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Abstract. We study a graded algebra D = D(L,G) over Z defined by
a finite lattice L and a subset G in L, a so-called building set. This algebra
is a generalization of the cohomology algebras of hyperplane arrangement
compactifications found in work of De Concini and Procesi [2]. Our main
result is a representation of D, for an arbitrary atomic lattice L, as the Chow
ring of a smooth toric variety that we construct from L and G. We describe
this variety both by its fan and geometrically by a series of blowups and
orbit removal. Also we find a Gröbner basis of the relation ideal of D and
a monomial basis of D.

1. Introduction

In this article we study a graded algebra D = D(L,G) over Z that is defined
by a finite lattice L and a special subset, a so-called building set, G in L. The
definition of this algebra is inspired by a presentation for the cohomology
of arrangement compactifications as it appears in work of De Concini and
Procesi [2].

In [1,2] the authors studied a compactification of the complement of
subspaces in a projective space defined by a building set in the intersection
lattice L of the subspaces. In particular they gave a description of the
cohomology algebra H∗ of this compactification in terms of generators and
relations. In general, the set of defining relations for H∗ is much larger
than the one we propose for D. However, in the case of all subspaces being
of codimension 1 and G the set of irreducibles in L, the former can be
reduced to the latter [2, Prop. 1.1]. We show that this reduction holds for
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arbitrary building sets in L, thus giving a first geometric interpretation of
the algebra D(L,G) (compare Corollary 2).

Our first result about D is that for an arbitrary atomic lattice L a larger
set of relations, similar to the defining relations of H∗, holds in D. To
define the new relations for arbitrary lattices beyond the geometric context
of arrangements, we need to introduce a special metric on the chains of L.
In fact, this new set of relations forms a Gröbner basis of the relation ideal
which allows us to define a basis of D over Z generalizing the basis defined
in [9] and [7].

Our main result about D motivating its definition is Theorem 3 which
asserts that D is naturally isomorphic to the Chow ring of a smooth toric
variety X = XΣ(L,G) constructed from an atomic lattice L and a building set
G in L. This result gives a second geometric interpretation of D, this time
for arbitrary atomic lattices.

We introduce the toric variety X by means of its polyhedral fan Σ(L,G)
that we build directly from L and G. Then we give a more geometric
construction of X as the result of several toric blowups of an affine complex
space and subsequent removal of certain open torus orbits.

The article is organized as follows. In Sect. 2, we recall the necessary
combinatorial definitions and define the algebra D = D(L,G). In Sect. 3,
we extend the set of relations for D to a Gröbner basis of the relation ideal
and exhibit a basis of the algebra. In Sect. 4, we review the De Concini-
Procesi compactifications of arrangement complements and relate D to
their cohomology algebras. Also we give some examples of the Poincaré
series of these compactifications using our basis. Section 5 is devoted to
the definition of the toric variety X from a pair (L,G). We prove our main
theorem asserting that D is naturally isomorphic to the Chow ring of X. In
Sect. 6, we give another construction of X as the result of a series of toric
blowups and subsequent removal of some open orbits. Finally, in Sect. 7,
we consider a number of simple examples.

2. The algebra D(L,G)

We start with defining some lattice-theoretic notions, building sets and
nested sets, that provide the combinatorial essence for our algebra defin-
ition below. These notions, in the special case of intersection lattices of
subspace arrangements, are crucial for the arrangement model construction
of De Concini and Procesi [1]. For our purpose, we choose to present purely
order-theoretic generalizations of their notions that previously appeared
in [4].

By a lattice, in this article, we mean a finite partially ordered set all
of whose subsets have a least upper bound (join, ∨) and a greatest lower
bound (meet, ∧). The least element of any lattice is denoted by 0̂. For any
subset G of a lattice L we denote by max G the set of maximal elements
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of G. Also, for any X ∈L we put G≤X ={G ∈ G | G ≤ X}, similarly for G≥.
To denote intervals in L we use the notation [X, Y ] := {Z ∈L | X ≤ Z ≤ Y }
for X, Y ∈L.

Definition 1. Let L be a finite lattice. A subset G in L \ {0̂} is called
a building set in L if for any X ∈L \ {0̂} and max G≤X={G1, . . . , Gk}
there is an isomorphism of posets

ϕX :
k∏

i=1

[0̂, Gi]
∼=−→ [0̂, X]

with ϕX(0̂, . . . , Gi, . . . , 0̂) = Gi for i = 1, . . . , k. We call max G≤X the
set of factors of X in G.

As a first easy example one can take the maximal building set L\{0̂}.
Looking at the other extreme, the elements X ∈ L \ {0̂} for which [0̂, X]
does not decompose as a direct product, so-called irreducibles in L, form
the minimal building set in a given lattice L.

The choice of a building set G in L gives rise to a family of nested
sets. Roughly speaking these are the subsets of L whose antichains are sets
of factors with respect to the building set G. The precise definition is as
follows.

Definition 2. Let L be a finite lattice and G a building set in L. A subset
S in G is called nested if, for any set of pairwise incomparable elements
G1, . . . , Gt in S of cardinality at least two, the join G1 ∨ · · · ∨ Gt does not
belong to G. The nested sets in G form an abstract simplicial complex, the
simplicial complex of nested sets N (L,G).

For the maximal building set G= L\{0̂} the nested set complex coincides
with the order complex of L\{0̂}. Smaller building sets yield nested set
complexes with fewer vertices, but allow for more dense collections of
simplexes.

An important property of a nested set is that for any two distinct maximal
elements X and Y we have X ∧ Y = 0̂ (see [4, Prop. 2.5(1), 2.8(2)]).

We now have all notions at hand to define the main character of this
article.

Definition 3. Let L be a finite lattice,A(L) its set of atoms, and G a building
set in L. We define the algebra D(L,G) of L with respect to G as

D(L,G) := Z [{xG}G∈G]
/

� ,

where the ideal � of relations is generated by
t∏

i=1

xGi for {G1, . . . , Gt} 	∈ N (L,G) , (1)
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and
∑

G≥H

xG for H ∈ A(L) . (2)

Note that the algebra D(L,G) is a quotient of the face algebra of the
simplicial complex N (L,G). Although D is defined for an arbitrary lattice
our main constructions and results make sense only for atomic lattices, i.e.,
lattices in which any element is the join of some atoms. Thus we will restrict
our considerations to this case.

