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Abstract. The purpose of this paper is serve as a gentler introduction to virtual resolutions

which were �rst introduced in [BZES17]. However, before discussing virtual resolutions, we

show why they are important. This is done by comparing them to minimal resolutions of

modules over the standard graded polynomial ring over a �eld.

1. Introduction

In n-dimensional projective space, there is a correspondence between certain sheaves and
�nitely generated modules over the standard graded polynomial ring in n+ 1 variables over
a �eld. Because of this, the geometry of varieties can be investigated through modules over
a graded polynomial ring. Homological tools can be used to study the modules and therefore
understand properties of the geometry of the varieties.
Section 2 concentrates on introducing tools such as minimal free resolutions that are useful

in studying modules. We discuss invariants such as the Betti numbers of a module and men-
tion how Betti numbers are able to explain properties of the modules. The Hilbert function
and polynomial are de�ned in this section and the connection with Castelnuovo�Mumford
regularity is described. This section lays the groundwork of attempting to generalize many
of these notions to the more general toric variety case.
Toric varieties are de�ned and discussed in Section 3. In this section, the Cox ring is de�ned

and the correspondence between subvarieties of a toric variety and certain ideals of the Cox
ring is discussed. Just as subvarieties of projective space can be understood by studying
modules of a polynomial ring, subvarieties of toric varieties can be better understood by
studying certain modules over the Cox ring. An emphasis is placed on understanding the
multigrading of the Cox ring through the group action of a torus.
In a product of projective spaces or, more generally, in a toric variety, the tools introduced

in Section 2 do not as closely re�ect the geometry of subvarieties. A proposed replacement
of minimal free resolutions called virtual resolutions is given in Section 4. We de�ne virtual
resolutions and give two di�erent ways of constructing them. A couple of examples are also
provided in this section.
Finally, in Section 5 a couple of possible research directions are discussed. As virtual

resolutions are rather new objects of study, there are many directions to pursue. However,
we restrict our attention to questions about points in P1 × P1.
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2. Syzygies

In this section we will discuss some results and techniques well known for investigating
syzygies of modules in projective space Pn. Throughout this section, let S = k[x0, x1, . . . , xn]
be the standard graded polynomial ring in n + 1 variables over an algebraically closed �eld
k and let m = 〈x0, ..., xn〉 be the maximal ideal.
We are able to use modules over S to investigate subvarieties of Pn because of the following

theorem.

Theorem 2.1. There is a bijective correspondence

{nonempty closed subvarieties of Pn} ←→ {m-saturated radical homogeneous ideals}.

2.1. Minimal Free Resolutions. Free resolutions were orginially studied by David Hilbert
in the 19th century. We start by de�ning a minimal resolution and providing a few examples.
This discussion is largely following [Eis95] and [Eis05].

De�nition 2.2. Let R be a ring. A projective resolution of an R-moduleM is a complex

F : F0
ϕ1←− F1

ϕ2←− · · · ϕn←− Fn
ϕn+1←−−− · · ·

of projective R-modules Fi such that H0(F ) = M and otherwise F has no homology. We
say F is a free resolution if all the Fi are free and is a graded free resolution if R is a
graded ring, all the Fi are graded free modules, and the maps are all homogeneous maps of
degree 0. If, for some n <∞, we have Fn+1 = 0, but Fi 6= 0 for 0 ≤ i ≤ n, then we shall say
that F is a �nite resolution of length n.

It is straightforward to see that every �nitely generated module M over S has a free
resolution. To construct one, simply let F0 be the free module generated by a set of generators
on M . The kernel of the map F0 → M is called the �rst syzygy module of M . Next let
Fi be the free module on a set of generators of the ith syzygy of M and repeat this process.
The ith syzygy module is the image of the map Fi → Fi−1 and the elements of these syzygy
modules are called syzygies.
If M is a graded S-module, then de�ne M(a) to be the module M shifted by a. That is,

M(a)n, the nth graded component of M(a) is Ma+n, the (a+ n)th graded component of M .

