
NOTES ON CSP FOR CYCLIC CODES

VICTOR REINER

Abstract. These are notes on a preliminary follow-up to a question of Jim

Propp, about cyclic sieving of cyclic codes.

1. Jim’s question

On May 9, 2017, Jim Propp asked the following question on the ”Dynamic
algebraic combinatorics” list-server:

Has anyone tried applying cyclic sieving to cyclic codes?

To explain, recall an Fq-linear code C of length n is a subspace of Fnq , and is cyclic

if it is also1 stable under the action of a cyclic group C = {e, c, c2, . . . , cn−1} ∼= Z/nZ
whose generator c cyclically shifts codewords w as follows:

c(w1, w2, . . . , wn) = (w2, w3, . . . , wn, w1).

It is convenient to rephrase this using the Fq-vector space isomorphism

Fnq −→ Fq[x]/(xn − 1)
w = (w1, . . . , wn) 7−→

∑n
i=1 wix

i−1.

After identifying a code C ⊂ Fnq with its image under the above isomorphism, the
Fq-linearity of C together with the cyclic condition is equivalent to C forming an
ideal within the ring Fq[x]/(xn − 1). Since this is a principal ideal ring, C is always
the set (g(x)) of all multiples of some generating polynomial g(x). This means that

C = {h(x)g(x) ∈ Fq[x]/(xn − 1) : deg(h(x)) < n− deg(g(x))}

and hence one has the relation

k := dimFq
C = n− deg(g(x)).

In this setting, the dual code C⊥ inside Fnq is also cyclic, with generating polynomial

g⊥(x) :=
xn − 1

g(x)

sometimes called the parity check polynomial for the primal code C. Thus one has

k := dimFq
C = deg(g⊥(x)).

Example 1.1. The cyclic code C having g⊥(x) = 1+x+x2+· · ·+xn−1 is called the
parity check code of length n (particularly when q = 2). Its dual code C⊥ consisting
of the scalar multiples of g⊥(x) = 1 + x+ x2 + · · ·+ xn−1 is the repetition code.

Date: May 18, 2017.
1In principle, one can consider subsets C of Fn

q that are not linear subspaces but stable under

cyclic shifts as cyclic codes, but we will ignore these here.
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Example 1.2. Recall that a degree k polynomial f(x) in Fq[x] is called primitive if
it is not only irreducible, but also has the property that the image of the variable x
in the finite field Fq[x]/(f(x)) has the maximal possible multiplicative order, namely
n := qk − 1. Equivalently, f(x) is primitive when it is irreducible but divides none
of the polynomials xd − 1 for proper divisors d of n.

A cyclic code C generated by a primitive polynomial g(x) in Fq[x] of degree k
is called a Hamming code of length n = qk − 1 and dimension n − k. Its dual C⊥
generated by g⊥(x) = xn−1

g(x) is a dual Hamming code of length n and dimension k.

Definition 1.3. Recall that a triple (X,X(t), C) X consisting of a finite set X, a
cyclic group C = {e, c, c2, . . . , cn−1} permuting X, and a polynomial X(t) in Z[t],
is said to exhibit the cyclic sieving phenomenon (or CSP) if for every cd in C, the
number of x in X having cd(x) = x is given by the substitution [X(t)]t=ζd where ζ

is a primitive nth root-of-unity.

Jim noted various CSP triples (X,X(t), C) involving X := C a cyclic code in Fnq ,
with C = Z/nZ acting as above, and X(t) could be either generating function

Xmaj(t) :=
∑
w∈C

tmaj(w), or

X inv(t) :=
∑
w∈C

tinv(w),

where the inversion number inv(w) and major index maj(w) are defined as follows2:

inv(w) := #{(i, j) : 1 ≤ i < j ≤ n and wi > wj},

maj(w) :=
∑

i:wi>wi+1

i.