In the special case of L being the intersection lattice of an arrangement of
complex linear hyperplanes and G being the minimal building set in L, this
algebra appears in work of De Concini and Procesi [2]. It is the cohomology
algebra of a compactification of the projectivized arrangement complement;
for details we refer to Sect. 4.

3. Gröbner basis

The set of generators of the ideal � in Definition 3, while being elegant,
is too small for being a Gröbner basis of this ideal. In this section, we
extend this set to a Gröbner basis. In particular, we will obtain a Z-basis of
D(L,G).

To define the larger set of relations we need to introduce a metric on
chains in L.

Definition 4. Let L be an atomic lattice and X, Y ∈ L with X ≤ Y. We
denote by d(X, Y ) the minimal number of atoms H1, . . . , Hd in L such that
Y = X ∨ ∨d

i=1 Hi.

The following four properties of the function d are immediate:

(i) d(X, Z)≥ d(Y, Z) for X, Y, Z ∈L with X ≤ Y ≤ Z. Notice that
equality is possible even if all three X, Y, and Z are distinct. Also
it is not necessarily true that d(X, Y ) ≤ d(X, Z).

(ii) d(X, Y )+d(Y, Z)≥ d(X, Z) for X, Y, Z ∈L with X ≤ Y ≤ Z.
(iii) d(X ∨ Z, Y ∨ Z)≤ d(X, Y ) for X ≤ Y ∈L and Z ∈L arbitrary.
(iv) d(A, A ∨ B)≤ d(A ∧ B, B) for A, B ∈L .

For example, (iv) follows from the fact that if (A ∧ B) ∨ ∨
i Hi = B for

some atoms H1, . . . , Hd then A ∨ ∨
i Hi = A ∨ B. If L is geometric

(for instance, the intersection lattice of a hyperplane arrangement) then
d(X, Y )= rkY − rkX whence in (ii) equality holds and (iv) is the semimod-
ular inequality.

Now we can introduce the new set of generators for � . The new rela-
tions are analogous to the defining relations for the cohomology algebra
of the compactification of the complement of an arrangement of projective
subspaces described in [1].
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Theorem 1. The ideal of relations � in Definition 3 is generated by poly-
nomials of the following type:

hS =
∏

G∈S

xG for S 	∈ N (L,G) , (3)

gH,B =
k∏

i=1

xAi

( ∑

G≥B

xG

)d
, (4)

where A1, . . . , Ak are maximal elements in a nested set H ∈N (L,G),
B ∈ G with B > A = ∨k

i=1 Ai , and d = d(A, B).

Proof. First notice that polynomials (1) and (2) are among polynomials hS

and gH,B. (To see that polynomials (2) are among gH,B choose H = ∅, and
B = H ∈A(L). Here and everywhere we use the usual agreement that the
join of the empty set is 0̂.) Hence it is left to show that any gH,B is in � , i.e.,
it is a combination of polynomials (1) and (2).

We prove our claim by induction on d.

d = 1. Choose an atom H of L with H ∨ A = B. Then using (2) we have

k∏

i=1

xAi

( ∑

G≥H

xG

)
∈ � . (5)

We want to show that for any G ≥ H , {G, A1, . . . , Ak} ∈N =N (L,G)
implies that G ≥ B. Then, any summand with G 	≥ B can be omitted
from (5) using polynomials (1), and we obtain gH,B ∈ � for d = 1.

First note that G cannot be smaller than or equal to any of the Ai ,
i = 1, . . . , k, since G ≤ Ai would imply H ≤ Ai contradicting the choice
of H .

Assume that G is incomparable with A1, . . . , As for some s ≥ 1, and
G ≥ Ai for i = s+1, . . . , k. Since {G, A1, . . . , Ak} ∈N these elements are
the factors of the G-decomposition in

G̃ := G ∨
s∨

i=1

Ai = G ∨
k∨

i=1

Ai ≥ H ∨
k∨

i=1

Ai = B .

Since B ∈G, the elements Ai , i = 1, . . . , s, are not maximal in G below G̃,
which contradicts the Ai being factors of G̃.

We conclude that G is comparable with, i.e., larger than all Ai whence
G ≥ ∨k

i=1 Ai ∨ H = B.

d > 1. Choose an atom H of L from the set of atoms in the definition of
d(A, B). Then A < A ∨ H < B. Using (2) we have

k∏

i=1

xAi

( ∑

G≥H

xG

) ( ∑

G≥B

xG

)d−1 ∈ � . (6)
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We show, using polynomials (1) and (2) and the induction hypothesis, that
any G with G 	≥ B can be omitted from the first sum modulo � .

Let G0 ∈G, G0 ≥ H but G0 	≥ B. Using polynomials (1) we can as-
sume that {G0, A1, . . . , Ak} ∈N . Due to the choice of H , G0 cannot be
smaller than any of the Ai . Further note that if G0 is incomparable with say
A1, . . . As , s ≤ k, then it is incomparable also with all A1, . . . , Ak . Indeed
the join G0 ∨ A1 ∨ . . . ∨ As = G0 ∨ A1 ∨ . . . ∨ Ak is a G-decomposition.
Hence the two following cases remain to be considered.

Case 1. G0 is comparable with all Ai , i = 1, . . . , k, hence G0 ≥ A.
Our goal is to rewrite

xG0

( ∑

G≥B

xG

)d−1
(7)

modulo � so that it contains an expression of the form (4) with exponent < d
as a factor. First observe that G0∨B ∈G since G0, B ∈G but H < G0 ∧ B
[1, Thm. 2.3, 3b’]. The building set element G0∨B is to take the role of B
in (4).