Example 2.3. Let S = k[x, y] and M = S/〈x, y〉 = k. Following the procedure above,
F0 = S. Now let K0 = ker(F0 →M). Then K0 = 〈x, y〉 and thus F1 is free of rank 2.
Let ϕ1 : S2(−1) → S be de�ned by ϕ1(a, b) = ax + by. Notice that this is a degree zero

map. K1 = ker(ϕ1) = 〈(y,−x)〉 is generated by a single element so F2 has rank 1.
In order for ϕ2 to be a degree zero map, F2 = S(−2) and ϕ2 : 1 7→ (y,−x). This map is

injective so K3 = 0 which means that F3 = 0 so our free resolution has length 2. The free
resolution is

F : S

[
x y

]
←−−−− S2(−1)

 y
−x


←−−−− S(−2)←− 0,

where the maps over the arrows are denoted by the corresponding matrices. This particular
example is the Koszul complex of length 2. �
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It is not true in general that free resolutions are unique. Of course, we could always take

the direct sum of a complex F with the shifted trivial complex 0 ← S
id←− S ← 0 to yield a

new free resolution. If S is a graded ring (such as a polynomial ring), there is however, one
�smallest� free resolution, called the minimal resolution, in the following sense. If F and G
are two minimal resolutions of M , then there is a graded isomorphism of complexes F → G
that induces the identity on M .

De�nition 2.4. A free resolution F of an S-module M is minimal if the image of each
ϕn : Fn → Fn−1 is contained in mFn−1. In other words, a free resolution F is minimal if all
the maps of the complex k⊗S F are zero.

In fact, it turns out that every free resolution contains the minimal resolution as a direct
summand. Looking at Example 2.3 above, it is easy to see that F ⊗S k has all zero maps
(because all entries in the matrices are positively graded) so F is the minimal resolution of
k. Next is a slightly more interesting example of a minimal free resolution.

Example 2.5. Let S = k[x, y]. Let m be the maximal ideal 〈x, y〉 in S. Following the exact
same procedure as in Example 2.3, a resolution of m2 = 〈x2, xy, y2〉 is

S

[
x2 xy y2

]
←−−−−−−−−− S(−2)3


y 0
−x y

0 −x


←−−−−−−−− S(−3)2 ←− 0.

Notice that all entries of the matrices are contained in m so this resolution is indeed minimal.
�

Up until this point in this paper, all examples have had �nite minimal free resolutions. It
turns out that for �nitely generated modules over S, this will always be the case.

Theorem 2.6 (Hilbert Syzygy Theorem). If S = k[x0, ..., xn], then every �nitely generated
graded S-module has a �nite graded resolution of length ≤ n + 1, by �nitely generated free
modules.

2.2. The Hilbert Function. Hilbert also de�ned the Hilbert function which is a way to
measure invariants of a module.

De�nition 2.7. Let M be a �nitely generated module over S = k[x0, x1, ..., xn]. Recall the
degree d component of M be denoted by Md. The Hilbert function of M is the numerical
function

HM(d) := dimk(Md).

Let F be a �nite free resolution of M of length r. Since each ϕi is a degree zero map,
extracting the dth degree component of M and the Fi, there is an exact sequence of vector
spaces

Fd : (F0)d ←− (F1)d ←− · · · ←− (Fr)d ←− 0.
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So the Hilbert function can be computed as

HM(d) =
r∑
i=0

(−1)i dimk(Fi)d.(2.7.1)

Example 2.8. Revisiting Example 2.5 where S = k[x, y] and M = S/m2, notice that the
zero degree component of M is M0 = k, so HM(0) = 1. Moving to the degree 1 component
of M , since M1 = spank〈x, y〉, then HM(1) = 2. Finally, Mn = 0 for n ≥ 2 so HM(n) = 0
for n ≥ 2. This is summarized below:

HM(d) =


1 for d = 0,

2 for d = 1,

0 for d ≥ 2.

�

In particular, in Example 2.8, the Hilbert function stabilized to zero. Does this always
happen? It turns out the answer is no. There is good news, though. Hilbert discovered that
the in�nite values of the Hilbert function can be encoded in a polynomial.

Theorem 2.9. If M is a �nitely generated graded module over S, then for d � 0, HM(d)
agrees with a polynomial of degree ≤ n+ 1.

De�nition 2.10. The polynomial in Theorem 2.9, denoted PM(d), is called the Hilbert
polynomial of M .

2.3. Betti Numbers. Because minimal free resolutions are unique up to graded isomor-
phism, the twists of the free modules at each step in the resolution are independent of the
choice of minimal free resolution. These data are called the Betti numbers. If F is a free
complex of R-modules, where

F : F0 ←− F1 ←− · · · ←− Fn ←− · · ·

with Fi =
⊕

j R(−j)βi,j , then the βi,j are called the ith graded Betti numbers of F . The ith
total Betti number is βi =

∑
j βi,j. If F is a free resolution of a module M , then this means

that M is generated in degrees β0,j. In Example 2.5, the only nonzero Betti numbers are

β0,0 = 1, β1,2 = 3, β2,3 = 2.

