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FINDING THE CONDUCTORS IN CIRCULAR NETWORKS
FROM BOUNDARY MEASUREMENTS (*)

by E. CUrTIS (!), E. MOOERS (!) and J. MORROW (1)

Communicated by G STRANG

Abstract — We give an algorithm for computing the values of the conductors in a circular
network from voltages and currents measured at the boundary We characterize the collections
of boundary measurements which can come from such networks We also give some results of
numerical reconstruction of the values of the conductors from boundary measurements

Résumé — Nous donnons un algorithme qui permet de calculer les valeurs des conducteurs
dans un réseau circulaire a partir des tensions et des courants qui s’en dérivent aux bornes
Nous donnons une caractérisation des mesures aux bornes qui dérivent de tels réseaux Nous
donnons auss: des résultats numériques

1. INTRODUCTION

We consider circular networks as 1n figure 1.

Such a network £2 with m circles and n rays will be called a circular
network of type C (m, n). Figure 1 shows a circular network of type
C (2, 12). Other circular networks will be considered in Section 9. The nodes
of 2 are the points in the plane consisting of the center node p (0, 0) and
points p(i1,y), for l<si<m+1 and 1=<j=<mn. The node p(i, ) is
described in polar coordinates by p(i, j) = (1, 2 mj/n). We consider the
nodes labelled cyclically ; that is, p(i,y + n) =p(, ) for all integers
J. The set of nodes is denoted {2,. The interior of 2, called int
£2, consists of the nodes p(i, j) for O <i <m and 1 <j =< n. The boundary
of 2, called 342, consists of the nodes p(m + 1, ) for 1 <j <n. The
boundary nodes are labelled p, = p(m + 1, j) for 1 <; =< n. Each interior
node except the center node, has four neighboring nodes ; the center node
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Figure 1.

p(0, 0) has n neighbors. The set of nodes which are neighbors of
p is called A" (p). Each boundary node has exactly one neighboring node
which is an interior node. A circular network of type C (m, n) has
1 + mn interior nodes and n boundary nodes. An edge pqg of {2 is a radial line
segment p(i, j)p(i +1,j)for O<i=<m and 1 <j <n, or a circular arc
pG,j)pG,j+1)forl=<i=<mand 1 =<j =<n. The set of edges is denoted
£2,. There are n(2 m + 1) edges.

A circular network of resistors of type C(m,n) is a network
2 = (£2,, £2,) together with a positive real-valued function y on £2,. The
function vy is called the conductivity. For each edge pqg in £2,, the number
v(pqg) is the conductance of pq, and 1/y(pq) is the resistance of
pq. If u is a function on £, Ohm’s Law gives a current along each
conductor pg: I(pq)y = (pq)(u(p)—u(q)) is the current from p to
q. The function u is called a y-harmonic function on 2 if for each interior

node p,
Y vy@ea)u@)-u@)=0.
qe N (p)

This property of a y-harmonic function, which asserts that the sum of the
currents flowing out of each interior node is zero, is Kirchhoff’s Law. If a
function ¢ is defined at the boundary nodes, there will be a unique 7-
harmonic function u, defined on all the nodes with u(p) = ¢ (p) for each
boundary node p (see Lemma 2.5). The function u is called the potential due
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FINDING THE CONDUCTORS IN CIRCULAR NETWORKS 783

to ¢. The potential drop across the conductor pq is Au(pg) = u(p) — u(q).
The potential u determines a current /,(p) into each boundary node
p by 1,(p)=v@q)ul@)—u(g)), where g is the interior neighbor of
p.

For each conductivity y on {2,, the linear map A, from boundary functions
to boundary functions is defined by A,(é#)=1,. The boundary function
¢ is called Dirichlet data, and the boundary current /, is called Neumann
data. The map A, which takes potentials at the boundary of {2 to currents
through the boundary nodes of {2 is called the Dirichlet-to-Neumann map.

The inverse problem is to recover the conductivity y from the map
A,. In our situation, this leads to four problems.

(1) Uniqueness : if A, = A,, does it necessarily follow that v = » ?

(2) Continuity : if A, is near to A,, does it necessarily follow that
v is near to u ?

(3) Reconstruction : give an algorithm for using A, to compute y.

(4) Characterization : for each integer n, which n by n matrices are of the
form A, for some y ?

In Section 5, we give an algorithm for computing the conductivity
v from the Dirichlet-to-Neumann map A, for circular Networks of type
C(m, n), where n=4m + 3. For these networks, we show that the
Dirichlet-to-Neumann map uniquely determines the conductivity (see Theo-
rem 5.2). The algebraic formulas of the algorithm show the continuity of the
inverse. For circular networks of type C (m, n), where n = 4 m + 3, the set
of Dirichlet-to-Neumann maps forms a manifold of dimension n(n — 1)/2 in
the space of n by n matrices. In Section 6, we show that the n(n —1)2
entries of A above the diagonal parametrize this manifold, and we describe
explicitly the domain over which these parameters may vary. Theorem 6.2
gives a characterization of the Dirichlet-to-Neumann maps for such circular
resistor networks. By considerations of duality, there is a similar characteri-
zation of Neumann-to-Dirichlet maps. Some numerical results based on the
reconstruction algorithm of Section 5 are given in Section 13 and in [2].
Similar results may be obtained for other types of circular networks (e.g.,
where the outer conductors are not present), which are discussed in
Section 9. In [4] and [3] we solved the four problems above for square
resistor networks. The methods presented here are simplifications of those of
[4] and [3]. For related work on the inverse conductivity problem see [1], [2],
[5] and [6].

2. FUNCTIONS ON NETWORKS

We collect some facts about y-harmonic functions on circular networks,
some of which were proved for rectangular networks in [3]. Throughout this
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Section, let 2 = (£, £2,) be a circular network of type C (m, n), with a
conductivity function y on ;.

LEMMA 2.1 : Let u be a y-harmonic function on {2, and let p be an interior
node. Then either u(p) = u(q) for all nodes q € N (p) or there is at least
one node q € N (p) for which u(p) > u(q) and there is at least one node
re N (p) for which u(p) < u(r).

Proof : Kirchhoff’s Law may be rewritten as

(T ven)uer= ¥ voou@.
qe X @) qe ¥ @)
This says that the value of u at each interior node is the weighted average of
the values at the neighboring nodes. O

COROLLARY 2.2 : (Maximum Principle for Functions) Let u be a -
harmonic function on €. Then the maximum and minimum values of u occur
on the boundary of 2.

Proof : If the maximum value of u were to occur at an interior node, then
by Lemma 2.1, the value of u at all the neighbors would be the same. Thus
either u is a constant or the maximum and minimum values do not occur at an
interior node and so must occur at boundary nodes. O

COROLLARY 2.3: Let u be a +y-harmonic function of {2 such that
u@) =20 for all pe 32. Then u(p) =0 for all p € N.

LEMMA 2.4 : (Maximum Principle for Currents) Let u be a y-harmonic
function on 2. The current across any conductor pq is less than or equal to
the sum of the positive currents into the boundary nodes.

Proof : Assume that u(p)=>u(g). Let I,(pq) be the current through
pq in the direction of p to q. Construct a subnetwork I" of £ as follows. Let
I W consist of all edges rp € I' such that u(r) > u (p), and r is a neighbor of
p. Inductively, having defined I'0), let I'V* D consist of all edges in
I'® and all edges st in 2 such that t € ') and u(s) > u(z). (Each edge
includes its endpoints.) This gives an increasing sequences of subnetworks

rYecr®cr®c |

Eventually no new edges are added and the process ends. Let I" be the union
of the I'Y). For each boundary node r, let I,(r) be the current into
2 through r. The boundary of I' consists of nodes of two types:

(i) nodes which are in 942
(ii) nodes which are not in 342.