Let G ∈ G with G ≥ B. We want to show that any G with G 	≥ G0 ∨ B
can be omitted from (7) modulo � . We can assume that {G, G0} ∈ N . If
G ≤ G0 then B ≤ G0, contradicting the choice of G0. If G and G0 were
incomparable then G ∨ G0 	∈ G contradicting the fact that they both are
greater than H . Hence G ≥ G0 and thus G ≥ G0∨B.

Thus (7) reduces to

xG0

( ∑

G≥G0∨B

xG

)d−1
. (8)

Using properties (iv) and (i) of our metric d we obtain

d(G0, G0 ∨ B) ≤ d(G0 ∧ B, B) ≤ d(A ∨ H, B) < d . (9)

Hence (8) contains a polynomial of the form (4) with exponent < d as
a factor whence it lies in � by the induction hypothesis.

Case 2. G0 is incomparable with A1, . . . , Ak.
Since {G0, A1, . . . Ak} ∈ N we have G̃0 := G0 ∨ A1 ∨ . . . ∨ Ak 	∈ G. We
want to rewrite

( k∏

i=1

xAi

)
xG0

( ∑

G≥B

xG

)d−1
(10)

modulo � so that it contains a polynomial of the form (4) with exponent
< d as a factor.

Observe that G̃0 ∨ B = G0 ∨ B, and, as in Case 1, G0 ∨ B ∈ G. This
time, G̃0 ∨ B = G0 ∨ B is to take the role of B, and G̃0 the role of A in (4).
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As in Case 1, we see that

( k∏

i=1

xAi

)
xG0

( ∑

G≥B

xG

)d−1 ≡

( k∏

i=1

xAi

)
xG0

( ∑

G≥G0∨B

xG

)d−1
modulo � ,

arguing as before for nested pairs {G, G0}.
Now the right hand side has a factor of the form (4) with exponent < d

because again

d(G̃0, G̃0 ∨ B) ≤ d(G̃0 ∧ B, B) ≤ d(B, A ∨ H) < d .

This implies that the right hand side lies in � by the induction hypothesis
which completes the proof. �

The main feature of the new generating set is that it is a Gröbner basis
of � . As the main reference for Gröbner bases we use [3]. Fix a linear
order on G that refines the reverse of the partial order on L. It defines
a lexicographic order on the monomials which we use in the following
theorem.

Theorem 2. The generating system (3) and (4) is a Gröbner basis of � .

Proof. To prove that a set of monic polynomials is a Gröbner basis for the
ideal it generates it suffices to consider all pairs of their initial monomials
with a common indeterminate, compute their syzygies, and show that these
syzygies have standard expressions in generators (without remainders). We
will prove this by a straightforward calculation. To make the calculation
easier to follow we will use several agreements. For any polynomial p ∈ �
we will be dealing with, we will exhibit a generator g whose initial monomial
in(g) divides a monomial µ of p and call p − c(µ)

µ

in(g)
g the reduction of

p by g (here c(µ) is the coefficient of µ in p). Reducing a polynomial all
the way to 0 gives a standard expression for it. Also since reduction by
monomial generators is very simple we will not name specific generators
of the form hS but just call this reduction h-equivalence.

We use certain new notation in the proof. For each S ⊂G put
πS = ∏

A∈S xA and for any B ∈G put yB = ∑
Y∈G>B

xY .
Now we consider pairs (g1, g2) of generators of � of several types.

1. At least one of the generators is hS. If they both are of this type then the
syzygy is 0. If the other one is gH,B with B 	∈ S then the syzygy is divisible
by hS whence h-equivalent to 0. Finally if B∈S then the only nontrivial case
is where T = (S ∪ H )\{B} ∈N =N (G,L). Notice that then S ∪ H 	∈ N .
The syzygy is h-equivalent to πT yd(A,B)

B where A = ∨
X∈H X as usual. Put

Ā = ∨
X∈T X. If X ∈G>B and X ≤ Ā ∨ B then X cannot form a nested set
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with T . Indeed, if it did then Ā∨B = X∨ Ā 	∈ G contradicting T ∪{X} 	∈ N .
Similarly, if X ∈ G>B and X is incomparable with Ā then X cannot form
a nested set with T . Indeed, if it did then X∨( Ā∨B) = X∨ Ā 	∈ N implying
that X forms a nested set with S ∪H . This would contradict X > B.

Now using property (i) of the metric d we can reduce the syzygy to 0
by gT, Ā∨B.

For the rest of the proof we need to consider only pairs with gi = gHi ,Bi

(i = 1, 2). We denote the exponent of xBi + yBi in gi by di .

2. Suppose B1 	= B2 and Bi 	∈H j . In this case the syzygy is

πH2\H1 g1(g1 − in(g1)) − πH1\H2 g2(g2 − in(g2))

and this is in fact a standard expression for it. (Here and to the end of the
proof we use πS for arbitrary subsets S of L meaning that if S is not nested
the product is h-equivalent to 0.)

3. Suppose B1 = B2 = B and d = d2 − d2 ≥ 0. Then the syzygy is

πH1∪H2

[
xd

B(xB + yB)d1 − (xB + yB)d2
]

and it reduces to 0 by g1.

4. At last, suppose B1 ∈ H2. Put H = (H1 ∪H2) \ {B1} and xBi = xi ,
yBi = yi . Then the syzygy is

s = πH

[
(x1 + y1)

d1 xd2
2 − xd1

1 (x2 + y2)
d2

]
.

Adding to s the polynomial f = πH(x1 + y1)
d1[(x2 + y2)

d2 − xd2
2 ] we obtain

s′ = s + f = πH

[
(x1 + y1)

d1 − xd1
1

]
(x2 + y2)

d2 .

Notice that f is divisible by g1 and in( f ) ≤ in(s). Thus it suffices to reduce
s′ to 0. Also we can immediately reduce s′ by g2 to

s′′ = πH yd1
1 (x2 + y2)

d2 .