However, simply listing Betti numbers can be cumbersome. We can better encode the Betti
numbers in a Betti diagram or Betti table where the entry in column i and row j is βi,i+j.
The Betti table of Example 2.5 is:

0 1 2

0 1 - -
1 - 3 2

where for clarity the zeros in the table have been replaced with dashes. Also notice that we
could have extended this table to the right and down as far as we would like to with dashes,
but it makes more sense to only include the nonzero part of the Betti table. The projective
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dimension of a module can immediately be seen by looking at the width of the Betti table
of the module. In the case of this example, the projective dimension is 2. We will see in
Section 2.4 that the height of the Betti table has to do with the regularity of the module.
An easy combinatorial argument gives dimk Sd =

(
n+d
d

)
. Putting this together with the

above discussion of Betti numbers and (2.7.1), we get the following.

Proposition 2.11. Suppose S = k[x0, ..., xn] and M is a graded S-module. If M has a �nite
free resolution

F : F0 ←− F1 ←− · · · ←− Fr

where Fi =
⊕

j S(−j)βi,j are all �nitely generated, then

HM(d) =
r∑
i=0

(−1)i
∑
j

(
n+ d− βi,j

d

)
.

Notice that we will always be able to �nd such a �nite free resolution by Theorem 2.6.
This proposition says exactly what the Hilbert polynomial of M is. An interesting question
to ask is if there is an invariant of M that tells us when HM(d) = PM(d). We will answer
this question in Section 2.4.
Notice that the Hilbert Syzygy Theorem (Theorem 2.6) only gives a bound on the length of

a free resolution of a module. Another natural question to ask is whether there are invariants
of a module that determine the length of a resolution. In the graded case, where projective
modules are free modules, the depth of the module and ring can be chosen to play the role
of these invariants.

Theorem 2.12 (Auslander�Buchsbaum formula). Let R be a graded ring with maximal ideal
m and M be a �nitely generated R-module. If M is of �nite projective dimension, then

pdim(M) = depth(m, R)− depth(m,M).

Consider the ideal I of a �nite number of points in P2. If S = k[x, y, z], then the Auslander�
Buchsbaum formula tells us that the projective dimension of S/I is 2 so the projective
dimension of I is 1. We also have the following useful tool for ideals of projective dimension
1.

Theorem 2.13 (Hilbert�Burch). Suppose that an ideal I in a Noetherian ring R admits a
free resolution of length 1:

0←− I ←− G
M←−−− F ←− 0.

If the rank of the free module F is t, then the rank of G is t + 1, and there exists a nonze-
rodivisor a such that I = aIt(M), where It(M) is the ideal generated by the t + 1 maximal
minors of the matrix representation of M with respect to given bases of F and G. In fact,
the generator of I that is the image of ith basis vector of G is a times the ith minor of M .
Furthermore, the depth of It(M) is 2.

Conversely, given a nonzerodivisor a ∈ R and given a (t+ 1)× t matrix M with entries in
R such that depth(It(M)) ≥ 2, the ideal I = aIt(M) admits a free resolution of length one
as above. The ideal I has depth 2 precisely when the element a is a unit.
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One way to prove the converse of this theorem is to construct the complex 0← I ← F ←
G← 0 and then check that it has no homology. In general, though, it is not always easy to
check that a given free complex is a resolution. However, by the following theorem, it su�ces
to count the ranks of free modules and depth of ideals generatered by maximal minors. If ϕ
is a map of free modules, denote by I(ϕ) the ideal generated by the maximal minors of the
matrix representation of ϕ with respect to some given basis.

Theorem 2.14 (Buchsbaum�Eisenbud). Let R be a Noetherian ring. A complex of free
R-modules

F : F0
ϕ1←− F1 ←− · · · ←− Fr−1

ϕr←− Fr ←− 0.

is exact if and only if rankϕi+1 + rankϕi = rankFi and depth I(ϕi) ≥ i for every i.

2.4. Castelnuovo�Mumford Regularity. We now examine the question: When does the
Hilbert function become polynomial? This leads us to the notion of Castelnuovo�Mumford
regularity. From now on, when we say regularity, we mean Castelnuovo�Mumford regularity.
There are a couple of equivalent ways of de�ning regularity for S-modules. As seen below,
regularity is not really a property of a module, but rather a property of a complex.

De�nition 2.15. Let

F : F0 ←− F1 ←− · · · ←− Fi ←− · · ·

be a graded complex of free S-modules with Fi =
⊕

j S(−ai,j). The regularity of F is

regF := sup
i,j
{ai,j − i}.

If M is an S-module, and F is the minimal resolution of M we de�ne regM := regF .