At those nodes of 81" which are also in 342, the current into 37 is positive
(except possibly at node g itself). At all other nodes of 8" the current into
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oI is = 0. The (algebraic) sum of the currents into 81" is 0. Hence

Leg< ¥ L= Y L.
realNnan redn, 1,(r=0
a
The following lemma shows that there is a unique y-harmonic function
with prescribed boundary values.

LEMMA 2.5: Let £2 = (2, £2,) be a circular network of type C (m, n),
with a conductivity vy. Suppose given the boundary values ¢ (p,) for all
boundary nodes p,. Then there is a unique y-harmonic function u with
u(p,) = ¢ (p,) for each boundary node p,.

Proof : For each interior node, Kirchhoff’s Law becomes a linear equation
for the values of u. We then have a (1 + mn) by (1 + mn) matrix equation

Ku=5>5.

Here u is the vector of values u(p) as p varies over the interior nodes ;
b is obtained by moving the terms in Kirchhoff’s Law which involve
boundary values of u# to the right hand side. If the boundary values of
u are all 0, Corollary 2.3 shows that u must be zero at all interior nodes. Thus
the matrix K is non-singular. a

As a result, A, is a well-defined linear map from boundary functions to
boundary functions. Lemma 2.2 shows that the kernel of A, consists of the
constant functions.

LEMMA 2.6 : Let u be a y-harmonic function on (2. Let p be an interior
node and q a neighbor of p. The value of u(q) is determined by the values of
v(pr) for all neighbors r of p, the value of u(p), and the values of
u(r) for all neighbors r of p other than gq.

Proof : In Kirchhoff’s Law at node p, all the terms except y (pg) u(q) are
given. The value of u(g) is then determined because of the assumption that
v (pq) # 0. a

Let a be any real-valued function defined on the set of edges
£2,. For any function f on 2, let L, f be the function defined on
2, by

Lyfe)= Y a)FP@)-f@)

qe ¥ ()

L, is a linear operator on the set of functions defined on int £2,. In the case
where y is a conductivity function of {2,, a function f which satisfies
L, f(p) = O for all nodes p € int £2 is y-harmonic. For any boundary node
p, L, f(p) is the current through p due to f, which is called /,(p).

vol. 28, n° 7, 1994
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LEMMA 2.7 : Let 2 = (82, 12,) be a circular network with conductivity v,
and let f and g be functions on 2, Then

2 YeDU® -f@N@P)-9@)= Y 9@L,fP).

pge 2} pe g

Proof For each edge pg € 12,

YU @) - f@NgP)—9@)) =
=g@)ye)F@)—-f@)+9@) yga)f®) - flg)).

Summing over all edges 1n {2, gives the result O

COROLLARY 2.8 : Let g be a function on 2, and let f be a y-harmonic
function on 2. Then

Y ve @ -f@N@@)-g@N= Y a@)1;Pp).

pg € 2, peafgy
The following 1s a discrete form of one of Green’s 1dentities.

LEMMA 2.9 : Let f and g be y-harmonic functions on 2 Then

Yo=Y f@L,0).

pef pedfgy

Proof By Lemma 2.8, both sides are equal to
Y v @) -fe)NgP®)-9@)).

Pge 2y

O

The following lemma provides a way to construct y-harmonic functions
with prescribed data, some of which are boundary values, and some of which
are boundary currents This will be used extensively in the reconstruction
algorithm of Section 5.

LEMMA 2.10: Let 2 = (L2, £2,) be a circular network of type
C(m, 4 m + 3), with a conductivity v Suppose given the boundary values
u@,) for 0<j=<2m+ 1, and suppose given the values of the current
1,p,) for 1 <j <2m+ 1. Then there is a umique y-harmonic Sfunction u
with this boundary data

Proof Usmmg Ohm’s law, we find the value of u at the nodes
pm,j) for 1<)<2m+1 Usng Lemma 2.6 we find the values of
u at the nodes p@,yj) for 1=m-1, m-2, ..,2,1, and
J=m+1—1,..,m+1+1, and then at the center node p(0, 0). Working
outward from p (0, 0), using Lemma 2.6, the values of u are obtained at all
the remaiming nodes. O
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LEMMA 2.11: Let 2 = (82, £2,) be a circular network of type
C (m, 4 m + 3) with a conductivity y. Let u be a y-harmonic function on 2.
Suppose that u(p,) =0 for 1 <j<2m+ 1, and also that the boundary
current 1,(p,) =0 for 1 <j <2 m + 1. Then either u is identically O or the
values of u(p,) for 2m + 2 <j <4 m + 3 are all non-zero and alternate in
sign.

Proof : Ifu(p,,, . 3) = 0, Lemma 2.10 applies to show that u(p) = O for all
nodes p. If u(ps,,,3)# 0, the values of u at all nodes are found by
Lemma 2.6 just as in the proof of Lemma 2.10. The following diagram
shows this situation for a network of type C (2, 11) where u(p,,,.3) is
assumed to be positive. At each node p where u(p) # 0, the sign of
u(p) is indicated by + or —.

®* —

Figure 2.

The results is that the values u(p,,,.2), u@Prm.3)s oo Py, 3) Must
alternate in sign. O

For any sequence of 2 m + 1 consecutive nodes where both the function
u and the current I, are to be 0, there is a similar pattern. We will use these
special y-harmonic functions in the reconstruction algorithm of Section 5.

3. THE DIRICHLET-TO-NEUMANN MAP

Throughout this section, {2 = (§2, £2,) is a circular network of type
(C)m, n and v is a positive function on 2,. Let A be the Dirichlet-to-
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Neumann map for 2 as defined in Section 2. The boundary nodes are
numbered sequentially by p,, p,, ..., p,. As always, the convention is that
Po = P, We put the inner product on boundary functions :

(b 0y =Y 6G) U@,

Jj=1
A bilinear form Q(., . ) on boundary functions is defined by

0, ¥)= (s, ¥).

For each index j = 1, 2, ..., n, let ¢, be the boundary function which is 1 at
node p, and O at all other boundary nodes. The Dirichlet-to-Neumann map
A is represented by a matrix A = {4, ;} as follows. The entries A,  are
given by :

Al,j = Q(¢n ¢j) .

The entry A, , may be interpreted as the current at node p, resulting from the
boundary potential which is 1 at node p,, and O at all other boundary nodes. It
follows from Corollary 2.3 that if the boundary potential has value 1 at all
boundary nodes, then the potential will have value 1 at all interior nodes, and
hence the current is 0. This implies the sum relations : for each
i=1,2,.., n,

YA, =0.
J=1

From 2.9, it follows immediately that the matrix A is symmetric ; that is,
Al, J = A 7, i

Before stating the remaining property of the matrix A, we need a
definition.

DEFINITION 3.1: A k by k matrix B is said to have the Right Sign, if
(1) k=1 or 2 mod 4, then detB <0
(2) k=3 or 0 mod 4, then detB = 0.

