . . .− xn)

Lemma

The elements xi − 1 have highest additive order in K (Qn) for all
i ∈ {1, . . . , n}.
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A Bound on the Largest Cyclic Factor Size

An Observation

Proof Outline

Show a polynomial has a multiple in In only if it has the form

f (x1, . . . , xn) =
∑
I⊆[n]

cI (xI − 1)

Show xI − 1 has a multiple in In for every I ⊆ [n].

Show ord(xi − 1) ≥ ord(xI − 1) for any I ⊆ [n].
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A Bound on the Largest Cyclic Factor Size

The Order of x1 − 1

We switch back to Q2n :

x1 − 1 ∼


−1
1
0
...
0


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A Bound on the Largest Cyclic Factor Size

The Order of x1 − 1

We want to find the smallest C such that ∃v ∈ Z2n satisfying

L(Qn) · v =


−C
C
0
...
0



Idea: Work in the χu-basis!
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A Bound on the Largest Cyclic Factor Size

The Order of x1 − 1

Both terms are nice:

L(Qn) ∼



0 . . . . . . . . . . . . 0
... 2

...
... 2

...
... 4

...
...

. . .
...

0 · · · · · · · · · · · · 2n





−1
1
0
...
...
0


∼



0
1

2n−1

0
1

2n−1

...
1

2n−1


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A Bound on the Largest Cyclic Factor Size

The Order of x1 − 1

We now have the χu-coordinates of v:

v ∼
(
0 1

2n 0 1
2n+1 . . . 1

n2n

)T

Theorem

The order of x1 − 1 is ≤ 2n · LCM(1, 2, . . . , n)

Corollary

The size of the largest cyclic factor in Syl2(K (Qn)) is ≤ 2n+log2 n
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Analogous Bounds on Other Cayley Graphs

Other Cayley Graphs

Goal

Generalize the technique used for the cube graph to other Cayley graphs.

Key Theorem [Benkart, Klivans, Reiner]

Let G be the n-th power of a directed cycle of size k . Then

K (G ) ∼= Z[x1, . . . , xn]/(xk1 − 1, . . . , xkn − 1, n −
∑

xi ).

Lemma [Benkart, Klivans, Reiner]

For every u ∈ (Z/kZ)n, let χu ∈ Zkn
be the vector with entry in position

v ∈ (Z/kZ)n equal to ζu·vk . Then χu is an eigenvector of L(G ) with
eigenvalue k · wt(u), where wt(u) is the number of non-zero entries in u.
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Analogous Bounds on Other Cayley Graphs

Generalize x1 − 1

Lemma

As before, xi − 1 has maximal order in K (G ) for all i ∈ {1, . . . , n}.

Remark

However, xi − 1 does not have a nice form in the χu-basis. So we must
find another high-order term with a nice form. One such element is
(k − 1)− xi − x2i − · · · − xk−1i .

Lemma

k · ord
(

(k − 1)− xi − x2i − · · · − xk−1i

)
= ord(xi − 1).
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Analogous Bounds on Other Cayley Graphs

Form in χu-basis

The form for (k − 1)− xi − x2i − · · · − xk−1i in the χu-basis is as follows:



k − 1
−1
−1

...
−1
0
...
0


∼



0
1
kn

...
1
kn

0
1
kn

...
1
kn

...


.
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Analogous Bounds on Other Cayley Graphs

Bounds for k = 3, 4

Theorem (k = 3)

Let k = 3. Then the size of the largest cyclic factor of Syl3(K (G )) is
≤ 3n+1+blog3(n)c.

Theorem (k = 4)

Let k = 4. Then the size of the largest cyclic factor of Syl2(K (G )) is
≤ 4n+1+blog4(n)c.
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Higher Critical Groups

A Different Viewpoint

Set C1(G ), C0(G ) to be formal groups of Z-linear combinations of the
edges and vertices of G respectively.

There is a chain complex

0→ C1(G )
E−→ C0(G )

ε−→ Z→ 0

where E is the incidence matrix of G and ε(
∑

nivi ) =
∑

ni is the
augmentation map.

Lemma

L(G ) = EET and K (G ) = ker(ε)/Im(L(G )) = ker(ε)/Im(EET )
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Higher Critical Groups

Extension to Cell Complexes

Fix a cell complex X . There is a cellular chain complex

. . .→ Ci (X )
∂i−→ Ci−1(X )→ . . .→ C1(X )

∂1−→ C0(X )
ε−→ Z→ 0

Definition

The i-th critical group of X is Ki (X ) = ker(∂i )/Im(∂i+1∂
T
i+1)

Related to cellular spannng trees, higher-dimensional dynamical systems
on X .
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Higher Critical Groups

Initial Results

We have an extension of Bai’s Theorem:

Theorem

For any prime p > 2,

Sylp (Ki (Qn)) ' Sylp

 n⊕
j=i+1

(Z/jZ)(nj)(j−1
i )



Proof Outline

Can show ∂i+1∂
T
i+1 + ∂Ti ∂i = L(Qn−i )

⊕(ni).

∂i+1∂
T
i+1 and ∂Ti ∂i are diagonalizable and commute, so they have the

same eigenvectors.

Sandpile Groups of Cubes August 1, 2016 25 / 27



Higher Critical Groups

Initial Results

We have an extension of Bai’s Theorem:

Theorem

For any prime p > 2,

Sylp (Ki (Qn)) ' Sylp

 n⊕
j=i+1

(Z/jZ)(nj)(j−1
i )


Proof Outline

Can show ∂i+1∂
T
i+1 + ∂Ti ∂i = L(Qn−i )

⊕(ni).

∂i+1∂
T
i+1 and ∂Ti ∂i are diagonalizable and commute, so they have the

same eigenvectors.

Sandpile Groups of Cubes August 1, 2016 25 / 27



Higher Critical Groups

Initial Results

We have an extension of Bai’s Theorem:

Theorem

For any prime p > 2,

Sylp (Ki (Qn)) ' Sylp

 n⊕
j=i+1

(Z/jZ)(nj)(j−1
i )


Proof Outline

Can show ∂i+1∂
T
i+1 + ∂Ti ∂i = L(Qn−i )

⊕(ni).

∂i+1∂
T
i+1 and ∂Ti ∂i are diagonalizable and commute, so they have the

same eigenvectors.

Sandpile Groups of Cubes August 1, 2016 25 / 27



Further Directions

Further Directions

Further Directions

A lower bound on the top cyclic factor: Examine minors of L(Qn)?

Top cyclic factor bounds on Ks1 × Ks2 × . . .× Ksn .

Extend the top cyclic factor bound to higher critical groups.
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