If the Betti diagram of a module is known, then we can instantly �nd the regularity of the
module. The regularity is simply the height of the Betti diagram. This is because the entry
in column i and row j in the Betti diagram is de�ned to be βi,j−i.
To answer the question of when the Hilbert function becomes polynomial, we have the

following.

Theorem 2.16. Let M be a �nitely generated graded module over the polynomial ring S =
k[x0, ..., xn].

(1) The Hilbert function HM(d) agrees with the Hilbert polynomial PM(d) for d ≥ regM +1.
(2) More precisely, if M is a module of projective dimension δ, then HM(d) = PM(d) for

d ≥ regM + δ − n.

It is also possible to de�ne the regularity in terms of local cohomology. Following [BS98]'s
introduction of local cohomology, if M is an R-module, let

ΓI(M) =
⋃
n∈N

(0 :M In).

That is, ΓI(M) is the set of elements of M that are annihilated by some power of I. This
is a submodule of M and if f is a homomorphism of R-modules M → N , then f(Γi(M)) ⊂
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Γi(N) so f induces a homomorphism ΓI(M) → ΓI(N) and it is easy to check that ΓI(−)
is functorial. In fact, ΓI is a left-exact covariant functor. So it makes sense to give the ith
right derived functor of ΓI a name.

De�nition 2.17. For i ∈ N0, the ith right derived functor of ΓI is denoted by H i
I and is

called the ith local cohomology functor with respect to I.

Then the regularity of a module can be de�ned in the following equivalent way.

Theorem 2.18. Let M be a �nitely generated graded S-module and let d be an integer. The
following conditions are equivalent:

(i) d ≥ regM
(ii) d ≥ max{e|Hi

m(M)e 6= 0}+ i for all i ≥ 0.
(iii) d ≥ max{e|H0

m(M)e 6= 0} and Hi
m(M)d−i+1 = 0 for all i ≥ 0.

3. Toric Varieties

Toric varieties are among the most concrete varieties since they have much more combi-
natorial structure than other abstract varieties. In this section we will concentrate on the
correspondence between the geometry of a toric variety and algebra. Speci�cally we will look
at the Cox ring. Much of the content of this section can be found in [CLS11].

De�nition 3.1. A toric variety is an irreducible variety V that contains a torus T ∼= (k∗)m
as a Zariski open subset such that the action of T on itself extends to an algebraic action of
T on V .

A�ne toric varieties can be constructed from strongly convex rational cones. General
toric varieties can be glued together from a�ne toric varieties and their combinatorial data
is encoded in a fan Σ of cones. Let Σ(1) denote the set of one-dimensional cones (rays) in
Σ. Following [Cox95], de�ne the total coordinate ring or Cox ring as

S = k[xρ|ρ ∈ Σ(1)].

In fact, given a fan, the toric variety of the fan can be constructed using the quotient
construction as outlined in [CLS11]. If the cardinality of Σ(1) is n, then the toric variety
will be (kn\Z)/ ∼ where Z is some exceptional set in kn and points in kn\Z are identi�ed
if they are in the same orbit of a speci�c group action G× kn → kn where G ⊂ (k∗)n. The
exceptional set can be de�ned as the vanishing set of a speci�c ideal in the Cox ring. Namely,
de�ne

xσ̂ :=
∏

ρ∈Σ(1)\σ

xρ.

Then Z = V (B), where

B := 〈xσ̂|σ ∈ Σ〉 ⊂ S.

This is called the irrelevant ideal of the Cox ring. If τ is a face of σ, then xσ̂ divides xτ̂ so
in computingB, it su�ces to index over all maximal faces of Σ. Additionally, the group action
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will induce a multigrading on the Cox ring. Let λ = (λ1, λ2, ..., λk) and λ
a = λa11 λ

a2
2 · · ·λ

ak
k .

Then if G ∼= (k∗)k and λ ∈ G acts on (t1, ..., tn) ∈ (k∗)n by

λ · (t1, ..., tn) = (λa1t1,λ
a2t2, ...,λ

antn),

then we say

deg(xi) = ai.(3.1.2)

In this way the geometry can be changed into algebra and tools from commutative algebra
(such as those described in Section 2) can be used to explore properties of the toric variety.

Theorem 3.2. Let XΣ be a simplicial toric variety. Then there is a bijective correspondence

{nonempty closed subvarieties of XΣ} ←→ {B-saturated radical homogeneous ideals}.