Let A be the matrix representing the Dirichlet-to-Neumann map A for a
circular network of type C (m, n). Let B be a k by k submatrix of
A formed by choosing k rows and & columns which correspond to
2 k distinct nodes which occur in sequence (not necessarily consecutive)
around the boundary of 2. Such a matrix B is said to be sequentially
obtained from A. By a rotation of 2, we may assume that the rows are

I1y ooy Ipo and the columns are Jis cvs J with
l=ij<- +<iy<j;<:--<j,=n. In this situation, the matrix B lies
strictly above the diagonal of A. Let r, r,, ..., r, be the boundary nodes
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corresponding to the rows iy, iy, ..., iy, and let q,, g,, ..., g, be the boundary
nodes corresponding to the columns j,, j,, ..., j,- The matrix B has the
following interpretation. Let v = (v, v,, ..., v;). Let ¢ be the boundary

function with ¢ (g,) = v, for 1 <i <k and ¢ (p) = O for all other boundary
nodes p. Let A(¢) be the boundary current corresponding to ¢. Then
Bv is a vector whose entries are the values of A(¢ ) at nodes ry, ry, ..., 7}

THEOREM 3.2 : Let A be the matrix representing the Dirichlet-to-Neumann
map for a circular network of type C (m, n), with n=4m + 3. Let k be an
positive integer with k <2 m + 1 and let B be a k by k submatrix sequentially
obtained from A. Then B is nonsingular, and has the Right Sign.

The proof will follow several lemmas.

LEMMA 3.3 : Let us be a y-harmonic function on a circular network of type
C (m, n). Suppose u has value 0 and current 0 at k consecutive boundary
nodes, where k+2m + 1. Then either u=0 or there is sequence of
k + 1 boundary nodes at which the values of u are non-zero and alternate in
sign.

Proof : Denote the set of boundary nodes where u is assumed to have value
0 and current 0 by V. Let W = {p,, ..., p,,} be the largest set of connected
boundary nodes where u has value 0 and current 0 and which contains
V. For each p, € W, let R, be the ray from O to p, and let C be the largest
connected set of nodes on R, containing p, for which the value of
uis 0. Let ¢, be the cardinality of C. Let ¢y = max {c|, ..., ¢, }. We consider
the following cases.

Case 1. Suppose there is an adjacent pair p,, p,,, € W such that
¢, =c¢,,1 =m+ 2. Then either u = 0 or else there is a ° trapezoidal ° set of
nodes where ¥ = 0 which is bounded by at least 2 m + 2 nodes where the
values of u are non-zero and alternate in sign. Each of these nodes where
u is positive has a neighbor where u has greater positive value. Such a node is
connected by a chain of nodes of successively more positive value to a node
on the boundary of positive value. Each node of negative value is connected
by a chain of nodes of successively more negative value to a node on the
boundary of negative value. These chains cannot cross. This leads to a set of
2 m + 2 boundary nodes at which the values of u are non-zero and alternate
in sign. Since kK + 1 <2 m + 2 the lemma is true in Case 1.

Case 2. Suppose there is an adjacent pair p,, p,.; € W such that
¢,=¢ 4,1 =cxk<m+2. Thenc¢,_;=c¢ ~1forj<iandc ,,=c —1for
J =i+ 1. It follows that there will be a node on each ray R, j # i,
i +1 at which u % 0 and which is adjacent to a node on Rj at which
u = 0. The sign of u alternates as we go from R, to R, _, and as we go from
R, ., to R,. In addition there must be non-zero values of u on R,,
R, ., at least one of which alternates with the signs of » on R, ..., R, _ |,
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R, .5 ..., R,. Consider the sign of u on ray R;. On the ray to the left of
R, at the node which is one circle closer to the boundary of the network, the
sign of u is opposite to what it is on R,. A similar statement holds at
R,, an argument similar to Case 1 allows us to conclude that there are at least
k + 1 non-zero boundary values of # which alternate in sign.

Case 3. Suppose that the maximum value ¢, is assumed only once. Then as

in Case 2 we must have ¢, _;=c¢,_; for j <k, and ¢,,;=¢,—1 for
J = K. An argument similar to Case 1 allows us to conclude that there are at
least £ + 1 non-zero boundary values of u which alternate in sign. a

LEMMA 3.4: Let 2 = ({2, £2,) be a circular network of type C (m, n)
with n=4m + 3. Let S be a set of contiguous boundary nodes, and let
T be the complementary set of boundary nodes. Let k be an integer with
k=<2 m + 1. Suppose that u is a y-harmonic function with u(p) = 0 for all p
in S and for which the current I ,(p) = O at k distinct nodes p in S. Then either
u is identically zero or there are at least k + 1 boundary nodes p with
u(p)+0.

Proof : Suppose that there are g non-contiguous sequences of nodes from
S of lengths ky, ky, ..., k,, with 3k, = k, and suppose that I, = O at each of
these nodes and that 7, # O at all other noses in S. There must be a total of at
least k sign changes among the values at the nodes neighboring the regions of
Zeros.

Each of these nodes where u is positive has a neighbor where
u has greater positive value. Such a node is connected by a chain of nodes of
successively more positive value to a node in T of positive value. Each node
of negative value is connected by a chain of nodes of successively more
negative value to a node on the boundary of negative value. These chains
cannot cross. Thus there must be at least k£ sign changes among the values of
u at the nodes in 7. O

DEFINITION 3.5: A k by k non-singular matrix B is said to have the
Alternating Property if the following condition holds. Suppose that
¢ = Bv and that the signs in c alternate. Then the signs in v must be the
negative of the reversal of the signs in c. That is, if k even, and the pattern of

signsincis(—, +, —, +, ..., + ), the pattern of signs in v must also be
(—, +, —y +, ., +). If k is odd, and the pattern of signs in c is
(-, +, —, +, ..., — ), the pattern of signsin v must be (+, —, +,
— ey )

LEMMA 3.6 : Let A be the matrix representing the Dirichlet-to-Neumann
map for a circular network of type C (m, n). Let k be an positive integer with
k=2m+ 1 and let B be a k by k submatrix sequentially obtained from A.
Then B has the Alternating Property.
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Proof : Let q,, g5, ..., q, be the nodes corresponding to the choice of the
k columns of B, and let r|, ry, ..., r; be the nodes corresponding to the choice
of the k rows of B. By a rotation of Q if necessary, we may assume that
lsri<---<rg<gy<---qy<n. Letv = (v, ..., v;) be a vector of poten-
tials at nodes g¢,,...,q, and let ¢ =Bv. For each i =1, ..., %k Ilet
s, be the interior neighbor of r,. Figure 3 illustrates the case of a circular
network of type C (2, 12)) and k& = 4.

¢ q3
Figure 3.

The sign of the potential at node s, must be opposite to the sign of the current
through r,. By repeated use of Lemma 2.1, the node s, can be connected by a
chain of nodes with potential of the same sign and increasing magnitude to a
boundary node also with potential of the same sign. These chains cannot
cross. It follows that the potential at nodes gy, g, _, ..., g,, ¢, must have the
same signs as the potential at nodes s, s,, ..., §;. Thus the values of the
potential at the nodes q,, ¢,, ..., g, must be the negatives of the reversal of
the values of the current through nodes r,, r,, ..., 7, 0.

For any positive integer k let D be the k¥ by k matrix with nonzero entries
only on the diagonal, and D, , = (— 1) "%

LEMMA 3.7: Let B be a k by k non-singular matrix which has the
Alternating Property. Then each entry of the matrix (— 1) DB~ D is non-
negative. If in addition all of the k — 1 by k — 1 minors of B are nonsingular,
then each entry of the matrix (— 1)) DB~ D is positive.
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Proof : If any entry of (— 1) DB~! D were negative, then B would not be
alternating. If each &k — 1 by k& — 1 minor of B is nonsingular, then every entry
of B~! is non-zero, and each entry of (— 1) DB~! D must be positive. O

We proceed with the proof of Theorem 3.2.