For the next steps we sort out summands of y1. Using property (i) of the
metric d we can delete the summands xY with B1 < Y < B2 reducing by
gH∪{Y},B2 . The sum of all summands xY with Y ≥ B2 forms πH(x2+y2)

d1+d2

that reduces to 0 by gH,B2 . Indeed, denote the join of Hi by Ci and the join of
H2 \ {B1} by C ′

2. This gives the join of H as C1 ∨C ′
2. Then, using properties

(ii) and (iii) of the metric d, we have

d(C1 ∨ C ′
2, B2) ≤ d(C1 ∨ C ′

2, B1 ∨ C ′
2) + d(B1 ∨ C ′

2, B2)

≤ d(C1, B1) + d(C2, B2) = d1 + d2 .

After the reductions in the previous paragraph we are left with a sum
each summand of which is divisible by a polynomial

tZ = πH xZ(x2 + y2)
d2 ,
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where Z ∈ G>B1, Z is incomparable with B2, and H ∪ {Z} ∈N . To reduce
this polynomial we sort out the summands in the second sum. If Y ∈ G≥B2

is not greater than or equal to Z ∨ B2 then it is incomparable with Z whence
{Z, Y } 	∈N since B1 < Z, Y . This implies that tZ is h-equivalent to

t′Z = πH xZ(
∑

Y≥B2∨Z

xY )d2 .

Finally t′Z reduces to 0 by gH∪{Z},B2∨Z since, by property (iii) of the metric d,
we have

d(C′
2 ∨ Z, B2 ∨ Z) = d(C2 ∨ Z, B2 ∨ Z) ≤ d(C2, B2) = d2.

This reduction completes the proof. �
Corollary 1. The following monomials form a Z-basis of the algebra
D(L,G): ∏

A∈S

xm(A)
A ,

where S is running over all nested subsets of G and m(A)< d(A′, A),
A′ being the join of S ∩L<A.

If L is the intersection lattice of a complex central hyperplane arrange-
ment then this basis coincides with the basis exhibited in [9]. In the next
section we will give some examples of computing the Hilbert series of the
algebra using this basis.

4. Arrangement compactifications

As we mentioned before, for a geometric lattice the metric d defined in
Sect. 3 coincides with the difference of ranks. This holds in particular for
the intersection lattice of a hyperplane arrangement. In this setting and for
G being the minimal building set, the algebra D(L,G) appeared in [2] as
the cohomology algebra of a compactification of the projectivized arrange-
ment complement. From our work in previous sections we can conclude
that for any building set G in L the algebra D(L,G) can be interpreted ge-
ometrically as the cohomology algebra of the corresponding arrangement
compactification.

We first review the construction of arrangement models due to De Con-
cini and Procesi in the special case of complex hyperplane arrangements [1].

Let A={H1, . . . , Hn} be an arrangement of complex linear hyperplanes
in Cd. Factoring by

⋂
Hi if needed, we can assume A to be essential, i.e.,⋂

Hi ={0}. The combinatorial data of such an arrangement is customarily
recorded by its intersection lattice L(A), i.e., the poset of intersections of all
subsets of hyperplanes ordered by reverse inclusion. The greatest element
of L(A) is 0 and the least element is Cd. Let G⊆ L(A) be a building set
in L(A), and let us assume here that 0 ∈ G.
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We define a map on M(A) :=Cd \ ⋃
A, the complement of the ar-

rangement,

Φ : M(A) −→ C
d ×

∏

G∈G

P(Cd/G) ,

where Φ is the natural inclusion into the first factor and the natural pro-
jection to the other factors restricted to M(A). The map Φ defines an
embedding of M(A) in the right hand side space and we let YG denote the
closure of its image. The space YG is a smooth algebraic variety containing
M(A) as an open set. The complement YG \M(A) is a divisor with normal
crossings with irreducible components indexed by building set elements.
An intersection of several components is non-empty (moreover, transver-
sal and irreducible) if and only if the index set is nested as a subset of G
[1, 3.1,3.2].

There is a projective analogue of YG. Consider the projectivization PA
of A, i.e., the family of codim 1 projective spaces PH in CPd−1 for H ∈A.
The following construction yields a compactification of the complement
M(PA) :=CPd−1 \ ⋃

PA. The map Φ described above is C∗-equivariant,
where C∗ acts by scalar multiplication on M(A) and on Cd, and trivially on∏

G∈G P(C
d/G). We obtain a map

Φ : M(PA) −→ CP
d−1 ×

∏

G∈G

P(Cd/G) ,

and again take the closure of its image to define a model YG for M(PA). The
space YG is a smooth projective variety and the complement YG \M(PA)
is a divisor with normal crossings. Irreducible components are indexed by
building set elements in G0 := G \ {{0}}, and intersections of irreducible
components are non-empty if and only if corresponding index sets are
nested in G.

Geometrically, the arrangement models YG and YG are related as follows.
The model YG is the total space of a line bundle over YG; in fact, it is the
pullback of the tautological bundle on CPd−1 along the canonical map
YG →CPd−1. In particular, YG is isomorphic to the divisor in YG associated
to 0 [1, 4.1].

Example 1. Let An−1 denote the rank n−1 complex braid arrangement,
i.e., the family of partial diagonals, Hi, j : z j−zi = 0, 1≤i< j≤n, in Cn.
Its intersection lattice L(An−1) equals the lattice Πn consisting of the set
partitions of [n] := {1, . . . , n} ordered by reverse refinement. The set F
of partitions with exactly one block of size ≥ 2 forms the minimal building
set in Πn. The De Concini-Procesi arrangement compactification YF is iso-
morphic to the Deligne-Knudson-Mumford compactification of the moduli
space M0,n+1 of n+1-punctured complex projective lines [1, 4.3].
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In the more general setting of affine models for complex subspace ar-
rangements, De Concini and Procesi provide explicit presentations for the
cohomology algebras of irreducible components of divisors and of their
intersections in terms of generators and relations [1, §5]. As mentioned
above, the compactification of a complex hyperplane arrangement YG is
isomorphic to the divisor associated with the maximal building set element
in the corresponding affine model. We recall a description of its integral
cohomology algebra.

Proposition 1. ([1, Thm. 5.2]) Let A be an essential arrangement of com-
plex hyperplanes, L=L(A) its intersection lattice, and G a building set in
L containing {0}. Then the integral cohomology algebra of the arrangement
compactification YG can be described as

H∗(YG) ∼= Z [{cG}G∈G]
/

J ,

with generators cG, G ∈ G, corresponding to the cohomology classes of
irreducible components of the normal crossing divisor, thus having degree 2.