Another way to interpret the multigrading of S is through the class group of S. The class
group Cl(X) is the free abelian group generated by the codimension one subvarieties of X.
Under the Orbit-Cone Correspondence (Theorem 3.2.6 in [CLS11]), one dimensional cones
in the fan of a toric variety XΣ correspond to codimension one orbits. The closure of this
codimension one orbit is a prime divisor so each ray ρ ∈ Σ corresponds to a prime divisor
Dρ. De�ning deg(xρ) = Dρ, the Cox ring is graded by Weil divisors.
The grading by the class group matches with the grading given by the weights of the G

action. If M is the group of characters for the toric variety XΣ, then there is a short exact
sequence (for toric varieties without torus factors)

0 −→M
div−→ ZΣ(1) −→ Cl(XΣ) −→ 0,

where if χm ∈M and uρ is the minimal generator of the ray ρ, then

div(m) =
∑
ρ∈Σ(1)

〈m,uρ〉Dρ.

The grading of xρ is given by the image of eρ (the basis vector that ρ corresponds to in
ZΣ(1)) in Cl(XΣ). This grading matches the grading from the weights of the (k∗)k ∼= G
action as described in (3.1.2) above. In fact, the group G that acts on kn\Z is the group
HomZ(Cl(XΣ),k∗). In the examples that follow we will simply state G for concreteness.
However, it is not hard to �nd G from the following lemma from [CLS11].

Lemma 3.3. Let XΣ be the toric variety of a fan Σ. Let G = HomZ(Cl(XΣ),k∗) ⊂ (k∗)Σ(1).
Then given a basis e1, e2, ..., en of M , and minimal generators µρ of ρ ∈ Σ(1)

G =

(tρ) ∈ (k∗)Σ(1)|
∏

ρ∈Σ(1)

t〈ei,µρ〉ρ = 1 for 1 ≤ i ≤ n

 .

As a �rst example, the toric variety Pn can be constructed using the quotient construction.

Example 3.4. Let e1, e2, ..., en be the standard basis vectors of the lattice Zn. De�ne
e0 = −e1−e1−· · ·−en. The fan corresponding to Pn consists of cones generated by all proper
subsets of {e0, e1, ..., en}. So in this case, the Cox ring is k[x0, x1, ..., xn]. To recover Pn, �rst
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start with kn+1. Now remove the exceptional set and then quotient out by the group action.
Notice that every maximal face will not contain exactly one ray. So the irrelevant ideal
B = 〈x0, x1, ..., xn〉 and Z = V (B) = 0. The group G = {(λ, λ, ..., λ) ∈ kn+1|λ ∈ k∗} ∼= k∗
acts on kn+1 by scalar multiplication. So the toric variety is

(kn+1\0)/k∗ = Pnk .

Since k∗ acts on kn+1 by λ · (t0, t1, ..., tn) = (λt0, λt1, ..., λtn), then deg(xi) = 1 for every
0 ≤ i ≤ n. This is the standard grading on k[x0, ..., xn] and the irrelevant ideal is the
maximal ideal. �

Example 3.4 makes it clear that Theorem 2.1 is a special case of Theorem 3.2 where
XΣ = Pn and B = m.
In Example 3.4, the grading on the Cox ring is the standard grading, but in general this

does not always happen. Next we examine the Hirzebruch surface Fa.

Example 3.5. The fan Σ ⊂ R2 of the Hirzebruch surface Fa consists of the cones Cone(e1, e2),
Cone(e2,−e1 + ae2), Cone(−e1 + ae2,−e2) and Cone(−e2, e1) where e1, e2 are the standard
basis vectors of R2.

(−1, a)

Let u1 = −e1 + ae2, u2 = e1, u3 = −e2, and u4 = e2. These are the rays of Σ. The Cox
ring of Fa is S = k[x1, x2, x3, x4]. The irrelevant ideal is

B = 〈x1x4, x1x3, x2x3, x2x4〉 = 〈x1, x2〉 ∩ 〈x3, x4〉
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so Z = V (B) = k2 × {0, 0} ∪ {0, 0} × k2. The group G = {(λ, λ, µ, λ−aµ)|λ, µ ∈ k∗} ∼= (k∗)2

acts on k4 via coordinate-wise multiplication. So in this case the grading of S is

deg(x1) = (1, 0)

deg(x2) = (1, 0)

deg(x3) = (0, 1)

deg(x4) = (−a, 1).