Proof: Let B be a k by k submatrix sequentially obtained from
A. Suppose that Bv = ¢. Lemma 3.4 shows that if ¢ = 0, then v = 0 also.
Thus B is nonsingular. The one by one submatrices of B have the Alternating
Property. This shows that the entries of B are negative. The proof that
B has the right sign follows by Lemma 3.7 and induction on %, using
Cramer’s rules for B~ . O

REMARK 3.8: Let 2 = (£, £2,) be a circular network of type
C (m, 4 m + 3). Let u be the y-harmonic function on £ with the following
boundary data: u(p,)=0 for O<j=<2m+1; 1,(p))= (=1)Y for
l1<j<2m+ 1. Theorem 3.6 shows that the voltages at the remaining
nodes satisfy u(p,) >0 forj evenand2m +2=<j<4m + 2and u(p,) <0
for j odd and 2m+3=<j=<4m+ 1. In this situation, the proof of
Theorem 3.2 actually proves more. For each 1 <j<2m + 1, boundary
node p, can be joined by a chain of nodes with potential of the same sign and
of increasing magnitude to boundary node p,,, ,3_, with potential of the
same sign. The chain of edges joining these nodes will be called a principal
flow path. Along a principal flow path the magnitude of the current is non-
decreasing from boundary node p, to the boundary node p, , , ». The current
along an edge joining a node of positive potential to a neighboring node of
negative potential will be called transverse to the principal flow.

The principal flow paths for a circular network of type C (2, 11) are

illustrated in the figure 4. The boundary potentials (zero, positive or
negative) are indicated by the symbols (0, +, — ) respectively, placed
adjacent to the nodes.
For any edge in £2,, there is a pattern of boundary data (obtained by a
suitable rotation of fig. 4) that places the chosen edge along a principal flow
path. Similarly, for any edge in {2, there is a pattern of boundary data that
places the chosen edge transverse to the principal flow.

4. THE DIFFERENTIAL OF T

Let 22 = (£2,, £2,) be a circular network of type C (m, n). The number of
conductors is N =n(2m + 1). For each conductivity function y on
2,, let Q,(., . ) be the bilinear form in n variables as defined in Section 2.
Let 5 (n) be the space of bilinear forms in n variables. Let

T: (RYYW 5 Fn)
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9 0

. :

e .

+

Figure 4.

be the function given by T(y)=0,(.,.). We want to compute the
differential of 7. For this, we consider a small perturbation « of
v, and calculate the difference T(y + «) — T(y). Let ¢ be a boundary
function. Let f be the y-harmonic function on 2 which takes on the
boundary values ¢ and let & be the (¥ + «)-harmoonic function on
2 which takes on the boundary values ¢. Thus L, f(p) =0 and
L,, . h(p)=0 for all peint 2. Let h=f +e. Then e(p) =0 for all
ped2,andL, .  e(p)=—L, f(p)forall p € int 2. If c is a function out
int 2, L~ !¢ is defined to be the solution v of Lv = ¢, with v =0 on
302. Then L' L, e = e, and we have

d+Ly'Lye=~L;"L . f.
If ||« | is small, 7 + L' L, is invertible, and
e=—-U+L,"L)HLL, f.

Thus e vanishes to order 1 in ||« | because L, f vanishes to order 1 in
k. Then

O,.«(d, ¢)=
= Y (v@®9)+ @) h(p) —h(@))

pge 2
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=0,(¢, #)+2 Yy (v(pq) (F@)-f(@) (ep) - e(g)

PqE 2y

+2 Y k@q) (f@)— f@)e@)-e(q))

pge 2,

+ Y v@q) (e@)-e@))

PqE 2

+ Y k@) @ -f@F+ Y «@q)(e@)-e(@).

pPq € 2, pPqE 2

Using that ¢ = 0 on 82 and Lemma 2.7, we have

Q). (6, 8)-0,(8,¢)=Y x@g) F@)-f@F+0 |«]|>.

pPge 2y

Therefore the differential of T at the conductivity 7y, perturbed by
x, and evaluated at (¢, ¢ ) is

df = 'y «(q) FP)-f@).

pPge 2

Considered as a linear map from (R* )V to F (n), the differential 4T is given
by :

dl («) (¢, ¥)= Y «(pq) (f®)- (@) @P)-9(q))

P2

where f and g are the y-harmonic functions which take on the boundary
values ¢ and ¢ respectively.

LEMMA 4.1: Let 2 = (2, £2,) be a circular network of type C (m, n)
withn = 4 m + 3. Let « be any real-valued function on (2. Suppose that for
all y-harmonic functions f and g, that

Y k@) F@)-f@) @@)-g@)=0.

pge 2y
Then « = 0.

Proof : Order the edges of {2 from the outside inwards ; that is, all the
outermost edges come first, then the edges on the outer circle, etc. Recall
from Lemma 2.11, that for each sequence of 2 m + 1 consecutive boundary
nodes of 2, there is a (non-zero) special y-harmonic function f which has
value O and current O at these nodes. For each edge o € {2, there is a pair of
such  special functions f and g, such that the product
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@) - @) (glp) —g(g)) # 0 when pg = o, and this product is O for all
edges pg which follow o in the ordering. The proof that « (¢) = 0 for all
o € £2, follows readily by induction using the ordering on the edges. [

THEOREM 4.2: Let 2 = (24, 22,) be a circular network of type
C(m, n) with n = 4 m + 3. Then the differential of T is one-to-one.

Proof : This follows immediately from the expression for the differential
dT and lemma 4.1. O

5. AN ALGORITHM FOR COMPUTING CONDUCTANCES

Let 22 = (£2,, £2,) be a circular network with of type C (m, 4 m + 3). We
use the results of Sections 2 and 3 to give an algorithm for computing
v from A,.

Let A be the matrix representing A, as in Section 3. We will use
A to find the boundary values for the special y-harmonic functions described
by Lemma2.11. Let w be the (column) vector whose entries are

W, =A, 43 fori =2m+2, ..., 4m + 2. Let B be the special submatrix
of A whose entries are B, , =A, , for i=2m+2,...,4m+2 and
j=1,...,2m+ 1. Let v be the solution to the matrix equation Bv + w = 0,
guaranteed by Lemma 3.6. Let ¢ be the boundary function whose values are
¢Po)=1. 0y
¢@)=v, for j=1,..,2m+1. 2)
¢@P)=0 for j=2m+2,..,4m+2. 3)

Let A(¢) =1 be the resulting current. By the construction, I (p,) = 0 for
i=2m+2,..,4m+ 2. The pattern of zero voltages is indicated by the
circled nodes by figure 5.

Remark 5.1 : By a rotation there is a similar voltage pattern with any other
node p, in the position of pj.

The algorithm will proceed inwards by levels. The outermost boundary
conductors are at level m + 1. For each integer i =m, m —1, ..., 1, the
circular conductors on the circle of radius / and the radial conductors
between this circle and the circle of radius i — 1 are at level i.

For each boundary node p,, let g, be its interior neighbor. We first use the
boundary function ¢ and / = A(¢ ) to calculate the conductance vy (p, go).
The pattern of 0’s shows that u(gy) = 0. By Ohm’s Law :

Y Po 90) ((pg) — u(go)) =1 Py) .

Then, wusing Remark5.1, we can calculate vy(p,gq,) for all
j=1,..,4m+3.
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4

DP2m+1

Do = Pim+3

P2m+2 ® Pim+2

Figure 5.

Assuming now that we have calculated vy (p, ¢,) for all boundary conduc-
tors we calculate y (pg) for all circular conductors at level m as follows.
From the potential ¢ and the current / = A(¢ ). We first calculate
u(g,) by Ohm’s Law :

Y@ q1) Wwpy) —u(q) =1(p,).