The ideal of relations J is generated by polynomials of the following
type:

t∏

i=1

cGi for {G1, . . . , Gt} 	∈ N (L,G) , (11)

k∏

i=1

cAi

( ∑

G≥B

cG

)d
, (12)

where A1, . . . , Ak are maximal elements in a nested set H ∈N (L,G),
B ∈ G with B >

∨k
i=1 Ai , and d = codimCB − codimC

∨k
i=1 Ai .

Comparing Proposition 1 with Theorem 1, we have a generalization
of Proposition 1.1 from [2], where only the case of G being the minimal
building set, i.e., the set of irreducibles, is considered.

Corollary 2. Let A be an essential arrangement of complex hyperplanes,
L=L(A) its intersection lattice, and G a building set in L containing {0}.
Then the cohomology algebra of the arrangement compactification YG is
isomorphic to the algebra D(L,G) defined in Sect. 2:

H∗(YG) ∼= D(L,G) .

In the rest of the section we will give several examples of the Poincaré
series for compactifications of hyperplane arrangement complements. This
means we compute the Hilbert series of D(L,G). We restrict our computa-
tions to the compactifications with G being the maximal building set L\{0̂},
although they can be easily generalized to arbitrary G.
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For these examples we use the basis of D(L)= D(L,L \ {0̂}) from
Corollary 1. In the considered case the basic monomials are parametrized
by certain flags in L \ {0̂} with multiplicity assigned to their elements.
The upper bounds for multiplicities allow us to write the Hilbert series
of D(L) in the following form. For each sequence r of natural numbers,
r = (0=r0 < r1 < · · · < rk ≤ rkL) denote by fL(r) the number of flags in
L whose sequence of ranks equals r. Set k = k(r) and call it the length of r.
Then we have

H(D(L), t) = 1 +
∑

r

[k(r)∏

i=1

t(1 − t)ri−ri−1−1

1 − t

]
fL(r).

Here, r runs over all sequences as above and we use the agreement
t(t−1)0

t−1 = 1.
In some important cases one can give more explicit descriptions of the

numbers fL(r) whence of the Hilbert series. We consider two such cases.

Generic arrangements. For arrangements from this class, the intersection
lattice L is defined by the number n of atoms and the rank �. We use
both pieces of notation: L and L(n, �). The number of elements of L of
rank �′ <� is

(n
�′
)

and for every X ∈ L of rank �′ the lattice {Y ∈L | Y ≥ X}
is isomorphic to L(n−�′, �−�′). This immediately implies the following
formula:

fL(r) =
k∏

i=1

(
n − ri−1

ri − ri−1

)
,

where k = k(r) if rk(r) < � and k = k(r)−1 otherwise. This gives

H(D(L(n, �)), t) =

1 +
∑

r

{[
1 + t(1 − t)�−rk−1

1 − t

] k(r)∏

i=1

t(1 − t)ri−ri−1−1

1 − t

(
n − ri−1

ri − ri−1

)}
,

where the summation now is over all r with the extra condition rk(r) < � and

we again use the agreement t(t−1)0

t−1 = 1.

Braid arrangements. For the rank n−1 complex braid arrangement (com-
pare Example 1) the intersection lattice is given by the partition lattice Πn
of set partitions of [n] := {1, . . . , n} ordered by reverse refinement. Observe
that the rank of a partition π coincides with n−|π| where |π| is the number
of blocks of the partition. Thus the number of elements of Πn of rank �
is pn−�(n) that is the number of partitions of [n] in n−� blocks. For every
X ∈ Πn of rank � the lattice {Y ∈Πn | Y ≥ X} is isomorphic to Πn−�. This
immediately implies the following formulas:

fΠn(r) =
k(r)∏

i=1

pn−ri (n − ri−1)
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and

H(D(Πn), t) = 1 +
∑

r

[k(r)∏

i=1

t(1 − t)ri−ri−1−1

1 − t
pn−ri (n − ri−1)

]
,

where the summation is over all r.

5. The toric variety XΣ(L,G)

In this section we present another geometric interpretation of the alge-
bra D(L,G), this time for an arbitrary atomic lattice L. For a given building
set G in L we construct a toric variety XΣ(L,G) and show that its Chow ring
is isomorphic to the algebra D(L,G).

Given a finite lattice L with set of atoms A(L)={A1, . . . , An}, we will
frequently use the following notation. For X ∈L, denote the set of atoms
below X by �X� := {A ∈A(L) | X ≥ A}. Define characteristic vectors vX in
R

n for X ∈L with coordinates

(vX )i :=
{

1 if Ai ∈ �X�,
0 otherwise, for i = 1, . . . , n.

We will consider cones spanned by these characteristic vectors. We therefore
agree to denote by V(S) the cone spanned by the vectors vX for X ∈ S,
S ⊆L.

Let L be a finite atomic lattice and G a building set in L. We define
a rational, polyhedral fan Σ(L,G) in Rn by taking cones V(S) for any
nested set S in L,

Σ(L,G) := { V(S) |S ∈ N (L,G) } . (13)

By definition, rays in Σ(L,G) are in 1-1 correspondence with elements
in G; the face poset of Σ(L,G) coincides with the face poset of N (L,G).
To specify the set of cones in Σ(L,G) of a fixed dimension k, or nested
sets in G with k elements, we often use the notation Σ(L,G)k or N (L,G)k ,
respectively.

Proposition 2. The polyhedral fan Σ(L,G) is unimodular.