As a �nal remark to this example, we note that if a = 0, then Fa ∼= P1 × P1. So it is
immediate that the irrelevant ideal of P1 × P1 is 〈x1x4, x1x3, x2x3, x2x4〉, which has primary
decomposition 〈x1, x2〉 ∩ 〈x3, x4〉. �

4. Virtual Resolutions

As shown in Section 2, minimal resolutions are a good way to study modules over projective
space. However, in products of projective space, it turns out that minimal resolutions contain
too much algebraic structure. In particular, they contain information that does not matter
geometrically. This results in minimal resolutions being longer and the ranks of the free
modules being larger than needed. The reason for this di�erence is that in Pn, the vanishing
set of the irrelevant ideal is the origin. Recall from Example 3.4 that in this case, the
irrelevant ideal is the maximal ideal.
On the other hand, consider the simplest case of a product of projective spaces P1 ×

P1 where the �rst coordinate is parametrized by x1, x2 and the second is parametrized by
y1, y2. The irrelevant ideal is no longer the maximal ideal. Instead, as noted at the end of
Example 3.5, the irrelevant ideal is (x1, x2)∩(y1, y2) = (x1y1, x1y2, x2y1, x2y2). The vanishing
set of this ideal is more complicated than just the origin. Recall that the de�nition of the
minimal free resolution required the image of ϕi to be contained in mFi−1. The irrelevant
ideal will play a similar role in the de�nition of a virtual resolution.
Before continuing any further we shall establish some notational conventions. For the

remainder of this paper, n = (n1, n2, ..., nk) and Pn = Pn1 × Pn2 × · · · × Pnk . Also denote
the Cox ring by S and the irrelevant ideal by B. As mentioned in Section 3, the Cox ring is
graded by the class group. In a product of projective spaces, all Weil divisors are Cartier so
the class group coincides with the Picard group. Therefore S is graded by the Picard group
Pic(X).

De�nition 4.1. Let X = Pn. A virtual resolution of a Pic(X)-graded S-module M is a
complex of Pic(X)-graded free S-modules

F : F0 ←− F1 ←− · · ·

such that the H0(F ) is isomorphic to the B-saturation of M , (M : B∞) =
⋃
i≥1(M : Bi) and

the higher homology groups are supported on B.

An equivalent de�nition of a virtual resolution of M is a complex of free S-modules that
when shea��ed becomes a locally free vector bundle resolution of the sheaf M̃ .
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4.1. Multigraded Regularity. In Pn, the Hilbert function and polynomial of modules are
no longer functions of a single variable, but rather a function of k variables. So it is harder to
talk about regularity in the previous sense. Instead, [MS04] de�nes a multigraded regularity.

De�nition 4.2. Let X be a smooth projective toric variety and let S denote the Cox ring
of X. Let NC be the semigroup generated by a �nite subset C = {c1, ..., cl} of Pic(X).
For m ∈ Pic(X), we say that a Pic(X)-graded S-module M is m-regular if the following
conditions are satis�ed:

(a) H i
B(M)p = 0 for all i ≥ 1 and all p ∈

⋃
(m− λ1c1− · · · − λlcl +NC) where the union is

over all λ1, ..., λl ∈ N such that λ1 + · · ·λl = i− 1.
(b) H0

B(M)p = 0 for all p ∈
⋃

1≤j≤l(m+ cj + NC).

We set reg(M) := {p ∈ Pic(X)|M is p-regular}.

Notice that if X ⊂ Pn so that Pic(X) = Z, then by Theorem 2.18 this de�nition is the
same as the single-graded regularity de�ned in Section 2.4.
A di�erence between the single-graded and multigraded regularity is that the multigraded

regularity is not a single element, but rather a set of elements. This di�erence isn't so large
as we can think of the single-graded regularity as a set as well. Indeed, ifM is p-regular, then
M is q-regular for all q ≥ p. In general, the multigraded regularity cannot be de�ned by a
single minimal element, but we can still talk about the minimal elements of the multigraded
regularity. This is because it follows from De�nition 4.2 that if M is p-regular, then M is
q-regular for all q � p where � denotes the component-wise partial ordering on Zk.
The multigraded regularity acts like the single graded regularity in another useful way. If

p ∈ reg(M), then the Hilbert function matches the Hilbert polynomial for all q � p.

4.2. Virtual Resolutions of a Pair. [BZES17] showed that there are a couple of di�erent
ways of constructing virtual resolutions. One way is to use the multigraded Castelnuovo�
Mumford regularity.
Let M be an S-module and let d be an element in the regularity of M . Then the virtual

resolution of the pair (M,d) is obtained from the minimal resolution of M by �nding the
minimal free resolution of M and removing all twists not less than n + d. This can only
decrease the length of the minimal resolution so the virtual resolution of a pair is always at
least as short as the minimal resolution. Also notice that we are justi�ed in saying �the�
virtual resolution of a pair since as the minimal resolution of the module M is unique up to
isomorphism, so too is the virtual resolution of the pair (M,d).