All the current through p, g, must pass through g, gq,. Then we compute
¥ (g0 ¢:) by Ohm’s Law.

¥ (90 91) (u(qo) — u(q,)) = I (po) .

Using Remark 5.1 again, we can calculate all conductances on the outermost
circle. We next calculate the radial conductors 7y (rs) at level m — 1 as
follows. The boundary potential ¢ and the boundary current I = A(¢)
enables us to calculate the value of u at all nodes on the circle of radius
m. We then calculate the current across edges p(m, 0)p(m, 1),
pm+1,1)p(m, 1) and p(m, 1) p(m, 2). Using Kirchhoff’s Law, and the
known value of O at p(m — 1, 1) we can calculate y(p(m, 1) p(m — 1, 1))
by Ohm’s Law. Using Remark 5.1 again, we calculate the conductances for
all radial edges at level m — 2. We then calculate the circular conductances at
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level m — 2. Continuing inwards, in a similar way we calculate all the
conductances.

THEOREM 5.2 : Let 2 be a circular network of type C (m, n). The map
which sends conductivity vy to the matrix representing A, is 1-1. Let yand p
be two conductivities on . If A, is sufficiently near to A,, then
vy will be near to p.

Proof : The algorithm shows that the Dirichlet-to-Neumann map A,
uniquely determines the conductivity . The algorithm also shows that each
conductivity can be calculated by an algebraic formula which never involves
division by 0. This shows the continuity of the inverse. O

Remark 5.3 : This method of special functions can be used to give an
algorithm for computing conductances of a circular network of type
C (m, n) whenever n =4 m + 3. The uniqueness and continuity of inverse
also hold for such networks.

6. CHARACTERIZATION OF A,

Let 2 = ({2, £2,) be a circular network of type C (m, 4 m + 3). Suppose
the conductivity is y. The Dirichlet-to-Neumann map is represented by a
n by n matrix A = {A, ,}, as in Section 3. We showed that the matrix
A has the following relations.

(R1) A is symmetric: A, , = A

(R2) Foreachi =1, 2, ..., n,

]t

In Section 3, we showed that the matrix A has the following property,
which will be called the Determinantal Property.

(DP) Each square submatrix of A obtained by choosing k rows and
k columns sequentially from A the Right Sign (see Definition 3.1).

LEMMA 6.1 : Suppose that vy is a conductivity on a circular network with n
boundary nodes. Then the values of the n(n — 1)/2 entries of A above the
diagonal determine uniquely the remaining entries of A.

Proof : The entries below the diagonal are obtained from the symmetry
relation ; A, , = A, ,. The diagonal entries are then obtained from the sum
relation. a

THEOREM 6.2 : Let m be a non-negative integer, and let n = 4 m + 3. Let
A be a n by n matrix whose entries satisfy the relations R1, R2, and which
has the DP. Then there is a unique conductivity function y on a circular
network of type C (m, n) such that A is the matrix representing A.,.
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The proof will follow several lemnas. An » by n matrix A will be called a
A-matrix if it satisfies the relations R1, R2, and has the DP. We will show
(Lemma 6.7) that the set of n by n A-matrices is path-connected. Thus the
given A-matrix A can be joined to the A-matrix correspondingto y = 1 by a
path of n by n A-matrices. The proof of the theorem will be completed by
showing that every matrix on this path must be of the form A,.

We will need the following elementary facts from matrix algebra.

LEMMA 6.3 : Let B® be a sequence of n by n matrices with lim B® = B.
k— o
Let v be a sequence of vectors of bounded norms. Then the norms of
B®v® and the magnitudes of (v®, B®¥ v®) are bounded.

LEMMA 6.4 : Let B® be a sequence of n by n matrices with lim B% = B.

k> o0
Assume that B and each B®) is nonsingular. Let c be a fixed vector, and let
v® be a sequence of vectors with B®) v® = ¢ for each k=1, 2, ..., . Then
the norms of v® are bounded.

Let M = {M,’j} be a k by k matrix. For each (i, j), let M(i, j) be the
(i, j)-th minor, thatis, the (k — 1) by (k — 1) matrix formed by deleting the
i-th row and the j-th column of M. The expansion of det (M) by its first
column gives

t=k
detM = ¥ (- 1Y *'M, (detM@, 1).

1 =1

For each integer k = 1, we define a function f, as follows. f, is defined to
be the constant 0. For k=2, f, is a function of the entries of a
k by k matrix M, defined by :

fiM) = ('fl (— 1y 5+ M, det M, 1))/detM(k, 1).

Observe that f,(M) is a function of the k*-1 entries
M gy ooy My ooy My ).
That is, f,(M) is independent of the entry M, ,; f, (M) is well defined if

det M (k, 1) # 0. Recall (definition 3.1) that a k by k£ matrix M is said to have
the Right Sign (RS) if:

detM <0 when k=1, 2mod4 (1)
detM =0 when k=0,3mod4. 2)

LEMMA 6.5 : Let M be a k by k matrix such that the minor M (k, 1) has he
RS. Then if the entry M, , < f (M), M will have the RS also.
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Proof : This follows by expanding det M by its first column, and using the
definition of the function f,. O

Lemma 6.1 shows that we may take the n(n — 1)/2 entries above the
diagonal as parameters of A. Thus the total number of parameters is the same
as the number of conductors. Let N =2 m@4m + 3) = n(n — 1)/2.

It is convenient to consider an extended matrix A. For all integers
p and g, the entries of A are given by A, pmgrqn =4

The parameters are ordered as follows. For each integer A& with
l<sh=N, let

h=a+ @Am+3)b-1)

where ]l =sa<4m+ 3 and 1 <b =<2m — 1. Then the A-th parameter is at
position (@, 2 m + 2 + a — b) of A. By means of the definition of the entries
of A, and symmetry, this corresponds to a unique entry of A above the
diagonal. If a—-b=2m+ 1 the h-th parameter is the entry
@2m+2+a—-b)ofA;ifa— b =2m+ 1 the h-th parameter is the entry
(a—b—-2m—1, a) of A. Figure 6 shows the sequence of parameter entries
in A for a circular network of type C (1, 7).

* 19 12
* 20
L *

Figure 6.

For h=4m+3, leth=a+ 4dm+3) (b -1), as above. Then the A-th
parameter position is in the lower left corner of a b by b submatrix of the
extended matrix A, which will be denoted B(h). The other entries of
B (k) correspond to parameters x, for i < h. For each integer 1 <j <N, we
define a function F](xl, ey X _ 1) as follows. For 1 =j <=4 m + 3, F, = 0.
Suppose inductively that F', has been defined for i <.
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The domain of F, will be the set of x, A, ..., A, _; such that for each
l=i=sj, x, <F, (x|, x5, ..., x, _). Then

Fj(xl, . xj_1) = fpBG)).

Inductively, we see that F ](xl, s X, ) 8 well-defined for each
j=1,..,N.

REMARK 6.6 : Let S be the set of parameter values x|, x,, ..., Xy such that
for each 1<j=<N, X, st(xl, Xy eees xj_l). An n by n matrix with
relations R1 and R2 will have the DP if and only if its parameter values lie in
the set S.

LEMMA 6.7 : S is a path-connected set in RN.