Proof. We need to show that for any nested set S ∈ N (L,G) the set of
generating vectors for V(S), { vX | X ∈S}, can be extended to a lattice basis
for Zn . To that end, fix a linear order ≺ on S that refines the given order
on L, and write the generating vectors vX as rows of a matrix A following
this linear order. Now transform A to a matrix Ã, replacing each vector vX
by the characteristic vector vX̃ of X̃, with

X̃ =
∨

Y∈S
Y�X

Y .
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For each X this can be done by adding rows vZ to vX for elements

Z ∈ maxL{ Y ∈ S | Y ≺ X, Y incomparable to X in L} ,

the reason being that characteristic sets of atoms for incomparable elements
of a nested set are disjoint [4, Prop. 2.5(1), 2.8]. The matrix Ã clearly
has rows with strictly increasing support, hence can be easily extended to
a square matrix with determinant ±1. The same extra rows will complete
the rows of the original matrix A to a lattice basis for Zn. �
Remark 1. In Sect. 6 we will give a more constructive description of
Σ(L,G), picturing the fan as the result of successive stellar subdivisions of
faces of the n-dimensional cone spanned by the standard lattice basis for Zn

and subsequent removal of faces (compare Thm. 4). From this description,
unimodality of the fan will follow immediately.

Let XΣ(L,G) denote the toric variety associated with Σ(L,G). If there
is no risk of confusion, we will abbreviate notation by using XΣ instead.
XΣ is a smooth, non-complete, complex algebraic variety. Crucial for us
will be its stratification by torus orbits OS , in one-to-one correspondence
with cones V(S) in Σ(L,G), thus with nested sets S in G.

The orbit closures [OS], S∈N (L,G)n−k , generate the Chow groups
Ak(XΣ), k = 0, . . . , n. We describe generators for the groups of relations
among the [OS], S ∈N (L,G)n−k , in Ak(XΣ) for later reference. This de-
scription is due to Fulton and Sturmfels [6]. We present here a slight adap-
tation to our present context.

Proposition 3. ([6, 2.1]) The group of relations among generators [OS],
S ∈N (L,G)n−k, for the k-th Chow group Ak(XΣ), k=0, . . . , n, is gener-
ated by relations of the form

r(T , b) =
∑

S⊃T
S∈N (L,G)n−k

< b, zS,T > [OS] , (14)

where T runs over all nested sets with n − k − 1 elements and b over
a generating set for the sublattice determined by V(T )⊥ in the dual lat-
tice Hom(Zn,Z). Here, zS,T is a lattice point in V(S) generating the
(1-dimensional) lattice span(V(S)∩Zn)/span(V(T )∩Zn).

Since XΣ(L,G) is non-singular, the intersection product · makes Ch∗(XΣ)

= ⊕n
k=0Chk(XΣ) with Chk(XΣ)= An−k(XΣ) into a commutative graded

ring, the Chow ring of XΣ(L,G).

Theorem 3. Let XΣ(L,G) be the toric variety associated with a finite atomic
lattice L and a combinatorial building set G in L as described above. Then
the assignment xG �→ [O{G}] for G ∈G, extends to an isomorphism

D(L,G) ∼= Ch∗(XΣ(L,G)) .
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Proof. Orbit closures [O{G}] in XΣ that correspond to the rays V({G}) in
Σ(L,G) for G ∈ G, generate Ch∗(XΣ) multiplicatively, since

[OS] = [O{G1}] · . . . · [O{Gk}]
for S ={G1, . . . , Gk} ∈N (L,G), · denoting the intersection product (see
[5, p. 100]).

Moreover, relations as in D(L,G) hold. Indeed, the intersection products
of orbit closures corresponding to rays that do not span a cone in Σ(L,G)
are 0 [5, p. 100], which is exactly the monomial relations (1) for non-nested
index sets in D(L,G). Relations (14) in Ch1(XΣ)= An−1(XΣ) as described
above coincide with the linear relations (2) in D(L,G)

r(∅, vA) =
∑

G∈G

< vA, vG > [O{G}] =
∑

G≥A

[O{G}] , (15)

the vA, for A ∈A(L), forming a basis for the lattice orthogonal to V(∅)= 0
in Zn .

Thus, sending xG to [O{G}] for G ∈G, we have a surjective ring homo-
morphism from D(L,G) to the Chow ring of XΣ . It remains to show that
the relations (14) in Ch∗(XΣ) follow from relations (15) in Ch1(XΣ), and
from monomials over non-nested index sets being zero.

Let us fix some notation. For T ∈N (L,G) and X ∈T define

∆T (X) := �X� \
⋃

Y<X
Y∈T

�Y� ,

the set of atoms that are below X, but not below the join of all Y in T
that are smaller than X. Observe that ∆T (X) 	= ∅ for any X ∈T , since T is
nested, and

�
∨

T � =
⋃

X∈T

∆T (X) .

For T ∈N (L,G)k−1, k ≥ 2, the sublattice determined by V(T )⊥ in the
dual lattice is generated by vectors in C1 ∪C2, where

C1 = { vAi − vA j | Ai , A j ∈ ∆T (X) for some X ∈ T } ,

C2 = { vA | A ∈ A(L) \ �
∨

T � } .

Observe that C1 ∪C2 contains
∑

X∈T (|∆T (X)| − 1) + |A(L) \ �∨ T �| =
|A(L)| − |T | = codim V(T ) linear independent vectors, thus a basis for
the sublattice determined by V(T )⊥.
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For T ∈ N (L,G)k−1, k ≥ 2, and vAi − vA j ∈C1, the relation (14) reads
as

r(T , vAi − vA j )

=
∑

S⊃T
S∈N (L,G)k

< vAi − vA j , zS,T > [OS]

=
∑

Y∈G\T
T ∪{Y}∈N (L,G)

< vAi − vA j , vY > [OT ∪{Y}]

= [OT ] · (
∑

Y∈G\T ,Y≥Ai
T ∪{Y}∈N (L,G)

[O{Y}] −
∑

Y∈G\T ,Y≥A j
T ∪{Y}∈N (L,G)

[O{Y}]
)
.

Monomials over non-nested index sets being zero, we may drop the con-
dition T ∪ {Y } ∈N (L,G) in both sums. Moreover, if Y ∈T , Y either is
larger than both Ai and A j , or not larger than either of them. Thus, both
sums in r(T , vAi − vA j ) are relations of type (15), hence r(T , c), c ∈ C1,
is a consequence of relations of type (1) and (2) holding in Ch∗(XΣ), as
claimed.