Example 4.3. Consider an ideal I of three points ([1 : 1], [1 : 4]), ([1 : 2], [1 : 5]), and
([1 : 3], [1 : 6]) (where [a : b] is a set of homogeneous coordinates in P1) in general position
in P1 × P1. Macaulay2 [M2] shows that the B-saturation of I is J = (I : B∞) is

〈3x0x2 + x1x2 − x0x3, 40x2
1x2 + 6x2

0x3 − 13x0x1x3 − 3x2
1x3, 6x

3
0 − 11x2

0x1 + 6x0x
2
1 − x3

1,
120x1x

2
2 − 34x1x2x3 − 2x0x

2
3 + 3x1x

2
3, 120x3

2 − 74x2
2x3 + 15x2x

2
3 − x3

3〉
.
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The minimal resolution of J is

S ←−

S(0,−3)
⊕

S(−1,−2)
⊕

S(−2,−1)
⊕

S(−3, 0)
⊕

S(−1,−1)

←−

S(−1,−3)2

⊕
S(−2,−2)2

⊕
S(−3,−1)2

←−
S(−2,−3)
⊕

S(−3,−2)
←− 0.

By examining the Hilbert function and Hilbert polynomial, it can be seen that for all (a, b) �
(2, 0), HJ(a, b) = PJ(a, b). Indeed, it turns out that (2,0) is in the regularity of J . The virtual
resolution of the pair (J, (2, 0)) is

S ←−

S(−1,−1)
⊕

S(−2,−1)
⊕

S(−3, 0)

←− S(−3,−1)2 ←− 0.

The above virtual resolution of the pair has shorter length and is thinner than the minimal
resolution. �
Notice by the de�nition of the virtual resolution of a pair, that if the minimal resolution

of a module M is known, then given an element d in the regularity of M , it is very easy
to �nd the virtual resolution of the pair (M,d). However, the full minimal resolution need
not be computed in order to �nd the virtual resolution of the pair (M,d). Rather the same
strategy as outlined in Section 2 used to �nd the minimal resolution of M can be used, but
we can simply omit any generators of degree n + d or higher. This is a computationally
easier way to compute the virtual resolution of the pair and is the content of Algorithm 4.4
in [BZES17].
In fact, it appears that the multigraded regularity of a module and the module's set of

virtual resolutions are intimately related. Not only can we construct a virtual resolution
if we know an element in the regularity of a module, but [BZES17] showed that the set of
virtual resolutions of a module determine the regularity of the module as well.

4.3. Another Way of Constructing a Virtual Resolution. In the case where the variety
is zero-dimensional (i.e. a set of points in Pn), there is another way of �nding a virtual
resolution. First, for Pn, write the Cox ring as k[x1,0, ..., x1,n1 , x2,0, ..., x2,n2 , ..., xk,nk ]. Then

for a vector a ∈ Nk let Ba =
⋂k
i=1〈xi,0, ..., xi,ni〉ai . We will call Ba a power of the irrelevant

ideal.

Theorem 4.4. If X ⊂ Pn is a set of points and I is the corresponding B-saturated S-ideal,
then there exists a ∈ Nk such that the minimal free resolution of S/(I ∩ Ba) is a virtual
resolution of S/I.
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Example 4.5. Consider the B-saturated ideal J from Example 4.3. Recall that the variety
of this ideal is a set of three points in general position in P1 × P1. Finding the minimal free
resolution of J ∩B(0,1) recovers the same virtual resolution as in Example 4.3. �

A natural question to ask is if there are other ways of creating virtual resolutions. This is a
possible research direction. It appears that there may be a way to create a virtual resolution
of an ideal I by �nding a resolution of an ideal created by taking a subset of the generators
of I.

Example 4.6. Consider the ideal generated by the �rst and second generators of the B-
saturated ideal mentioned in Example 4.3,

〈3x0x2 + x1x2 − x0x3, 40x2
1x2 + 6x2

0x3 − 13x0x1x3 − 3x2
1x3〉.

The minimal resolution of this ideal gives the virtual resolution of the ideal of the three
points from Example 4.3

S
ϕ1←−

S(−1,−1)
⊕

S(−1, 2)

ϕ2←− S(−2,−3)←− 0.