Proof: For each h=1, ..., N, let S, be the set of parameter values
(x, X3, ..., x) such that x, < F (x;, x5, ..., x, _), for each 1 <j <h. We
will show by induction on % that each §, is path-connected set in
R;. S; = {x,:x, <0}, and so is path-connected. Assume inductively that
S, is path-connected for j < h. Let (xy, ..., x, _y, x3) and (¥, ..., Y, _ 1> Y5) be
two points in S,. Take B (¢) = (B,(?), ..., B,_1(t)) a path in S, _, joining
15 o, xp_)and (yy, ..., y,_ ). Let T = min, {F,(B(t))}. We have three
paths :

(1) The straight line (x,, ..., X, _y, X3) to (X1, ..., X5 _ 1, T).

2) (B@), T).

(3) The straight line (y, ..., Y41, IT) to (¥}, .--» Y4 _1> ¥)- These three
paths give a path from (x;, ..., x,_ |, X3,) t0 (¥}, .o» Yh_ 1> Yp) iD S, |

DEFINITION 6.8 : A matrix whose entries satisfy the relations R1 and R2
and has the property DP will be called a A-matrix.

Lemma 6.7 implies that the set of A-matrices is connected. Let A be a
n by n A-matrix. To prove Theorem 6.2 we need to show that there is a
unique conductivity function y such that A is the matrix representing
A,. We denote by L(n) the set of n by n matrices A which represent
A, for some conductivity ¥ on £2,. It follows from Theorem 4.2, Lemma 6.5
and the open mapping theorem that L(n) is an open subset of the set of
n by n A-matrices. Let A(¢) for 0 <t < 1, be a path of A-matrices joining
A(0) with A(1), where A (0) is the A-matrix corresponding to ¥ = 1, and
where A(1) = A is the given A-matrix. We will show that each matrix along
this path is in L(n). Suppose the contrary. Since the set of ¢ for which
A(t) is in L(n) is open, there is a the first value 7, for which A (¢y) is not in
L(n). For each t<t, let y(z) be the conductivity corresponding to
A (). For each conductor pg, we pick a number u (pg) which is zero,
infinity, or a positive real number and a sequence {¢,, t,, ..., t;, ...} Wwith
lim z, =¢t;, and such that lim vy (¢) (pq) = » (pg). We will write

k> o k=
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y ® for vy (z,) and A® for A(z,). We know that lim A® = A® and each of

k—
these is a A-matrix. It follows from Lemma 6.3 that for any fixed boundary
potential ¢, the magnitudes of (¢, A®p )) are bounded. Also, because of
the conditions on the values of the parameters, each sequentially obtained
square submatrix of A®), and each sequentially obtained square submatric of
A® is non-singular.

We will make use of the principal flow patterns described in Remark 3.8.
Let ¢ be the vector of currents ¢= (-1, +1,..., —1) at nodes
Pi» P2» -+» Pame1- For each k, let M%® be the sequentially obtained
2m+ 1 by 2m + 1 submatrix of A% consisting of the entries from rows
1,2, ...,2m+1andcolumns2m +2,2m+ 3, ..., 4m + 2. Let v® be the
solution to M®v® — ¢, Let ¢® be the boundary potential given by
p®@,)=0for 0<j<2m+1, and y ©¥@p) =vP@) for j =2m +2,
2m+3, ..., 4m+2. ¢ ® s the boundary potential which produces current
c at nodes py, Ps, ---» Pam+1- Let u® be the y ®-harmonic function with
boundary values t//(")(p, ). This situation is illustrated by the flow diag-
ram Fig. 4.

LEMMA 6.9 : In this situation, there is an upper bound for the magnitudes
of |u®(p)| for all k and all nodes p. There is also an upper bound for the
currents |y ©®w® p) — u®(q))| for all edges pq.

Proof : Lemma 6.4 shows that there is an upper bound for the values of
| ®(p,)| for all boundary nodes p, and all k. By the maximum principle,
this is also an upper bound for |u(")(p)| for all nodes p and all
k. Lemma 6.3 shows that there is an upper bound for the currents at all
boundary nodes p, and all £. This is also an upper bound for the current along
any edge. O

We continue with the proof of Theorem 6.2.

(i) Assume that for some conductor pg, u (pg) = 0. Whether radial or
circular, by a rotation of the figure, we may assume that pg lies along a
principle flow line as in Figure 7.

Let y“pg) = ¢, where lim & = 0. Let the y-harmonic functions

A -
u®) be as in Lemma 3.8. Specifically, the boundary data is : u®(p,) = 0 for
Osj=<2m+1and I, wp)=(-1Y forl=sj<2m+1.

Let r be the boundary node at the low end of the path of principal flow.
Suppose that the current at » is — 1 (a similar argument would apply if the
current at r is + 1). Then u*’(g) = 0, and the current across pq is at Jeast 1.
Then ® @

u@P)-ut(q)=1le,.

This would imply that lim «®(p) = co, contradicting Lemma 6.3.

k- oo
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o T

Figure 7.

(1) Next suppose that u (ab) = oo for some boundary conductor ab By a
rotation of 2 we may assume that u (py go) = oo Refer to figure 8 for the
notation.

Given a positive real number R, choose a positive wmteger Z so that if
k=Z, y®(@pyq,)=R. For each positive mteger k letu®™ be the
v ®_harmonic function on £ as in Remark 3.8. Let ¢ (k) be the function
u(k) restricted to the boundary of £2. Let Y be an upper bound for all
|A® (¥ ©)(p,)|. Then

0=u®@g)=u®(g)<YR.

The current across conductor ¢, p; 1s 1, so the current across g, ¢, 1s at least
1. Then

y®q,p)=RIY

and
y®(goq,)=RIY .

Recall that ¢, 1s the function on 842 which 1s 1 at p; and O at all other
boundary nodes. For each positive integer k, consider the network
2 with conductivity y® Let v® be the potential on 2 which equals
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-

Figure 8.

¢, on the boundary of 2. Let W be an upper bound for |A“)(¢,(p,))|. Then

v®(qy) < WY/R
v®(g)=1-WYR.

The current ¥ ©(gq ;) ©®*(q,) — v*(gy)) would tend to o as k — o0. By
the maximum principle, the value of v¥(g,) is = the value of v* at any node
other than p,. It follows that the current across p, ¢, is greater than or equal to
the current across g, g, which contradicts the upper bound on the values of
AW,

From (i) and (ii), we can assume that ¢ < y ®(ab) < X for each boundary
conductor ab and each k = 0.

(iii) Assume that for some interior conductor pg, u (pq) = 0. Whether
radial or circular, by a rotation of the figure, we may assume that the edge
pq is transverse to the principal current flow. Let r be the boundary node at
the low end of the principal path containing p. Similarly let s be the boundary
node at the low end of the principal path containing g. Let r’ be the interior
neighbor of r and let s’ be the interior neighbor of r. The situation is
illustrated by figure 9.

Let ¥y %(pg) = X"“), where lim X"“ = oo. Let ¢ and the y-harmonic

k = 0
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Figure 9.

functions u*’ be as in Remark 3.8. Again suppose that the current as
ris — 1. Then

u@P)=u@')=1/X
u@)=u(s')=s-1X.

This would give a current through pg which is
Y Qeg)w @) - u(g) =2XYIX .

This has limit oo, which contradicts Lemma 6.9.
Let A be a n by n matrix which is a A-matrix. We have just shown that
A is of the form A,. This completes the proof of Theorem 6.2.