For vA ∈C2, the reasoning is similar, but easier. Indeed

r(T , vA) =
∑

S⊃T
S∈N (L,G)k

< vA, zS,T > [OS]

=
∑

Y∈G\T
T ∪{Y}∈N (L,G)

< vA, vY > [OT ∪{Y}]

= [OT ] ·
∑

Y≥A

[O{Y}] ,

since no Y ∈T can be larger than A, and again, by monomials over non-
nested sets being zero, the condition T ∪ {Y } ∈ N (L,G) can be dropped.
This completes our proof. �

6. A geometric description of XΣ(L,G)

The goal of this section is to give a geometric description of the variety
XΣ(L,G). For an arbitrary atomic lattice L, we describe the toric variety
XΣ(L,G) as the result of a sequence of blowups of closed torus orbits and
subsequent removal of a number of open orbits. We start with a more
constructive description of the fan Σ(L,G) as the result of a sequence of
stellar subdivisions and subsequent removal of a number of open cones.
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We allow the same setting as for the definition of Σ(L,G) in (13). Let
L be a finite atomic lattice with set of atoms A(L)={A1, . . . , An} and G
a building set in L.

Construction of Θ(L,G).
(0) Start with the fan Θ0 given by the n-dimensional cone spanned by the
coordinate vectors in Rn together with all its faces.
(1) Choose a linear order � on G that is non-increasing with respect to the
original partial order on L, i.e., G ≤ G′ implies G′ � G. Write G={G1 �
G2 � · · · � Gt}. Construct a fan Θ̃(L,G) by successive barycentric stellar
subdivisions in faces V(�Gi�) of Θ0 for i = 1, . . . , t, introducing in each
step a new ray generated by the characteristic vector vGi , i = 1, . . . , t.

(2) Remove from Θ̃(L,G) all (open) cones V(T ) with index sets of gen-
erating vectors T that are not nested in G and denote the resulting fan by
Θ(L,G).

Theorem 4. The fan Θ(L,G) constructed above coincides with the fan
Σ(L,G) defined in Sect. 5.

Proof. By construction the fans share the same generating vectors. In fact,
due to the removal of cones in step (2) of the construction above, it is enough
to show that for any nested set S ∈ N (L,G) there exists a cone in Θ̃(L,G)
containing V(S) as a face. Due to the recursive construction of Θ̃(L,G) this
statement reduces to the following claim.

Claim. Let S = {X1, . . . , Xk} be nested in L with respect to G, and
assume that the indexing is compatible with the linear order � on G, i.e.,
X1 � . . . � Xk. For notational convenience, extend the set by Xk+1 := 0̂.
Then any stellar subdivision in V(�G�), G ∈ G, during the construction of
Θ̃(L,G), for G � Xi , G 	� Xi−1, i = 1, . . . , k+1, retains a cone WG with

V( {X1, . . . , Xi−1} ∪ �Xi� ∪ . . . ∪ �Xk� )

among its faces and for G = Xi , i = 1, . . . , k, creates a cone WXi with

V( {X1, . . . , Xi} ∪ �Xi+1� ∪ . . . ∪ �Xk� )

among its faces.

Proof of the claim. Assume first that G � Xi , G 	� Xi−1, for some i∈
{1, . . . , k+1} (the second condition being empty for k = 1), and assume
that the previous subdivision step in V(�G′�), G′ ∈G, has created, resp.
retained a cone WG ′ with V( {X1, . . . , Xi−1} ∪ �Xi�∪ . . . ∪�Xk� ) among
its faces.

If W(G′) does not contain V(�G�), it will not be altered by stellar subdi-
vision in V(�G�). Any cone that is to be altered when subdividing V(�G�)
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needs to be contained in star V(�G�), hence among its faces needs to con-
tain V(�G�).

If W(G′) does contain V(�G�) among its faces, choose

g ∈ �G� \
k⋃

j=i

�X j� . (16)

If the set was empty, we would have �G�⊆ ⋃
j≥i �X j�, in particular,

G ≤
∨

j≥i

X j ≤
∨

maxS�Xi

X j .

The join on the right hand side is taken over all X j that are maximal among
X1, X2, . . . , Xi with respect to the partial order in L. Since these elements
are pairwise incomparable and nested in L they are the factors of their join.
This implies that G ≤ X j∗ for some j∗ ≥ i [4, Prop. 2.5(i)] contradicting
the fact that G � X j∗ .

Hence we can choose g as described in (16) and, when subdividing
V(�G�), we replace WG ′ by WG by substituting the new ray 〈vG〉 for the ray
〈vg〉 in WG ′ . Observe that V( {X1, . . . , Xi−1} ∪ �Xi�∪ . . . ∪�Xk� ) remains
as a face in the newly created cone WG .

Assume now that G = Xi and again denote the cone emerging from the
previous subdivision step by WG ′ , assuming that it contains V( {X1, . . . ,
Xi−1} ∪ �Xi�∪ . . . ∪�Xk� ) among its faces. When subdividing V(�Xi�)
now replace WG ′ by WXi by substituting the new ray 〈vXi 〉 for the generating
ray associated with some

xi ∈ �Xi� \
⋃

j≥i+1

�X j� = �Xi� \
⋃

j≥i+1
X j<Xi

�X j� = ∆S(Xi) ,

where the right hand side is non-empty as we observed before (see proof of
Thm. 3).

Note that V( {X1, . . . , Xi} ∪ �Xi+1�∪ . . . ∪�Xk� ) is a face of the newly
created cone WXi . This completes the proof of our claim. �
Corollary 3. The toric variety XΣ(L,G) can be constructed as follows. Start
from the toric variety associated with the standard n-dimensional cone
spanned by the standard lattice basis in Zn, i.e., from Cn stratified by torus
orbits. Perform a sequence of blowups in orbit closures associated with faces
V(�G�) of the standard cone for G ∈ G in some linear, non-increasing order.
Remove from the resulting variety all open torus orbits that correspond to
cones in Θ̃(L,G) indexed with non-nested subsets of L.