Here are the codes mentioned by Jim as having such CSP’s:

• All repetition codes C (trivially).
• All full codes C = Fnq (see Theorem 2.1 below).
• All parity check codes (see Theorem 2.1 below).
• All cyclic codes over F2 of length 7 (empirically, seeking an explanation).

He found that there was not always such a CSP, but wondered whether there are
interesting examples, and suggested that perhaps the Hamming and dual Hamming
codes might be good candidates.

2. Parity check codes

The CSP for full and parity check codes turn out to be special cases of a general
CSP for words, following from a result in [3], as pointed out in [2, Prop. 17]:

Theorem 2.1. Let C be a collection of words of length n in a linearly ordered
alphabet, stable under the symmetric group Sn acting on the n positions.

Then (X,X(t), C) exhibits the CSP, where X = C, with X(t) the inv or maj
generating function for C, and C the Z/nZ-action obtained by restriction from Sn.

Note C = Fnq and parity check codes C = {w ∈ Fnq :
∑n
i=1 wi = 0} are Sn-stable.

2Note that these definitions require a choice of a linear order on the alphabet Fq , and it is not

clear whether this choice should make a difference in the CSP.
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3. Dual Hamming codes

Hamming codes do not always have the CSP, but conjecturally their duals do.
Before stating a more precise conjecture, we first analyze for a cyclic code C the
conditions under which C = Z/nZ acts freely on C \ {0}, and when this action is
simply transitive.

Proposition 3.1. Let C ⊂ Fnq be a cyclic code with parity check polynomial g⊥(x).
Then the Z/nZ-action on C \ {0} is free if and only if

gcd(g⊥(x), xd − 1) = 1

for all proper divisors d of n.

Proof. First note that when a codeword w in C is fixed by some element cd 6= e in
C, without loss of generality, d is a proper divisor of n. Note that this says the
polynomial h(x)g(x) representing w in Fq[x]/(xn − 1) has the property that

xdh(x)g(x) = h(x)g(x) mod xn − 1

or equivalently (xd − 1)h(x)g(x) is divisible by xn − 1 in Fq[x]. Canceling factors
of g(x), this is equivalent to saying (xd − 1)h(x) is divisible by g⊥(x) in Fq[x].
However, as discussed earlier, h(x) can be chosen with degree strictly less than
k = dim C = deg(g⊥(x)), so the existence of such a nonzero h(x) would be equivalent
to g(x) sharing a common factor with xd − 1. �

Proposition 3.2. Let C ⊂ Fnq be a cyclic code of dimension k with parity check

polynomial g⊥(x).
Then the Z/nZ-action on C\{0} is simply transitive (that is, free and transitive)

if and only if C is dual Hamming, that is, if and only if n = qk − 1 and g⊥(x) is a
primitive polynomial in Fq[x].

Proof. Since k = dimFq
C = g⊥(x), the cardinality # (C \ {0}) = qk − 1. Thus

Proposition 3.1 implies C \ {0} has free and transitive Z/nZ-action if and only if
n(= #Z/nZ) = qk−1 and gcd(g⊥(x), xd−1) = 1 for all proper divisors d of qk−1.

Now g⊥(x) divides into xq
k−1 − 1, so it must factor as g⊥(x) =

∏
i fi(x), where

fi(x) are among the irreducible factors of xq
k−1 − 1. By definition of primitivity,

the only such irreducible factors fi(x) which do not appear in any xd − 1 for a
proper divisor d of qk − 1 are the primitive irreducible factors of degree k. But
since deg(g⊥(x)) = k, this forces g⊥(x) = f1(x) for one such primitive factor. �

Proposition 3.2 simplifies the analysis of a CSP for dual Hamming codes. When
using the major index generating function Xmaj(t), it turns out to hinge upon the
behavior of the cyclic descent statistic

cdes(w) := #{i ∈ {1, 2, . . . , n} : wi > wi+1, where wn+1 := w1},

applied to the word w0 corresponding to its generator polynomial g(x).