Macaulay2 [M2] shows that the maps between these resolutions are given by the matrices

ϕ1 =
[
x0x2 + (1/3)x1x2 − (1/3)x0x3 x2

1x2 + (3/20)x2
0x3 − (13/40)x0x1x3 − (3/40)x2

1x3

]
ϕ2 =

[
−(20/3)x2

1x2 − x2
0x3 + (13/6)x0x1x3 + (1/2)x2

1x3

(20/3)x0x2 + (20/9)x1x2 − (20/9)x0x3

]
so this complex is a Koszul complex. �

5. Possible Research Directions

Now that virtual resolutions have been introduced and their utility has been discussed,
some possible avenues of research may be examined.
First, call a variety arithmetically Cohen�Macaulay (ACM) if its coordinate ring is

Cohen�Macaulay (the depth of every ideal in the ring is equal to the ideal's codimension).
In [GVT15], Elena Guardo and Adam Van Tuyl are able to classify which sets of points in
P1×P1 are ACM. By the Auslander�Buchsbaum formula, ACM sets of points have projective
dimension equal to their codimension. That is, in the case of P1 × P1, ACM sets of points
have projective dimension 2 = dim(P1 × P1). We call a set of points in Pn virtually ACM if
there is a virtual resolution of n of length |n| = n1 + · · ·+ nk.
Points in P1 × P1 may be placed on a ruling according to their coordinates in each copy

of P1 in the following way. There are two projections πi : P1 × P1 → P1.

π1(a, b) = a, π2(a, b) = b.

First we make a grid of horizontal and vertical lines. The horizontal lines correspond to
the �rst copy of P1 and the vertical lines correspond to the second copy of P1. Two points
p, q ∈ P1 × P1 lie on the same horizontal line if π1(p) = π1(q), that is if the �rst coordinates
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of the points match. They lie on the same vertical line if π2(p) = π2(q) (if the second
coordinates of the points match). By permuting the horizontal lines, we can always make
the grid so that the number of points on each horizontal line decreases from bottom to top.
For example, the set of points (a1, b1), (a1, b2), (a1, b3), (a2, b1), (a2, b4), (a3, b2), (a4, b5) can

be represented on the following grid (here the points are labeled so it is easier to see where
each came from; the points need not always be labeled):

(a1, b1) (a1, b2) (a1, b2)

(a2, b1) (a2, b4)

(a3, b2)

(a4, b5)

Of course, the sets of points that are ACM will also be virtually ACM because the minimal
free resolution of a set of points is also a virtual resolution. Therefore the notion of virtually
ACM is weaker than the notion of ACM. Computations in Macaulay2 [M2] show that there
are sets of points that are virtually ACM, but not ACM. Below is the smallest example
of a set of points in P1 × P1 that are virtually ACM, but not ACM. In fact, according to
Proposition 1.2 in [BZES17], points in Pn will always be virtually ACM.

Example 5.1. Consider the set of three pointsX =
{(

[1 : 1], [1 : 4]
)
,
(
[1 : 1], [1 : 5]

)
,
(
[1 : 2], [1 : 6]

)}
⊂

P1 × P1. These sets of points lie in the following con�guration on the ruling.

The B-saturation of the ideal corresponding to these points is

J = 〈120x3
2−74x2

2x3 + 15x2x
2
3 − x3

3, 180x1x
2
2 − 81x1x2x3 + x0x

2
3 + 8x1x

2
3,

6x0x2 − 6x1x2 − x0x3 + x1x3, 2x
2
0 − 3x0x1 + x2

1〉,
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and J has minimal free resolution

S ←−

S(−1,−1)
⊕

S(−2, 0)
⊕

S(0,−3)
⊕

S(−1,−2)

←−

S(−2,−1)
⊕

S(−1,−3)2

⊕
S(−2,−2)

←− S(−2,−3)←− 0.

The Auslander�Buchsbaum formula then tells us that X cannot be ACM.
However, X has the virtual resolution

S ←−
S(−1,−1)
⊕

S(−1,−2)
←− S(−2,−3)←− 0,

which is a Koszul complex. Since the length of the above virtual resolution is 2 = dim(P1 ×
P1), the set of points X is virtually ACM. As this set of points has a virtual resolution that
is a Koszul complex, we say this set of points is a virtual complete intersection. �

As mentioned in Examples 4.6 and 5.1, there are virtual resolutions of sets of three points
in P1×P1 that are Koszul. In fact, computations inMacaulay2 [M2], seem to imply that most
sets of 3 and 4 points in P1 × P1 are virtual complete intersections. It would be interesting
to classify when sets of points are virtual complete intersections.
Another thing to explore is when the minimal resolution of an ideal generatered by a subset

of minimal generators of an ideal form a virtual resolution. For example in Example 5.1, the
virtual resolution is actually the minimal resolution of the ideal generatered by a (1, 1)-form
and a (1, 2)-form, both of which are in a minimal generating set of J . Is there always a
virtual resolution that consists of a free resolution of a subset of a minimal set of generators
of an ideal?
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