It follows immediately from this description that the toric variety XΣ(L,G)

is smooth.
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7. Examples

We discuss a number of examples to illustrate the central notions of this
article.

Partition lattices
Let Πn denote the lattice of set partitions of [n] ordered by reversed re-
finement. As we mentioned above, the partition lattice Πn occurs as the
intersection lattice of the braid arrangement An−1 (compare Example 1).

For n = 3, the only building set is the
maximal one, i.e., G = Π3\{0̂}. Denot-
ing elements as in the Hasse diagram
depicted on the right, the nested set
complex N (Π3,G) contains the fol-
lowing simplices:

H12

U

Π3 = L(A2)

H13 H23

0̂

N (Π3,G) = {H12, H13, H23, U, H12U, H13U, H23U} .

The algebra D(Π3,G) thus is the following:

D(Π3,G) = Z [xH12, xH13, xH23, xU ]
/

〈
xH12 xH13, xH12 xH23, xH13 xH23

xH12 + xU , xH13 + xU , xH23 + xU

〉
.

We find that D(Π3,G) ∼= Z [xU ] / 〈x2
U 〉, which illustrates Corollary 2. The

compactification YΠ3\{0̂} of the complement of the projectivized braid ar-
rangement PA2 (a three times punctured CP1) is the complex projective
line.

To visualize the fan Σ(Π3,G) we
choose to depict its intersection with
a hyperplane orthogonal to the diag-
onal ray in the positive octant of R3.
To shorten notation, we denote rays by
building set elements.

H13

H12
Σ(Π3,G)

H23

U

The toric variety XΣ(Π3,G) is the blowup of C3 in 0 with open torus or-
bits corresponding to cones V(H12, H13), V(H12, H23), V(H13, H23) and
V(H12, H13, U), V(H12, H23, U), V(H13, H23, U) removed. What we re-
move here, in fact, are the proper transforms of the three coordinate axes of
C

3 after blowup in 0.

For n = 4, we have several choices when fixing a building set. The partitions
with only one non-trivial block of size ≥ 2 form the minimal building set F .
To obtain the others we add any number of 2-block partitions in Π4.
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H12 H13 H23 H24 H34H14

Π4 = L(A3)

U

The nested set complex N (Π4,F ) is a 2-dimensional complex on 11
vertices. It is a cone with apex U , the simplices in its base N (Π4,F )0 being
the ordered subsets in F \ {U} together with the pairs H12 H34, H13 H24,
H14 H23. We depict below the 1-dimensional base N (Π4,F )0. To simplify
notation we label vertices with the non-trivial blocks of the corresponding
partitions. The non-ordered nested pairs are indicated by dotted lines.

13

234

134

24

34

124

14

N (Π4,F)0

123
23

12

Choosing instead of F the maximal building sets G in Π4, i.e., including
the 2-block partitions into the building set, results in a subdivision of these
edges by additional vertices H12|34, H13|24 and H14|23 corresponding to the
newly added building set elements.

13

234

134

24

34

124

14

123
23

12
12|34

13|24

N (Π4,G)0

14|23

Simplifying the presentation of the algebra D(Π4,F ) given in Defin-
ition 3 yields

D(Π4,F ) ∼= Z [x123, x124, x134, x234, xU ]
/

〈 xijk xU for all 1≤i< j<k≤4
xijk xi′ j ′k′ for all ijk 	= i ′ j ′k′

x2
ijk + x2

U for all 1≤i< j<k≤4

〉
,

where we index generators corresponding to rank 2 lattice elements by the
non-trivial blocks of the respective partitions. The linear basis described in
Corollary 1 is given by the monomials x123, x124, x134, x234, xU , and x2

U .

For completeness, we state the description of D(Πn,F ) for general n,
where F again denotes the minimal building set, i.e., the set of 1-block
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partitions in Πn. Having in mind that D(Πn,F ) is isomorphic to the co-
homology of the Deligne-Knudson-Mumford compactification M0,n+1 of
the moduli space of n+1-punctured complex projective lines (compare Ex-
ample 1), the following presentation should be compared with presentations
for H∗(M0,n+1) given earlier by Keel [8].

We index generators for D(Πn,F ) with subsets of [n] of cardinality
larger than two representing the non-trivial blocks in the respective partitions
and obtain:

D(Πn,F ) ∼= Z [ {xS}S⊆[n],|S|≥2 ]
/

〈 xS xT for S ∩ T 	= ∅,
and S 	⊆ T, T 	⊆ S ,∑

{i, j}⊆S xS for 1 ≤ i < j ≤ n

〉
.

A non-geometric lattice

Consider the lattice L depicted by its Hasse
diagram on the right. We obtain the following
building sets:

G1 = {A1, A2, A3, U} ,

G2 = {A1, A2, A3, Y1, U} ,

G3 = {A1, A2, A3, Y1, Y2, U} ,

the only other choice being to replace Y1 by
Y2 in G2.

A1

Y1

U

Y2

A2 A3

L

For a description of the nested set complexes we refer to the correspond-
ing fans Σ(L,Gi), i=1, 2, 3, shown below. The standard presentations for
D(L,Gi), i=1, 2, 3, according to Definition 3 simplify so as to reveal the
Hilbert functions of the algebras to be

H(D(L,Gi), t) = 1 + i t for i = 1, 2, 3 ,

with basis in degree 1 being the generators associated to building set elem-
ents other than atoms.

We depict the fans Σ(L,Gi), i=1, 2, 3, again by drawing their intersec-
tions with a hyperplane orthogonal to the diagonal ray in the positive octant
of R3.

A3

A2

A1
Σ(L,G1)

A3

U A2

Y1

A1

A3

U

Y2

A2

Y1

A1
Σ(L,G3)Σ(L,G2)

U
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The toric variety XΣ(L,G1) is the result of blowing up C3 at the origin,
and henceforth removing the open torus orbits corresponding to one original
2-dimensional cone and the unique 3-dimensional cone containing it.

The toric varieties XΣ(L,G2 ) and XΣ(L,G3) differ from XΣ(L,G1) by blowups
in one, resp. two of the original 1-dimensional torus orbits before removing
open orbits as above.
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