7. THE NEUMANN-TO-DIRICHLET MAP

Let 2 = (£2,, £2,) be a circular network of type C,(m,4m + 3). If
boundary currents f(p,) are put at each boundary node p, of £, with

Z f )= 0, there will result a potential « throughout (2, which is unique to
=1

within an additive constant. Let ¢ (p,) be the boundary potentials of
u. The map which takes f to ¢ is called the Neumann-to-Dirichlet map
V. ¥ gives rise to a bilinear form F on the set of boundary functions with
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sum 0, by

Ff,9)=(f, ¥(9))
F is well defined, independent of the additive constants. From the bilinear
form F, a matrix representation B of the Neumann-to-Dirichlet map is
obtained as follows. For each 1 =<j =<mn, let f, be the function on the
boundary nodes of {2, given byf;(gj) =+1f,@ . )=-1landf,(p)=0
for all k£ #j, j + 1. Then the entries of B are given by

Bl,sz(fl’fj)‘

The matrix B represents the Neumann-to-Dirichlet map on the network in the
following way. Let a current of + 1 be put at node p, and — 1 at node
P, ,1- Then B, | is the voltage difference between nodes p, and p, , ;.

The relation between the matrix A for the Dirichlet-to-Neumann map
A for 2 and the matrix B for the Neumann-to-Dirichlet map ¥ for

2 is the following. Let P be the matrix, whose entries are P,, = + 1,
P,,y,,=—-1,P;,=-1and P, , =0 for all other entries. Let PT be the
transpose of P.
Then
B=P'A'P
and
A=PB 'PT.

This requires some explanation, because A and B each have rank
n—1. A~ ! is defined on each column of P, and gives a column which is
unique to within an additive constant. Multiplying on the left by PT removes
the ambiguity, so the product PT A~! P is well defined and it is the matrix
B. Similarly, PB~' PT is well defined and is the matrix A.

A reconstruction algorithm which is similar to that given in Section 5
based on the Neumann-to-Dirichlet map can be given.

8. EFFECTIVE RESISTANCES

Measurements at boundary nodes are made as follows. A current of
+ 1 is put at node p,, and a current of — 1 is put at node p, ; at all other
boundary nodes, the currents is 0. From this Neumann data, there will result
a potential u throughout {2, unique to within an additive constant. Let
R, be the potential difference measured between node p, and p, ; is called the
effective resistance between nodes p, and p,. The set of measurements
R, , may be used to reconstruct the matrix B which represents the Neumann-
to-Dirichlet map as follows. For each pair of integers i and j between 1 and
n, let ¢, , be the current described above. Thatisc¢, ,(p,) =1, ¢, ,(p,) = - 1
and c, ,(p;) = 0 for all other boundary nodes p;.
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Then
Rl,j+1 = <Cl,/+1’ W(Cl,j+l)>
using
Cz,j+l=fz+f1+1+"'fj
we see that
P=J9=)
R1,1+1_ Bp,q
p=t,q9=1
From this, it follows that for each i,
Bl,l =Rl,l+l
and for j > i,
p=j-lqg=5 1
2Bl,j=R1,j+l_ Z Bp,q'
p=1,q9=1

The entries of the matrix B may be computed from the entries of
R, by induction on the difference j — i. From the reconstruction algorithm of
Section 5, it follows that the effective resistances uniquely determine the
values of the conductors in the network.

9. OTHER CIRCULAR NETWORKS

In this Section, we will consider other types of networks with m circles and
n rays. There are four types of circular networks labelled C,(m, n),
C,(m, n), C3(m, n) and C,(m, n). The circular networks of type C (m, n)
defined in Section 1 will now be labelled C,(m, n).

For each pair of positive integers m, n, the circular network of type
C ,(m, n) has m circles and n rays. Figure 10 illustrates a circular network of
type C,(3, 12).

The nodes of C,(m, n) are the points p, ,forl si<mandO0<j=<n-1.
The node p, , is given in polar coordinates by p, , = (i — 1/2,j 2 #/n).
There are mn nodes. The interior consists of those nodes p, , for
1<i<mand O=<j=<n— 1. This includes the nodes on innermost circle,
but not on the outermost circle. The boundary consists of the nodes on the
outermost circle, but not the nodes on the innermost circle. Each interior
node not on the innermost circle has four neighboring nodes ; each node on
the innermost circle has three neighbors. Each boundary node has two
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Figure 10.

neighbors which are also boundary nodes and one neighboring node which is
an interior node. An edge is a radial line segment p(i, j)p(i + 1,j)or a
circular arc p(i, j)p(i,j +1). There are n(2m — 1) edges. A circular
network of resistors of type C,(m, n) is such a network together with a
conductivity function y on the edges. An algorithm for recovering
v from A, like that of Section 5 can be given for circular networks of type
Cy,(m,n)if n=4m+ 3.

For each pair of positive integers m, n, a circular network of type
C ;(m, n) has m circles and » rays. Figure 11 illustrates a circular network of
type C3(3, 12).

Figure 11.
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The nodes of C;(m, n) are the points p, , forO<i<mand0=<j=<n- 1.
The node p, , is given in polar coordinates by p, , = (i, j 27/n). There are
1 + mn nodes. The interior consists of those nodes p, , for 0 <i <m and
0 <j =n — 1. The boundary consists of the nodes p,, , for O <j <n - 1.
The boundary consists of the nodes p,, , for 0 <j <n — 1. Each interior
node, except the center node, has four neighboring nodes ; the center node
p(0, 0) has n neighbors. Each boundary node has three neighboring nodes :
and two neighbors which are boundary nodes and one neighbor which is an
interior node. An edge is a radial line segment p (i, j) p(i + 1, j)or acircular
arc p(i, j)p(@i, j + 1). there are 2 mn edges. A circular network of resistors
of type C5(m, n) is such a network together with a conductivity function
v on the set of edges. An algorithm for recovering y from A, like that of
Section 5 can be given for circular networks of type C,(m, n)ifn=4m + 1.

For each pair of positive integers m, n, a circular network of type
C 4(m, n) has m circles and n rays. Figure 12 illustrates a circular network of
type C,(2, 8).

Figure 12.

The nodes are the points in the plane p, ,forl <i <smand0<j <n - 1.
The nodes p, , are given in polar coordinates by p, , = (i — 1/2, j 2 w/n).
There are mn nodes. The interior consists of those nodes p, for
l<i<m and O=<j=<n-1. This includes the innermost circle. The
boundary consists of those nodes p,, , for 0 <j < n — 1. Each interior node
not on the innermost circle has four neighboring nodes ; each node on the
innermost circle has three neighbors. Each boundary node has one neighbor-
ing node which is an interior node. An edge is a radial line segment
p(,j)p(G + 1, j)oracirculararc p(i, j) p(i, j + 1). There are 2 mn edges.
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A circular network of resistors of type C,(m, n) is such a network together
with a conductivity function on the set of edges. An algorithm for recovering
y from A, like that of Section 5 can be given for circular networks of type
Cium,n)yifn=4m+ 1.

10. DUAL NETWORKS

Let £2, be a network of type C,(m, n) and let 2, be a network of type
C,(m+ 1, n). £2, is dual to the network {2, as follows. {2, is rotated
clockwise by #/n so that each edge a in 2, is perpendicular to an edge
a® in £2,. The orientation of a* is to be that of « rotated clockwise by
/2. Figure 13 shows £2,, a network of type C,(2, 8) (solid lines), and

{2, (dotted lines), a network of type C,(1, 8).

¢

Figure 13.

If v, is a conductivity on £2,, the dual conductivity y, on I', is defined by
y,(at) = 1/y,(a). For each y,-harmonic function u on {2, let v be the
v,-harmonic function on I",, where

Av(at)=1,(a)

I, (at)=Au(a).
The function v is well defined to within additive constant. Each boundary
node p, of 2, lies between two boundary nodes of I',, which will be

numbered ¢, and g, ,, (with g,,, = q;). For each 1 <j < n, left f, be the
function on the boundary nodes of I',, given by f,(g,)=+1,
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£, +1)=—1andf,(g)=0forall£ #j,j + 1. Let v, be the ¥,-harmonic
function on I, with boundary current f,. The Neumann-to-Dirichlet map for
I, is represented by a matrix ¥, where

v, = <f,, lp(fj» .