Proposition 3.3. Let C ⊂ Fnq be a k-dimensional dual Hamming code, so that one

has n = qk − 1, with generator g(x), and w0 in Fnq its corresponding word. Then

(X,Xmaj(t), C) from before exhibits the CSP if and only gcd(cdes(w0), n) = 1.
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Proof. Since the CSP involves evaluating X(t) with t being various nth roots-of-
unity, one only cares about X(t) mod tn − 1. Also, note that cyclically shifting w
to c(w) has a predictable effect on maj, namely

maj(c(w)) =

{
maj(w) + cdes(w) if wn ≤ w1,

maj(w) + cdes(w) + n if wn > w1,

and hence, in all cases, one has maj(c(w)) ≡ maj(w) + cdes(w) mod n. Hence, as
C \ {0} is the free C-orbit of w0, using ≡ for equivalence modulo tn − 1, one has

Xmaj(t) = tmaj(0) +
∑

w∈C\{0}

tmaj(w)

≡ 1 +

n−1∑
i=0

tmaj(w0)+icdes(w0)

= 1 + tmaj(w0)
n−1∑
i=0

(tcdes(w0))i.

This gives a CSP if and only if Xmaj(ζ) = 1 for all nth roots-of-unity ζ 6= 1. The
above expression for Xmaj(t) mod tn − 1 shows that this will occur if and only if
all such ζ have ζcdes(w0) 6= 1, that is, if and only if gcd(cdes(w0), n) = 1. �

We come now to a remarkable conjecture.

Conjecture 3.4. Let g⊥(x) be a primitive irreducible polynomial of degree k in

Fq[x], and let w0 be the word in Fnq corresponding to g(x) = xn−1
g⊥(x)

, where n := qk−1.

(a) The value cdes(w0) depends only on k and q, not on the choice of g⊥(x).
(b) In fact, this value is

cdes(w0) =
p− 1

2
· pk−1

when q is a prime p, not a prime power pe with e ≥ 2.
Hence the triple (X,Xmaj(t), C) always gives a CSP for dual Hamming

codes X = C when q = p = 2, 3, but not always for primes q = p ≥ 5.
(c) Furthermore, for q = p = 2, 3, an irreducible f(x) in Fp[x] of degree k

is primitive if and only if the word w0 corresponding to xpk−1−1
f(x) has

cdes(w0) = p−1
2 · p

k−1.

Remark 3.5. When q is a prime power but not a prime, we haven’t much tested
the assertion of Conjecture 3.4(a) nor looked for a formula as in (b).

If Vic didn’t make a computational error then when q = 4 and k = 2, all 6 of the
irreducible quadratics g⊥(x) in F4[x], even those that were not primitive, had the

same cdes(w0) = 5 for w0 corresponding to g(x) = x15−1
g(x) . On the other hand, this

involved making a particular choice of a linear order on F4 to compute cdes(w0)..

Remark 3.6. The assertion of Conjecture 3.4(c) fails for q = 5 at k = 3, and fails
for q = 7 at k = 2.

Here is another mystery that seems to occur just for q = p = 2.

Conjecture 3.7. For q = 2, the triple (X,X inv(t), C) also always gives a CSP for
dual Hamming codes X = C.



NOTES ON CSP FOR CYCLIC CODES 5

Remark 3.8. The assertion of Conjecture 3.7 fails for q = 3.

Remark 3.9. One might optimistically hope that any binary word w0 in Fn2 has∑
cyclic shifts w of w0

tmaj(w) ≡
∑

cyclic shifts w of w0

tinv(w) mod tn − 1.

Sadly, this is not always true. It even fails for some words with no cyclic symmetry.
Of course, Conjecture 3.4(a,b) together with Conjecture 3.7 would show that it is

true whenever w0 corresponds to x2k−1−1
f(x) with f(x) primitive of degree k.

Question 3.10. What about other famous cyclic codes, such as Reed-Solomon,
BCH, Golay?

Question 3.11. The cyclic descent statistic plays a role in the work of Ahlbach
and Swanson [1]. Is their work relevant?
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