The matrix ¥ for the Neumann-to-Dirichlet map on the network I, is the
same as the matrix A for the Dirichlet-to-Neumann map on £ which was
constructed in Section 2. Thus the matrix ¥ has the same properties as
A.

Similarly, each network of type C;(m, n) is dual to a network of type
C,(m, n).

11. THE INVERSE CONDUCTIVITY PROBLEM FOR CONTINUUA

Let 2 be a compact, connected region in R* with boundary 842. Let
v be a positive C® scalar-valued function on £ ; y is called conductivity.
The conductivity equation is :

V(yVu)=0.

The (forward) Dirichlet problem is the following. Given a function
f on 842, find a function « on £ such that:

V(y Vu) =0
u=f on a£2.

Similarly, the (forward) Neumann problem is the following. Given a
function g on 842, find a function u on {2 such that :

V(y Vu) =0
ya—u =g on 3.
on

If v (x) is the constant function y (x) = 1, the conductivity equation is the
Laplace. Equation V.Vu =0, and we have the ordinary Dirichlet or
Neumann Problem.

EXAMPLE 1 : Let a material with electric conductivity y (x) occupy the
region f2. If a potential f is imposed on 342 there will be a potential
u throughout £ which satisfies the conductivity equation. This potential

. . )
u gives rise to a current / = y a—u at the boundary of (2.
n

The Dirichlet-to-Neumann map

A:C®@0N)>C®(BR)
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is defined by
ou
A = —_—
H=73,

where u solves the conductivity equation in 2 with u = f on 38£2. In
example 1, the Dirichlet-to-Neumann map takes a potential on the boundary
of £2 to the resulting current at the boundary of 2.

The linear map A = A, depends on y. The Inverse Problem is to determine
v from A. Physically, this means to use measurements of potentials and
currents at the boundary of £ to determine the conductivity inside
£2. As in the discrete case, the Inverse Problem breaks into four problems.

1. Uniqueness : Does A, = A, imply y = u ?

2. Reconstruction : calculate y from the map

A, :C®(B02)—C®(302).

3. Continuity of Inverse: If A, is near to A,, does it follows that
v is near to u ?
4. Characterization : Which linear maps

A:C®(0) > C®(302).

are of the form A = A, for some 7y.

For compact, connected regions {2 in R* with k=2, and piecewise
analytic conductivity 7y, the uniqueness (1) was shown by Kohn and
Vogelius [5]. In the case of a conductivity y which is assumed to be
C®, the uniqueness was shown for dimensions k= 3, by Sylvester and
Uhlmann (6]. For £ = 2, the result is unknown. For k£ = 3, the continuity of
the inverse (3) was shown by Allesandrini (1988). Some work on the
reconstruction has been done by Wexler, Kohn and Vogelius and others
(1983-1988). See [5]1, [3], characterization problem in the continuum case.

Our methods show that there is an Alternating Property for the Dirichlet-
to-Neumann map in the continuum case, which is analagous to the
Alternating Property (Theorem 3.2) for the discrete case. Let £ be a
compact, connected and simply connected region with conductivity
v. The outward normal to 342 will be called n. Let P and Q be distinct points
on 342. Assume that 32 is homeomorphic to a circle, so that P and
Q separate 942 into two arcs which we call C, and C,.

THEOREM 11.1: Let ¢ be a function on 342 which is identically O on
C | and for which A(¢ ) changes sign k times on C . Then ¢ must change sign
at least k times in C,.

Proof : Let u be the y-harmonic function which solves the conductivity

equation with boundary values ¢. Then A(¢) =1y g—z is the resulting
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boundary current. Suppose that p;, p,, ..., Pr,1 1S @ sequence of points in
order along C,, for which the values A¢ (p,), Ad (py), ..., Ad (pr.1)
alternate in sign. We will show that there are points sy, §,, ..., Sg,; in

C, where the function ¢ alternates in sign. Suppose that at some point

p.eCy v g—z (»,) < 0. There is a line segment p, g, in £ along which

u is monotone increasing. Suppose that u(g,)=¢e Let U, =
{xe 2 :u(x)=¢e/2}. Let V, be the connected component of U, in
{2 which contains ¢g,. By the maximum principle, V, must contain a point

s, on 62 with u(s,)>0; necessarily s, € C,. Similarly, for a point
9 . .
p, € C,, where vy ﬁ (p,) > 0 there is a line segment p, g, along which

u is monotone decreasing, and there is a connected open set V, containing
g, and a point s, on the boundary where u(s,) <0. The values of
¢ at the points s, s, ..., S, must be the negatives of the reversal of the
signs of the values A(¢) at the points py, p,, ..., Dr, 1- O

12. COMPLEX IMPEDANCES

In this Section, we consider networks where each edge has a complex
frequency-dependent impedance z(pg; w). The admittance y(pq; ) is
defined by y(pq; w) = 1/z(pg ; ). We assume that the real part of each
z(pq ; w) is positive ; then the real part of y (pg ; » ) will also be positive. For
each frequency w, we consider functions on {2, which have the form
u(p; w)f = (p; w)e'®. That is, for each node pe 2, f(p;w) is a
complex number, depending on w. The identity of Lemma 2.8 can be used to
show that the analogue to Lemma 2.5 is valid in the case of complex
admittances with positive real part. Thus the Dirichlet-to-Neumann map is a
well-defined linear map which takes (steady-state) boundary potentials of
frequency « to (steady-state) boundary currents of frequency . An inner
product on complex boundary functions is defined by :

(6. 9) =Y 60) ¥ @)

where the bar stands for complex conjugate. For each index j = 1, 2, ..., n,
let ¢, be the boundary function which is '’ at node p, and O at all other
boundary nodes. The Dirichlet-to-Neumann map A is represented by a
matrix A = {A, ,} of complex numbers. The entries A, , are given by :

Ap, = (A(e)): b1) -
The algorithm of Section 5 applies to show that, for each frequency
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w, measurements of the steady-state potentials and currents at the boundary
of the network can be used to calculate the (frequency dependent) impedance
along each interior edge. Section 9 shows that it is sufficient to measure the
effective impedance between each pair of boundary nodes to determine the
interior impedances.

13. SOME NUMERICAL RESULTS

A program based on the algorithm for reconstructing the network of type
C;(3, 15) has been written and several numerical experiments have been
performed. Here we will report on the results of reconstructing the network in
which all conductors have value 1. All computations were made in double
precision using Fortran on a Decstation 5000. The largest error was
approximately 1.5 x 10-1°, which means that roughly 6 digits were lost in
the computation. If the entries of the lambda matrix were perturbed randomly
by terms of magnitude 10-8 then the largest error in the computation of the
conductors was approximately 0.5. If the lambda matrix was perturbed
randomly by terms of magnitude 107 then some of the conductors were
computed to have negative values. This would indicate that the reciprocal
condition number of this problem is about 10-3. Linpack estimates the
reciprocal condition number of the derivative of the Dirichlet-to-Neumann
map, considered as a map of R' to R'%, to be 5.3 x 10~ °. Figure 14 shows
a plot of the logarithm to base ten of the singular values of the derivative of
the Dirichlet to Neumann map. Notice the values seem to occur in families of
15, 30, 30 and 30 elements. The families of 30 are further subdivided into
subfamilies of 15 elements.

20 40 60 80 100

-8

Figure 14.
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